

EXECUTE OF MARINE RESEARCH

Sigurd Tjelmeland

Long-term optimal exploitation of cod and capelin in the Barents Sea using the Bifrost model

Долгосрочиый оптимални эксплуатация треска и моива с модел Bifrost

Norwegian-Russian symposium, Murmansk, August 2005

Bifrost – Long time of development

Долгосрочиый развитие

- 1980s CAPELIN, optimal exploitation of capelin, single-species Моива
- 1990s MULTSPEC, cod preying on prespawning capelin Треска моива
- 2000s BIFROST, capelin-cod model with influence from herring треска моива селд

At any time connected to practical management in the Barents Sea

Всегда управление

Present tool

Настоящий инструмент

SeaStar historic

Bifrost

SeaStar prognostic

Herring historic replicates

Predation by cod

- Key variables
 - partOfCodOverlappingCapelin
 - partOfCapelinOverlappedByCod
 - capelinFood
 - codFood
 - otherFood

Estimation of parameters

Оценка параметров

- Estimation in two stages
 - Each historic run is a 10-stage iteration for calculation of residual mortality of capelin and recruits (0 years) of cod
 - Simultaneous maximum likelihood estimation of all other parameters

Capelin: 4 year old 1973-1980

Consumption: From 1984, by quarter, cod, capelin, other

Calculation of consumption

Оценка потребление

- Consumption per cod Exogeneous, replicate file
 - Laboratory evacuation rates
 - Station temperatures
 - Stomach content data
 - Bifrost swept area estimate of cod on Multspec areas
 - February and August
 - Age
 - Maturation
- Consumption by cod During Bifrost estimation
 - AFWG assessment
 - Alternative: SeaStar, which gives uncertainty

One year simulation

$$B_{i+1} = T^9 S T^3 R A T^3 M_{cap} B_i = Y B_i$$

Weight at age vs cod SSB the year before Coloured according to temperature year before

Weight at age of cod

Вес трески

Model: linear function of capelin consumption, for biomass > 0.6 million tonnes also function of biomass

Модел:

-потреблениемоивы

-биомасс трески

Proportion mature at age for cod

Нерест трески

Proportion mature at age for cod

Model: linear function of biomass, temperature and individual weight

Recruitment cod - model

Пополнение трески

codMaxRec e codTemp temp + meanWeightPar meanWeight + meanAgePar meanAge

codHalfcodExpRec + SSBcodExpRec

temp: Mean of August-October

Recruitment cod - results

0.8

2

0.2

0.4

0.6

Recruitment capelin - model

capPred = capHerProp 1 capHerOffset capHerOffset + capCodProp zeroCod + capCapProp capelin

tempdiff: Difference between mean temperature duringAugust-December and mean temperature during January-April

Recruitment capelin - results

Evaluating HCRs

- HCR 3-species management rule
- In simple models, HCR can be evaluated analytically
- In complex models with uncertainty we must instead do long-term simulations
- 150 years, first 50 discarded
- Modelled components
 - Recruitment all species
 - Weight and maturation cod
- Components drawn from historic data
 - Residual mortality of capelin
 - Weight and maturation at age of capelin
- Constant components
 - M of adult cod and of herring
 - Other food

0.5

0.37

0.25

0.5

Fherring = 0.125 Fherring = 0.20 Fherring = 0.30

Yield herring = 0.81 Yield herring = 0.73 Yield herring = 0.46

Effect of cannibalism

Conclusions

- Strong cod-capelin interaction through cannibalism of cod
- Optimal F-value for cod is lower than present Fvalue, recruitment relation and cannibalism taken into account
- Strongly reduced yield of capelin when F for cod is reduced
- Increased yield of cod if future temperature is higher, optimal F-value remains the same

Including predation by mammals — a fundamental problem

- The cod stock assessment is done using a constant M
- The marine mammals generate a variable M
- Compatibility only if marine mammals are included into the assessment
- A pilot project: Minke whales and herring (SeaStar)
- Hotspot: Harp seal, poor diet data

Problem areas

- Exchange of data
 - Temperature by station
 - Qualitative stomach content data
- Data shortage
 - Harp seal diet data
 - Whale data except minke whales
- Conceptual
 - Managing multispecies fishery, economic objectives

Bifrost and request from Commission

- Commission: Evaluate long-time yield of cod, taking into account species interactions and influence from environment
- Bifrost can do this, but also other models
- Need to know processes better
- Response from IMR and PINRO: 10-year project
 - First 3 years pragmatic
 - Last 7 years multispecies models
- Other multispecies models as useful as Bifrost (STOCOBAR) – needs testing

- Effectiveness
- Trust
- Mutual acceptance

EKSEMPEL PÅ OVERSKRIFT

Eksempel på tekst

Bruk gjerne fonten Arial (fet)
ved bruk av variant mørkeblå bunn