Modeling of hard-bottom sites using FVCOM and tracer approach

Frank Gaardsted Magnus Drivdal

10.11.2020

kene

Regional FVCOM model covering Finnmark

HORE

Leavdnja

akselv

Deanušaldi

Tana bru

- Unstructured grid with resolution varying between 50m and 800m
- Bathymetry: Statens Kartverk
- Freshwater runoff: NVE

Romsa ja Finnmarku

ja Finmarkl

- Input data from IMR and Met.no
 - Meteorological: AROME
 - Initial and oceanic boundary conditions: NorShelf (ROMS)

merfest

Alta

Olaneset – hydrodynamical model setup (FVCOM)

Surface salinity

34.000 33.444 32.889 32.333 salinit 31.228 -31.222 -- 30.667 - 30.111 - 29.556 29.000

and a set of

Olaneset - Deposition model - FABM

- Sedimentation model built within the Framework for Biogeochemical Models (FABM)
- Online coupling to FVCOM: concentration calculated every time step
- Organic waste from fish farms split into 6 size classes representing feacal pellets and 2 size classes for feed spill

 Table 2. Settling velocity distribution for salmon faecal material. Source: Bannister et al. (2016)

-	Proportion of particles [%]	Settling velocity [cm s	5-1]
Tracer	66.2	5.0-10	
Tracer	5 18.9	2.5 - 5.0	
Tracer4	3.2	1.5 – 2.5	
Tracer	3 2.6	1.0 - 1.5	
Tracer	2 2.8	0.5 - 1.0	Carvaialino-Fernández e
I racer 1	6.3	< 0.5	

- Release simulated as a flux (g m⁻² s⁻¹) through the area of each cage at 20 m depth
- Two scenarios:
 - 1. Without resuspension
 - 2. With resuspension (constant critical shear stress)

t al. 2020

No resuspension

No resuspension

No resuspension

With resuspension

a manter and an

-

and the second second

No resuspension

With resuspension

Ongoing/remaining work

- Implementation of substrate
 dependent resuspension
- Model studies of two more farms (Storholmen and Nordnes)
- Comparison to IMR particle model
- Validation against field data

Summary

- An unstructured grid model (FVCOM) has been used to increase the resolution locally around fish farms.
 - Resolve high resolution bathymetry data and spatial current variability
 - Accurate placement of individual cages and discharge of waste
- Without resuspension, the depositional pattern is solely determined by the settling velocity of the waste and the currents in the water column. This generally results in a smooth footprint with bottom concentrations gradually decreasing away from the farm in the main current direction.
- High resolution of bathymetry and currents near the bottom are critical for simulating resuspension accurately. Resuspension generally results in more patchy depositional patterns.