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Sammendrag (norsk):
Listeria monocytogenes (Lm) er en vanlig forekommende bakterie som kan føre til infeksjon og sykdom hos
mennesker og dyr. Produksjonsmiljøer med kalde og glatte overflater, regnes vanligvis som ugjestmilde for
matbårne humanpatogene bakterier, men Lm har flere egenskaper som gjør dem i stand til å overleve og vokse der.
Utfordringene med Lm er særlig aktuelle for lettkonserverte matvarer med lang holdbarhet som skal spises uten
videre varmebehandling, som for eksempel røkelaks, og røkelaks og andre lettprosesserte lakseprodukter har de
siste årene vært knyttet til flere utbrudd i Europa. Forekomst av Lm i produksjonsmiljø og i ferdige produkter er
derfor en økende utfordring for lakseindustrien, og næringen opplever stadig strengere krav til kontroll av Lm for å
sikre mattrygghet i produktene
I prosjektet Dekontaminering og vekstkontroll av Listeria i lakseprodukter (DekoLaks) var hovedmålsetningen å teste
og dokumentere bruk av barriereteknologi for dekontaminering og vekstkontroll av Listeria i lakseprodukter gjennom
produksjonskjeden. Denne rapporten utgjør leveransen i Arbeidspakke 2, hvor målet var å levere en systematisk
kartlegging av et utvalg metoder som allerede har dokumentert effekt på reduksjon av Lm, samt identifikasjon av
særlige problemområder i slakterier og under videre foredling. Kartleggingen inkluderte samtaler med
lakseprodusenter for å kvalitetssikre at metodene som ble planlagt testet ut i labskala, ikke er uforholdsmessig
teknisk krevende eller for kostbare å innføre, samt at de kan oppskaleres og tas i bruk av prosessanlegg uavhengig
av størrelse. Noen lovende strategier ble senere testet ut i labskala i andre arbeidspakker. Metodene ble også, så
langt det lot seg gjøre, vurdert mot krav i gjeldene regelverk for mulige tilsetningsstoffer/konserveringsmetoder og
merkekrav for matvarer i Norge/EU og viktige importland for norske lakseprodukter.
Metoder som ble utredet var bruk av ozon, hydrogenperoksid, UV-C, høyfrekvent pulserende lys (HPL), kald plasma
og ultralyd, og flere viser potensiale for å bli tatt i bruk. To av metodene vurdert, ozon og hydrogenperoksid, er
forholdsvis godt kjente kjemiske dekontamineringsmetoder som lenge har vært brukt til desinfeksjon, hovedsakelig
på overflater eller i vann, men også i noen grad på matvarer. Begge stoffene er sterkt oksiderende og kan reagere
med produktene, men flere studier indikerer at lave konsentrasjoner kan brukes uten å gi uakseptable forandringer i
sensoriske egenskaper. UV-C stråling og HPL i akseptable doser har begge en inaktiverende effekt på Lm, med noe
høyere grad av dekontaminering knyttet til bruk av HPL enn ved bruk av UV-C. Begge metodene begrenser seg til
overflatedekontaminering, og fungerer dårligere på ujevne overflater. Lm har også generelt høy resistens mot denne
behandlingen, mest sannsynlig knyttet til den gram positive celleveggen og et effektivt DNA-reparasjonssystem.
Kald plasma viser lovende resultater for dekontaminering av Lm og biofilmer, med forholdsvis moderate effekter på
produktkvaliteten. Et mulig problem er at det er stor variabilitet i effektene av kald plasma avhengig av hvordan
plasmaen blir dannet og produktet det brukes på, og det vil sannsynlig kreve en del metodetilpasning avhengig av
behovet i forskjellige bedrifter. Ultralyd ser hovedsakelig ut til å ha en effekt på Lm dersom det brukes i kombinasjon
med økt temperatur, tilsetningsstoffer eller UV eksponering.
Generelt har alle metodene potensiale til å bidra til Lm-dekontaminering, spesielt om de kombineres med hverandre
eller med andre tiltak som for eksempel tilsetningsstoffer og biokonservering.

Sammendrag (engelsk):
Listeria monocytogenes (Lm) are bacteria commonly found in the environment that can cause infection and disease
in humans and animals. Production environments with cold and smooth surfaces are usually considered
inhospitable for food-borne human pathogenic bacteria, but Lm has several properties that enable them to survive
and grow there. Challenges with Lm are particularly relevant for foods with little processing and with a long shelf life
that are to be eaten without further heat treatment, such as smoked salmon. Smoked salmon and other lightly
processed salmon products have in recent years been linked to several outbreaks in Europe. The occurrence of Lm
in production environments and in ready-to-eat products is therefore an increasing challenge for the salmon industry,
and the industry is experiencing increasingly strict requirements for the control of Lm to ensure the food safety of the
products.
In the project Decontamination and growth control of Listeria in salmon products (DekoLaks), the main objective has
been to test and document the use of barrier technology for decontamination and growth control of Listeria in
salmon products throughout the production chain. This report constitutes the deliverable in Work Package 2, where
the goal was to deliver a systematic mapping of a selection of methods that already have a documented effects on
the reduction of Lm, as well as identification of specific problem areas in slaughterhouses and during further
processing. The mapping included discussions with salmon producers to ensure that the methods planned to be
tested at the lab scale are not disproportionately technically demanding or too expensive to implement, and that they
can be scaled up and used by processing plants regardless of the size of the plant. Promising strategies were later
tested at the lab scale in other work packages. The methods were also, as far as possible, assessed against
requirements in current regulations for possible additives/preservation methods and labelling requirements for foods
in Norway and the EU, as well as in major countries the products are exported to. 
Methods that were investigated included the use of ozone, hydrogen peroxide, UV-C, high-frequency pulsed light



(HPL), cold plasma and ultrasound, and several show potential for use against Lm. Ozone and hydrogen peroxide
are both relatively well-known chemical decontamination methods that have long history of use for disinfection,
mainly on surfaces or in water, but also to some extent on food products. Both substances are strong oxidizers and
can react with the products, but several studies indicate that low concentrations can be used without causing
unacceptable changes in sensory properties. UV-C radiation and HPL in acceptable doses both have an inactivating
effect on Lm, with a somewhat higher degree of decontamination associated with the use of HPL than with the use
of UV-C. Both methods are limited to surface decontamination and have less effect on uneven surfaces. In addition,
Lm generally have high resistance to this treatment, most likely related to the gram-positive cell wall and an efficient
DNA repair system. Cold plasma shows promising results for decontamination of Lm and biofilms, with relatively
moderate effects on product quality. A possible problem is that there is great variability in the effects of cold plasma
depending on how the plasma is generated and the product it is used on, and this will likely require some method
adaptation depending on the needs of different companies. Ultrasound mainly appears to have an effect on Lm if
used in combination with increased temperature, additives or UV exposure.
In general, all methods have the potential to contribute to Lm decontamination, especially if combined with each
other or with other measures such as additives and biopreservation.
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1 - Bakgrunn
Listeria monocytogenes (Lm) er en vanlig forekommende bakterie som kan føre til infeksjon og sykdom hos
mennesker og dyr. Infeksjonsdose varierer med generell helsetilstand (Pouillot et al., 2015; VKM et al., 2021),
og friske mennesker blir vanligvis ikke syke, eller får kun milde symptomer. Svekkede eldre, immunsvekkede,
og gravide kan derimot utvikle alvorlig, invasiv listeriose (VKM, 2018), som har en dødelighet opp mot 8-12 %
(EFSA, 2022, 2023, 2024).

Produksjonsmiljøer med kalde og glatte overflater, regnes vanligvis som ugjestmilde for matbårne
humanpatogene bakterier, men Lm har flere egenskaper som gjør dem i stand til å overleve og vokse der.
Bakteriene har blant annet flere gener for kuldetoleranse (Nichols et al., 2002; Schmid et al., 2009; Zhu et al.,
2005), og vokser derfor bra ved lave temperaturer. De kan danne biofilm på overflater, noe som beskytter mot
både mekanisk fjerning og desinfeksjonsmidler (Fagerlund et al., 2021), og de kan gå inn i en inaktiv hvilefase
og dermed unngå å ta skade av baktericider (Knudsen et al., 2013).

Utfordringene med Lm er særlig aktuelle for lettkonserverte matvarer med lang holdbarhet som skal spises uten
videre varmebehandling, som for eksempel røkelaks (Lambrechts & Rip, 2024). Røkelaks og andre
lettprosesserte lakseprodukter har de siste årene vært knyttet til flere utbrudd i Europa (EFSA, 2024), blant
annet bearbeidede produkter fra anlegg i Sverige, Polen og Estland, hvor det ikke kunne utelukkes at råvarene
var kontaminert hos primærprodusenten i Norge (ECDC & EFSA, 2019). Forekomst av Lm i produksjonsmiljø
og i ferdige produkter er derfor en stor utfordring for lakseindustrien, og næringen opplever stadig strengere
krav til kontroll av Lm for å sikre mattrygghet i produktene. Forordning (EU) 2024/1895 krever fravær av Lm i
25g i produkter der vekst av Lm er mulig. Alternativt kan produsenten dokumentere produksjonspraksis som
sikrer at Lm i produktene ikke vil overskride 100 CFU/g gjennom hele holdbarhetsperioden (Forordning (EU)
2024/1895). Flere viktige importører av norsk sjømat, som Kina og USA, har nulltoleranse for denne bakterien i
produkter som skal ut på markedet. En eventuell påvisning av Lm i ferdigpakkede produkter kan føre til
kostbare tilbaketrekninger av hele partier, og det er et behov for mer kunnskap om effektive tiltak for å oppnå
økt kontroll med Lm (Belias et al., 2022).

I prosjektet Dekontaminering og vekstkontroll av Listeria i lakseprodukter (DekoLaks) (FHF prosjektnummer
901839) har hovedmålsetningen vært å teste og dokumentere bruk av barriereteknologi for dekontaminering og
vekstkontroll av Listeria i lakseprodukter gjennom produksjonskjeden. Hypotesen var at en indirekte
dekontaminering med rensing av prosessvann under utblødning og direkte dekontaminering av fiskens overflate
i ulike prosesstrinn etter sløying, kan benyttes for å nullstille kontaminering for å oppnå økt kontroll med Lm.
Slike tiltak er i liten grad kartlagt med hensyn til dokumentert effekt og risiko, samt muligheter for
implementering i produksjonskjeden.

Arbeidspakkene i DekoLaks inkluderer: en overordnet kartlegging av kjente metoder for dekontaminering av
produkter med Listeria-bakterier (AP2), undersøkelse av effektene av dekontaminering av prosessvann (AP3),
utprøving i labskala av noen utvalgte industrirelevante fysiokjemiske dekontamineringsmetoder basert på
informasjon fra AP2 (AP4), og AP5 med hovedfokus på undersøkelse av mulighet for biologisk vekstkontroll og
dekontaminering ved hjelp av melkesyrebakterier eller produkter fra disse. En egen arbeidspakke (AP6) for
risikovurdering av effektene av tiltak testet i AP3-AP5 er også inkludert i prosjektet. Denne rapporten utgjør
leveransen i Arbeidspakke 2.

Målet i denne delen av prosjektet inkluderte en systematisk kartlegging av et utvalg metoder som allerede har
dokumentert effekt på reduksjon av Lm, samt identifikasjon av særlige problemområder i slakterier og under
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videre foredling. Kartleggingen inkluderte samtaler med lakseprodusenter for å kvalitetssikre at metodene som
ble planlagt testet ut i labskala, ikke er uforholdsmessig teknisk krevende eller for kostbare å innføre, samt at de
kan oppskaleres og tas i bruk av prosessanlegg uavhengig av størrelse. De mest lovende strategiene ble
senere testet ut i labskala.

Det var viktig å undersøke hvilke nye metoder for dekontaminering og vekstkontroll industrien vil finne det
hensiktsmessig å ta i bruk. Et viktig kriterium for innføring av ett eller flere dekontamineringstrinn i
produksjonskjeden er at produktets sensoriske eller fysiokjemiske egenskaper ikke påvirkes negativt. Det vil
videre være en fordel at behandlingen ikke utløser krav til merking (“clean label”). Følgelig må alle prosesser
som inkluderer bruk av tilsetningsstoffer eller kjemikalier som kan etterlate rester på produktet vurderes med
tanke på dette. B ransjens ønske om "clean label” strategier for de ulike metodikkene er tatt i betraktning,
ettersom dette vil ha innvirkning på eventuelle krav om deklarering av dekontamineringsmetodikkene som er
benyttet.

I tillegg ble metodene, så langt det lot seg gjøre, vurdert mot krav i gjeldene regelverk for mulige
tilsetningsstoffer/konserveringsmetoder og merkekrav for matvarer i Norge/EU og importland for norske
lakseprodukter.

Delmål:

I. Identifisere problemområder i slakterier

II. Identifisere problemområder under videreforedling

III. Kartlegge utvalgte metoder med dokumentert effekt, med særlig fokus på fysiokjemiske
dekontamineringsmetoder og prosessvann
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2 - Problemområder i lakseindustrien – slakterier og
videreforedling
Utfordringer med Lm i matvarebransjen har blitt ansett som økende med høyere grad av prosessering. Det er
også kjent at persistente Lm-stammer kan etablere seg i produksjonsanlegg og fungere som en kontinuerlig
kilde til kontaminering av produkter under videre prosessering (Holah et al., 2004; Svanevik et al., 2021).
Slakterier og videreforedlingsanlegg bruker betydelige ressurser på analyser, kartlegging og tiltak for å
forebygge Lm gjennom omfattende renholds- og desinfeksjonsrutiner, samt løpende kontroller av sine anlegg
og produkter.

Slakterier for laksefisk er av varierende størrelse og utforming, men et generalisert flytskjema er vist i Figur 1a.
En rekke trinn i slakteprosessen kan utgjøre en utfordring med tanke på Lm. Det er godt kjent at våte områder
med mye organisk materiale (blod, slim eller rester av skinn og muskel), gir større utfordringer sammenlignet
med tørre og rene områder, noe som også bekreftes i samtaler og diskusjon med næringen. Forskjellige aktører
identifisere ulike punkt i produksjonen som særlig kritiske, men felles er smittepotensialet fra tanker og bad,
transportbånd og maskiner som sløyemaskiner og grader. Et mulig viktig reservoar for Lm på transportbånd er
områder med sprekker som åpnes når det passerer en rulle. Sløyemaskiner, gradere og rensemaskiner kan
også utgjøre reservoarer som Lm fra fiskens overflate kan overføres til, og det har vært spekulert i om Lm kan
være til stede i fiskens tarmsystem, og ved sløying overføres derfra til overflater i anlegget. Videre vil områder
hvor biofilm dannes kunne utgjøre en kontinuerlig kilde til Lm som kan kontaminere produkter (Fagerlund et al.,
2022). Tidligere undersøkelser har identifisert avløpsrenner som et særlig viktig reservoar for Lm (Fagerlund et
al., 2022), og bruk av høytrykksspyling på gulv og over renner må begrenses, siden dette kan virvle opp små
vanndråper med Lm som kan fraktes rundt i lokalene.

Lm -kontaminering i slakteanlegg er mest sannsynlig knyttet til mengden Lm som kommer inn med fisken, hvor
det kan være store variasjoner. Sesongvariasjoner i Lm har tidligere blitt observert i andre land og industrier,
hvor det blant annet har blitt rapportert om økt mengde Lm i melkeindustrien i Nord-Italia om våren og høsten
(Dalzini et al., 2016). I Norge rapporterer noen aktører i lakseindustrien om en tendens mot større mengder Lm
på våren, mens andre rapporterer om lite Lm om våren, men større mengder på høsten. Tidligere studier har
påvist Lm på laks i merder, men kunne ikke fastslå sesongvariasjoner i forekomsten (Hoel et al., 2021). Det er
mulig at observasjonene fra næringen kan knyttes til lokale forhold som nedbør og avrenning fra land nært
oppdrettsanlegg som leverer fisk til slakteriene. Det er godt kjent at listeriose er en særlig utfordring hos husdyr,
spesielt sau (Grønstøl, 1979), og det kan tenkes at avføring fra sau og andre husdyr kan ende opp i kystnære
farvann ved avrenning fra land, og dermed kontaminere fisk som skal til slakting. God kunnskap om lokale
forhold i områdene rundt lakseanleggene kan derfor være fordelaktig.

Kontaminering av produkter med Lm, eller vekst av bakterier i allerede kontaminerte produkter, kan også skje
senere i produksjonskjeden. Figur 1b. viser typiske trinn i videreforedling av laks, og hvert trinn representerer
en mulighet for å tilføre eller oppformere Lm. Her vil tidsbruk og temperaturen produktene blir utsatt for på hvert
steg ha stor betydning.
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Figur 1a) Generalisert oversikt over produksjonskjeden til atlantisk laks fra brønnbåt/slaktebåt til sortering og pakking. Leddene i
kjeden varierer mellom slakterier, og om fisken blir levert levende fra brønnbåt eller ferdig slaktet fra slaktebåt. b) Generalisert oversikt
over produksjonskjeden under videreforedling av sløyd laksefisk. Maskinelle steg er merket i grått, manuelle steg i hvitt. Trinnene i
kjeden varierer mellom bedrifter, og enkelte bedrifter har i tillegg et steg med injeksjon av saltlake på enkelte produkter.
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3 - Aktuelle strategier for dekontaminering i andre
matvaresektorer
Lm er i hovedsak en utfordring knyttet til mattrygghet for spiseferdige, lettkonserverte og langtidsholdbare
konsumprodukter (EFSA, 2022). I slike produkter ligger det til rette for vekst av Lm dersom kravene til
kombinasjonen av lagringstid og temperatur ikke blir oppfylt. Aktuelle produktklasser kan være bløtoster,
spiseferdige kjøttprodukter, inkludert pålegg, samt ikke varmebehandlede fiskeprodukter. Imidlertid har også
andre produkter, som juice, frukt og grønnsaker, vært satt i sammenheng med utbrudd av listeriose (Marik et al.,
2020).

3.1 - Kjemiske og fysiske metoder
Vegetabilske produkter som frukt, grønnsaker, sopp, nøtter, frø, og juice konsumeres ofte uten
varmebehandling, og det er dermed fare for smitte av Lm og andre patogener til forbruker (Kljujev et al., 2018;
Parish, 1997). Flytende produkter som juice blir ofte dekontaminert med pasteurisering (Parish, 1997). Væsker
uten mange og store partikler kan sterilfiltreres (Carneiro et al., 2002; Li et al., 2006), og behandling med høyt
trykk, pulserende elektriske felt, UV bestråling, kontinuerlig pulserende lys, ultralyd, oppvarming ved
strømgjennomføring (ohmic heating) og høytrykks CO  -prosessering har også blitt foreslått (Bhattacharjee et
al., 2019; Pataro et al., 2011). Frukt og grønnsaker dekontamineres ofte med vann tilsatt aktive komponenter
som hypokloritt (50 til 200 mg/kg i 1 til 2 min), klordioxid (5 mg/kg i opptil 30 min), per-eddiksyre (100 mg/kg i 5
min), ozonert vann (3 mg/kg i 5 min), eller elektrolysert oksyderende vann (i opptil 5 min), hydrogenperoksid
(5% i 2 min) (Pietrysiak et al., 2019). Videre har f ysikalske metoder som UV-lys, pulserende lys, ultralyd og
kaldplasma indusert gass, samt ioniserende stråling (gamma og røntgenstråling) også vært testet ut på flere
produkter med lovende resultater (Agüero et al., 2016; Khandpur & Gogate, 2016; Pietrysiak et al., 2019).

I meierisektoren benyttes det en rekke strategier for å minimere utfordringene med Lm, blant annet
pasteurisering eller ultrapasteurisering som dreper eventuell Lm som er til stede. For pasteurisert og
ultrapasteurisert melk er oppbevaring i kjøleskap etter åpning av emballasjen vanlig, og kjølingen vil hemme
veksten av Lm og andre mikroorganismer som skulle være tilført etter åpning (Porcellato et al., 2018). En rekke
nye teknologier er vurdert for reduksjon av Lm i melk og andre meieriprodukter. Disse er avhengig av
produktkategori, og inkluderer blant annet ikke varmebaserte teknologier som høytrykksbehandling, pulserende
elektriske felt, ultralyd og UV-bestråling (Lee et al., 2019), tilsetning av eteriske oljer eller andre “naturlige”
konserverende stoffer (Ritota & Manzi, 2020), samt bruk av nanopartikler eller algeekstrakter (El-Zamkan et al.,
2021). Ved kommersiell produksjon av ost, benyttes som regel melk som på forhånd er pasteurisert, eller melk
som varmes direkte under produksjonen. For å hindre eller senke vekst av Lm ved modning av osten i bad,
benyttes mettet saltlake der salt etterfylles når deler av dette blir tatt opp i osten. Noen oster tilsettes også
klassiske konserveringsmidler som natriumnitritt eller benzoater (Jelena & Zorana, 2022).

For kjøtt, inkludert fjærfe, brukes mange tilnærminger for å minimere utfordringene med Lm gjennom hele
produksjonskjeden fra produsent til forbruker. Dette kan være vask av dyr før transport og slakting, hygienisk
nedskjæring av slakt, behandling av slakteskrotter med vanndamp, og generell hygiene inkludert vask og
desinfeksjon i produksjonslokalene. En rekke strategier, inkludert bruk av kvartære ammoniumsforbindelser
(QACs), syrer, klor-dioksid og hypokloritt i kombinasjon med alkaliske rengjøringsmilder, brukes også for å
hindre biofilmdannelse på produksjonsutstyr som er i kontakt med produkter (Fagerlund et al., 2017; Shimojima
et al., 2023; Tezel & Pavlostathis, 2015). Det er en del utfordringer knyttet til bruk av desinfeksjonsmidler i
produksjonslokaler, blant annet er u tvikling av resistens mot QACs hos Lm et kjent problem (Conficoni et al.,
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2016; Mohapatra et al., 2023; Tezel & Pavlostathis, 2015). Enkelte metoder som er i bruk for å begrense Lm
vekst i produksjonsmiljøer, som blant annet vaskemidler og syrer, har også vist seg å selektere for mer
resistens mot andre desinfeksjonsmidler som etanol og hydrogenperoksid (Lou & Yousef, 1996, 1997; Taormina
& Beuchat, 2001). Dekontamineringsm etoder som brukes direkte på produktene inkluderer ofte mer
tradisjonelle konserveringsmetoder som koking, pH reduksjon ved fermentering, røyking, og reduksjon av
vannaktivitet gjennom tørking (Ingham et al., 2004). Disse metodene fører ofte til en betydelige endringer i det
sensoriske uttrykket av produktene. Andre metoder som gir mindre sensoriske endringer har vært undersøkt,
som kontinuerlig UV-C og HPL (Keklik et al., 2012; Nicorescu et al., 2014), ozon (Pandiselvam et al., 2022)
gammastråling (Zhu et al., 2005), og plasmaaktivert vann (Nicorescu et al., 2014; Pandiselvam et al., 2022;
Shanker et al., 2023), men av disse er det hovedsakelig UV-C som er rutinemessig i bruk. Modifisert
atmosfærepakking (MAP) av produkter hvor oksygen erstattes med gasser som CO  eller nitrogen brukes for
mange kjøttprodukter (Franco-Abuín et al., 1997), hvor forskjellige studier har vist varierende resultater for
hemming av Lm -vekst (Gonzalez-Fandos et al., 2020; Saraiva et al., 2016), men generelt gode resultater når
MAP kombineres med syretilsetningen eller melkesyrebakterier (Mataragas et al., 2003; Skjerdal et al., 2021;
Williams & Golden, 2001; Yang et al., 2024).

Eteriske oljer som lavendel-, rosmarin- og oreganoolje med antimikrobielle egenskaper har blitt nevnt som
mulige konserveringsmidler på mange typer matvarer, inkludert kjøtt, fisk, melkeprodukter og vegetabilske
produkter (Dogruyol et al., 2020; Gottardo et al., 2022; Khaleque et al., 2016). Mange av disse oljene har sterk
lukt og/eller smak, og vil mest sannsynlig føre til endring i lukt og smak på produktet, samt føre til krav om
merking. Allergier vil også potensielt kunne føre til problemer ved bruk av eteriske oljer (Tongnuanchan &
Benjakul, 2014).

Flere av metodene som er i bruk, eller vurderes tatt i bruk, kan endre sensorikk og næringsinnhold i enkelte
produkter, men ha liten effekt på andre typer produkter. For eksempel vil frukt og grønnsaker med hardt skall
tåle mange kjemiske og fysisk dekontamineringsstrategier uten store endringer i smak og utseende, mens bær,
oppskåret frukt og sopp krever mildere behandling (Pandiselvam et al., 2022; Patra et al., 2022; Shanker et al.,
2023). Felles for mange av metodene som ikke medfører store sensoriske endringer på produktene, er at de
kun dekontaminerer overflaten på produktene, og eventuelle bakterier som ligger gjemt i porer, sprekker, under
folder eller på undersiden av produktene vil i liten grad bli påvirket, dette kalles ofte «skyggeeffekt» (Keklik et
al., 2012).

3.2 - Biokonservering
Fermentering er blant de mest tradisjonsrike metodene vi har for konservering av mat, og forbindes kanskje
spesielt med meieriprodukter og grønnsaker, men det er mange steder også tradisjoner for fermentering av fisk
og kjøtt (Barcenilla et al., 2022; Mukherjee et al., 2022; Shi & Maktabdar, 2022). Ved biokonservering brukes
ikke-patogene mikroorganismer (bakterier, sopp og bakteriofager) for å utkonkurrere eller hemme uønskede og
potensielt skadelige mikroorganismer. Dette skjer enten ved direkte konkurranse mellom mikroorganismene om
næring og overflater, ved å skape et surt, ugjestmildt miljø via fermentering, ved produksjon av bakteriosiner
som hemmer vekst av andre mikroorganismer, ved å aktivt infisere og drepe mikroorganismer, eller en
kombinasjon av disse (Morales-Ramos et al., 2024; Singh, 2018; Yang et al., 2024).

Bruk av biokonserverende mikroorganismer som ikke endrer produktets smak og utseende, er av økende
interesse for produsenter av mange matvarer (Barcenilla et al., 2022; Morales-Ramos et al., 2024; Shi &
Maktabdar, 2022). Dette kan innebære tilsetning av bakterier som dreper eller hemmer veksten av andre
mikroorganismer ved at de produserer bakteriosiner, syrer eller en kombinasjon av disse. Bakteriosiner er
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naturlig forekommende antimikrobielle forbindelser som blir syntetisert av en rekke bakterier, både gram-
negative, og gram-positive, inkludert melkesyrebakterier (Martínez et al., 2019; Mataragas et al., 2003).

Melkesyrebakterier har et stort potensial for biokonservering av sjømat som fersk og lett prosessert laks siden
de kan vokse ved lav temperatur, tolererer relativt høye konsentrasjoner av salt og røyk, samt kan vokse uten
tilgang til oksygen (Stupar et al., 2023; Wiernasz et al., 2017, 2020). I tillegg har flere studier vist ta
melkesyrebakterier høy grad hemmer vekst av Lm og andre uønskede mikroorganismer i sjømat (Ghanbari et
al., 2013; Stupar et al., 2021).

Flere studier har undersøkt den hemmende effekten av forskjellige stammer av melkesyrebakterier som
Pediococcus spp. og Lactobacillus spp. mot Listeria spp., blant annet i ost, grønnsaker og kjøttprodukter med
lovende resultater (Aragon-Alegro et al., 2021; Barbosa et al., 2018; López-Mendoza et al., 2007; Mataragas et
al., 2003; Ramos et al., 2020). Studier har også blitt gjort på den beskyttende effekten melkesyrebakterier kan
ha på røkelaks og gravlaks med lovende resultater (Aymerich et al., 2019; Wiernasz et al., 2020). I en nylig
publisert studie (Gonzales-Barron et al., 2024) hvor risikoreduserende strategier for Lm i røkt og gravet fisk ble
vurdert, ble det konkludert at bruk av melkesyrebakterier som biobeskyttende kulturer, sammen med lave
lagringstemperatur er mer effektivt for å redusere listeriarisiko enn å fokusere på å redusere
kontamineringsnivået i innkommende fisk.

En annen fordel er at melkesyrebakterier er ansett som trygge ( Ghanbari et al., 2013). Siden bruk av
melkesyrebakterier til fermenteringsformål er utbredt i næringsmiddelindustrien har de fleste
melkesyrebakteriene en GRAS (Generally Recognized as Safe) eller QPS (Qualified Presumption of Safety)
status (FDA, 2018; Koutsoumanis et al., 2021). QPS-status er resultatet av en forhåndsvurdering som dekker
ulike sikkerhetsaspekter, og listen over bakterier med QPS-status opprettholdes i samsvar med mandatet til
EFSA Biohazard Panel. Den inkluderer flere melkesyrebakterier innen slektene Carnobacterium, Lactococcus,
Leuconostoc, Oenococcus, Pedicoccus og den nylig omklassifiserte Latilactobacillus (Koutsoumanis et al.,
2021). Arter med QPS-status krever fortsatt en sikkerhetsvurdering på stamme-nivå.

Mikroorganismer som brukes til fermentering av tradisjonsrik mat regnes som «ingredienser» etter Europeisk
lovgivning, og kommer inn under Forordning (EC) No 178/2002 (Mukherjee et al., 2022). Unntaket er mat uten
«signifikant» historie i Europa før 1997, som regnes som «ny mat», etter forordning (EC) No 258/97, og som da
krever en risikovurdering og godkjenning av EFSA (European Food Safety Authority) før produktene kan selges
til forbrukere. Dette forordningen omfatter nye matvarer, nye ingredienser inkludert startkulturer for
fermentering, og nye teknologier for produksjon av matvarer (Mukherjee et al., 2022). I USA har
melkesyrebakterier, bakteriosiner og flere bakteriofagprodukter mot bl.a. Listeria «GRAS» status (Endersen &
Coffey, 2020; Ramos et al., 2013).

Bakteriofager (fag) er virus som kun infiserer bakterier, og er en annen lovende, men mer kontroversiell metode
for biokonservering (Komora et al., 2021; Martínez et al., 2019; Naanwaab et al., 2014; Perera et al., 2015).
Bakteriofager er ofte veldig spesifikke, og infisere kun få arter, én art, eller bare én stamme av bakterier
(Thingstad et al., 2014, 2015). De kan dermed brukes spesifikt mot problembakterier uten at det er fare for
infeksjon hos mennesker, dyr eller «nyttige» bakterier. Spesifisiteten kan derimot også være en barriere for bruk
av bakteriofager fordi det i mange tilfeller vil kreve at det isoleres nye fag for hver bakterieart eller
bakteriestamme man vil hindre vekst av. Bakterier er også i et konstant våpenkappløp mot bakteriofager og
utvikler ofte resistens mot dem, slik at det kan bli nødvendig å isolere nye fag (Hill, 1993). Bruk av bakteriofager
kan også være kontroversielt med tanke på forbrukere, som kan være skeptiske til produkter tilsatt virus selv
om disse er etter grundig vurdering er helt ufarlige (Endersen & Coffey, 2020; Thompson et al., 2024).
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Bruk av mikroorganismer til matkonservering krever merking, og disse produktene har derfor ikke «clean label».
For meieriprodukter og en del andre tradisjonelle produkter tilsatt melkesyrebakterier er dette ukontroversielt for
forbruker og myndigheter ettersom disse konserveringsmetodene har lange tradisjoner, og produkter tilsatt LAB
regnes derimot ofte som ekstra helsebringende (Mukherjee et al., 2022).

3.3 - Barriereteknologi
Barriereteknologi (hurdle technology), innebærer å bruke en kombinasjon av flere metoder for dekontaminering
og veksthemming for å fjerne eller hindre vekst av uønskede mikroorganismer på forskjellige stadier i
produksjonen (Parish et al., 2003; Ramos et al., 2013). Barriereteknologi brukes under produksjon av mange
matvarer, og kan blant annet inkludere varmebehandling, trykkbehandling, tilsetning av konserveringsmidler,
kjølt oppbevaring, modifisert atmosfærepakking, eller tilsetning av bakteriofager eller melkesyrebakterier
(Barbosa et al., 2018; Komora et al., 2021; Lenaerts et al., 2023; Zhang et al., 2021). Et eksempel fra
kjøttbransjen er hemming av Lm ved å bruke en kombinasjon av MAP og tilsetning av enten syrer eller
melkesyrebakterier (Mataragas et al., 2003; Skjerdal et al., 2021; Williams & Golden, 2001; Yang et al., 2024).
Et annet eksempel er yoghurtproduksjon, hvor melk først varmes opp, så tilsettes melkesyrebakterier og
fermenteres, og deretter oppbevares kaldt for å unngå vekst av uønskede mikroorganismer (Wang et al., 2025).
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4 - Aktuelle strategier for dekontaminering i
laksenæringen
Tilstedeværelse og etablering av Lm i produksjonsmiljøet for Atlantisk laks med påfølgende risiko for
krysskontaminering til råstoffet er antatt hovedårsak til at bakterien påvises i laks. En mulig strategi for å oppnå
bedre kontroll med Lm i laksenæringen vil kunne være å innføre dekontaminerende tiltak langs
produksjonslinjen, enten som en indirekte dekontaminering rettet mot vann i utblødning/kjøle/buffer-tanker
(Figur 1a), eller direkte dekontaminering av råstoff eller ferdig prosesserte lakseprodukter.

 

4.1 - Dekontaminering av utblødningsvann
En interessant strategi for indirekte dekontaminering av utblødningsvann er sentrifugering. Prinsippet bak dette
er at partikler med større tetthet en den vesken de finnes i kan fjernes ved at de blir spunnet ned gjennom
påført økt tyngdekraft i en sentrifuge. Det rensede utblødningsvannet føres så tilbake til utblødningstanken i en
kontinuerlig sløyfe, eventuelt kombinert med ytterligere behandling av lettfasen. Sentrifugering av vannet i
utblødningstanken vil øke UV-transmittansen og redusere konsentrasjonen av partikler slik at dette
dekontamineringstiltaket kan kombineres med blant annet membranfiltrering, UV bestråling eller bruk av aktive
klorforbindelser for økt effekt. Denne strategien diskuteres ikke i detalj her, men skal testes ut i AP3.

4.2 - Fysiokjemiske dekontamineringsmetoder
Fysiokjemiske dekontamineringsmetoder som har antatt liten negativ effekt på produktegenskaper, slik som
kontinuerlig UV-C lys i bølgeområdet rundt 254 nm, høyfrekvent pulserende lys (HPL), kald plasma indusert
vann og is, ozonert vann og bruk av hydrogenperoksid (H O  ), har blitt kartlagt og vurdert for labskalauttesting.

 

4.2.1 - Kontinuerlig UV-C lys

Prinsipp: Bruk av UV-stråling er en ikke-termisk teknologi som i hovedsak kan brukes til
overflatedekontaminering. B ølgelengden til UV stråling ligger mellom 100-400 nanometer (nm), sammenlignet
med synlig lys som har bølgelengder mellom 400 og 780 nm. Denne kortere bølgelengden forbundet med UV-
stråling og annen elektromagnetisk stråling har høyere energi enn de lengre bølgelengdene i synlig lys. UV-A
har en bølgelengde på 315-400 nanometer, UV-B på 280-315 nm, og UV-C på 200 til 280 nm (López-Malo &
Palou, 2004). Bølgelengdene for UV-C lys regnes som de mest effektive for inaktivering av bakterier og andre
mikroorganismer, hvor den mest effektive og brukte bølgelengden er 254 nm (Lopez-Malo & Palou, 2004). Dette
er fordi DNA har absorbsjonsmaksimum i dette bølgeområdet, og inaktivering av DNA skjer når UV-C fotoner
absorberes av de nitrogenholdige basene i DNA og fører til krysskoblinger, som igjen inhiberer normal
celledeling og hemmer bakterievekst (Lopez-Malo & Palou, 2004).

Resistens mot UV-C hos ulike bakterier varierer og er knyttet til hvilke DNA reparasjonsmekanismer de har.
Videre vil den fysiologiske tilstanden til bakteriene, som vekstfase og stress, spille en rolle (Gayán et al., 2015).
Lm kan deaktiveres av UV-C lys, men det har blitt rapportert om høyere resistens hos Lm enn hos andre ikke-
sporedannende patogene bakterier, mest sannsynlig relatert til den gram-positive celleveggen og et effektivt
DNA reparasjonssystem (Beauchamp & Lacroix, 2012; Cheigh et al., 2012; Gayán et al., 2015).

 

2 2
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Dokumentert virkning på L. monocytogenes og andre mikroorganismer:

UV-C brukes for dekontaminering av overflater på en rekke produkter og pakningsmaterialer, som utvendig
emballasje eller overflaten på frukt, grønnsaker og bakervarer, og brukes også til å dekontaminere produkter
som flyttes mellom soner med ulike hygienenivåer.

På faste overflater eksponert for UV-C lys vil inaktivering av bakterier hovedsakelig skje på områder som blir
direkte eksponert. Ujevne overflater, eller overflater som er dekket av ikke-penetrerbar emballasje (f.eks.
etiketter) kan derfor være et problem fordi disse områdene, og eventuelle mikroorganismer til stede, ikke vil bli
tilstrekkelig utsatt for UV-strålingen (Keklik et al., 2012). En studie som undersøkte b ehandling med UV-C på rå
laks, stål og polyethylen fant forskjeller i graden av inaktivering av bakterier på de forskjellige overflatene, med
størst inaktivering av mikroorganismer på polyethylen, mindre inaktivering på stål, og minst på laks (Pedrós-
Garrido et al., 2018). Videre har det blitt funnet lavere inaktivering av mikroorganismer, inkludert Lm på
røykelaks enn på abiotiske overflater (Colejo et al., 2018). Pedrós-Garrido et al. (2018), undersøkte forskjellige
eksponeringstider (0-90s) og distanser mellom UV-C kilde og overflate, hvor inaktivering av forskjellige
mikroorganismer, blant annet Listeria spp. ble testet. Studien fant at CFU gikk raskere ned ved bruk av
høyfrekvent pulserende lys (HPL) enn med UV-C, og med økt nærhet til produktet ved begge behandlinger (26-
6 cm for UV-C, 11-3,5 cm for HPL), samt at inaktivering av Listeria spp. på rå lakseprodukter var signifikant
høyere ved bruk av HPL enn ved bruk av UV-C. På en annen siden førte bruk av HPL til mer oksidering av
produktene enn bruk av UV-C (Pedrós-Garrido et al., 2018).

For dekontaminering av flytende medier vil de fysiokjemiske egenskapene i væsken påvirke effektiviteten av
behandlingen (Gayán et al., 2015). Bestråling med UV-C er utbredt ved behandling av vann etter at partikler i
vannet er fjernet ved filtrering. For andre typer væsker med lavere grad av gjennomtrengning med UV-C-lys,
avhenger den bakteriedrepende effekten i stor grad av produktsammensetningen, turbiditeten, dybden av
væsken og konsentrasjonen av mikroorganismer og partikler (Keklik et al., 2012). Det har blitt utviklet UV-
systemer som skaper turbulente strømmer for ugjennomsiktige væsker og dermed muliggjør større UV-C
eksponering. Effektiviteten til dette har blant annet blitt undersøkt for inaktivering av virus (Blázquez et al., 2019)
og koliforme bakterier i blodplasma (Blázquez et al., 2017), med lovende resultater.

Flere studier har undersøkt effekten av UV-C behandling for inaktivering av Lm med varierende resultater
(Tabell 1). Cheigh et al., (2013) undersøkte effekten av UV-C (eksponering i 0-1960s) på fiskefilet inokulert med
Lm, men fant ingen endring i CFU av Lm. Bernbom et al., (2011) undersøkte Lm kulturer dyrket i «laksejuice»,
tryptone soy broth (TSB) + glukose og TSB + glukose med NaCl som deretter ble inokulert på stålplater for
biofilmdannelse, og observerte at Lm dyrket i TSB med glukose inokulert på stålplater ble inaktivert etter to
minutters UV-C eksponering, mens samme dyrkingsmedia tilsatt NaCl gikk ned 4-5 log enheter ved 8-10 min
eksponering. Tilstedeværelse av NaCl reduserte derfor effekten av UV-C, mest sannsynlig fordi salter kan føre
til klumping av bakteriene, samt reduserer penetreringen av UV-C lys og biocider (Bernbom et al., 2011). Videre
fant de at UV-C lys alene (254nm, 8-10min) reduserte mengde Lm dyrket i «laksejuice» med 2-5 log når
behandlingen fant sted en time etter inokulering på stålplater, men ingen virkning på syv dager gamle biofilmer.
Lignende resultater ble rapportert av Colejo et al., (2018), som sammenlignet UV-C inaktivering av Lm og andre
patogener på agarskåler og røkelaks, og fant lavere inaktivering på røkt laks (< 1,3 log reduksjon) enn på
agarskålene (~2 log reduksjon) selv om høyere dose ble brukt på laksen. Salter og organisk materiale ser med
andre ord ut til å ha stor innvirkning på effektiviteten av UV-C behandling, ikke bare i væsker, men også på
produksjons- og produktoverflater (Bernbom et al., 2011; Colejo et al., 2018; Gayán et al., 2015).
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Effekt på produktkvalitet:

Flere studier har undersøkt effekten av UV-C dekontaminering på den sensoriske kvaliteten til lakseprodukter
og annen sjømat (Tabell 1). Pedrós-Garrido et al., (2018) undersøkte effekten av UV-C og HPL ved ulike
intensiteter på lakseproduktet, og observert fargeendringer på laksen ved UV-C behandling over 45s, eller HPL
behandling over 200 mJ/cm , hvor laksen fikk et «kokt» utseende. Videre ble det observert høyere
lipidoksidasjon ved bruk av HPL enn ved bruk av UV-C lys. Den høyeste undersøkte dosen av begge
behandlingene, gav et synlig blekere produkt og harsk lukt. Colejo et al., (2018) undersøkte UV-C og ikke-
termal plasmabehandling på røkelaks, og fant at UV-C behandling tilsvarende 900 mJ/cm  førte til en 0,5-1,3
log nedgang i CFU (blandet mikrobielt samfunn) uten endring i produktkvaliteten. Behandling med både UV-C
og kaldplasma økte inaktiveringsgraden av bakterier ved doser under 500 mJ/cm . UV-C lys over 500 mJ/cm
kombinert med plasma-behandling over lengre tid (> 4 min) gav mindre effekt, og førte også til lipid-oksidasjon
og fargeendringer på produktet.

 

Tabell 1: Utvalgte studier med fokus på UV-C behandling for dekontaminering

Testorganisme(r) Kombinert
med annen
teknologi

Matrix Eksponering
UV-C

Bakteriereduksjon Endringer i
produktkvalitet

Referanse

L. monocytogenes - Stålplate,
reker, laks

1000s Ingen åpenbar
effekt på Lm

 Cheigh et
al., 2013

L. monocytogenes - Stålplater Varierende
eksponeringstid

2-3 log reduksjon
ved bruk direkte
etter inokulering av
produkt, ingen
effekt på 7dg
gamle biofilmer

 Bernbom
et al.,2011

L. monocytogenes, L. innocua,
S. Typhimurium, S.
Entereitidis, Staphylococcus
aureus, E. coli, Aeromonas
hydrophila, Plesiomonas
shigelloides

- Røkt laks 0 - 1000
mJ/cm
(254nm)

0,5 – 1,3 log
reduksjon

Reduksjon i
sensorisk
kvalitet ved
eksponering >
900 mJ/cm2

Colejo et
al., 2018

Ikke-termal
plasma

0-500 mJ/cm ,
Plasma 0-4 min

0,1 – 1,57 log
reduksjon

Ingen effekt på
produkt ved lav
eksponering,
gulning og økt
TBARS ved
lang
eksponeringstid

 

L. monocytogenes - Rå laks 0,0075-
0.6J/cm

0,2 – 0,9 log
reduksjon

Gjenvekst av
Lm, men
forsinket 7
dager
sammenlignet
med kontroll

Holck et
al., 2018

 - Kaldrøkt laks 0,0075-
0.6J/cm

0,7-1,3 log
reduksjon

Gjenvekst av
Lm, men
forsinket 13
dager
sammenlignet
med kontroll,
ingen
sensoriske
endringer

 

2

2

2 2

2

2

2

2
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Listeria spp., Pseudomonas
spp., Brochothrix
thermosphacta,
Photobacterium phosphoreum,
Enterobacteriaceae

  26, 16 and 6
cm dist, 0-90s

Maksimal
inaktivering ved
kortest distanse fra
produkt: 1,0 ± 0,1
log CFU/g ved 6
cm og 60 s
eksponering

Fargeendring
ved > 45s
behandling

Pedrós-
Garrido et
al., 2018

Pseudomonas sp., aerobe
bakterier, LAB

Vakuumering Vakuumpakket
laks

360 J/m +
redusert trykk
(40 kPa)

Redusert vekst av
Pseudomonas og
aerobe bakterier,
ingen endring i LAB
vekst

Ingen endringer
i sensorisk
kvalitet

Damdam
et al.,
2023

 

Regelverk:

EU/Norge: UV-C er i bruk i industrien i Norge for dekontaminering av overflater, og er godkjent med tanke på
arbeidsmiljø. «Det kreves ingen godkjenning eller melding til Strålevernet før UV-C-anlegg tas i bruk, men
virksomheten plikter å ha oversikt over og kontroll med alle strålekildene (§ 21)…» Videre krever Arbeidstilsynet
at ansatte skal beskyttes mot UV og IR stråling.

I EU og Norge faller UV-C behandling inn under kategorien «novel foods» Forordning (EC) No 258/97 ) om
behandling fører til endringer i produktets sammensetning, næringsverdi eller nivå av uønskede substanser, og
det kreves da «novel food approval» (Koutchma, 2018; Louis Bresson et al., 2016). For eksempel ble UV-C
behandling av bakegjær og brød godkjent i henholdsvis 2014 og 2016, og i 2015 ble UV-C behandling av melk
utredet av EFSA i henhold til Forordning (EC) No 258/97, hvor det ble konkludert at dette ikke førte til endringer
i produktkvalitet (Louis Bresson et al., 2016).

USA: I USA regnes UV som stråling, og strålingskilder inkludert UV regnes som tilsetningsstoffer (Koutchma,
2018). Bruk av UV har blitt godkjent for bruk på flere typer matvarer av «the United States Food and Drug
Administration» (US FDA) (Koutchma, 2018; U.S. Food and Drug Administration, 2022).

 

Kommentarer fra Laksenæringen:

UV-C stråling har i mindre grad blitt tatt i bruk i laksenæringen for dekontaminering av produkter, men der det
har blitt installert ser det ut til å ha liten effekt på Lm. Det er uvisst hvorfor, men det er nærliggende å tro at det
skyldes en kombinasjon av skyggeeffekt og for kort eksponeringstid. UV-lys blir imidlertid brukt i stor utstrekning
for å rense vann i forbindelse med vanninntaket til kjøletanker i slakterier.

 

Fordeler:

Godt kjent metode.

Det er en ikke-termisk prosess og påvirker ikke produktkvaliteten i større grad slik høye temperaturer gjør.

Ingen restforbindelser.

Ingen kjemikalier benyttes.

Enkle helse- og sikkerhetstiltak som mange steder allerede er i bruk, sikrer at lyset ikke spres ut fra systemet.

2 
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Ulemper:

Effektiviteten avhenger i høy grad av egenskapene til produktet som behandles. Enkelte overflatestrukturer
på produkter kan ha en innvirkning på den mikrobielle reduksjonen som oppnås.

Kun overflatedekontaminering er mulig, metoden gir lav penetreringsdybde.

Noen mikroorganismer, inkludert Lm, har gode DNA-reparasjonsmekanismer og kan derfor overleve hvis de
utsettes for utilstrekkelige UV-C doser.

Mulige konsekvenser for produktkvaliteten ved høye UV-doser for enkelte produkter.

Lang behandlingstid kreves for effektiv deaktivering, dette øker igjen sannsynligheten for overflateoksidering
på produktene.

Tilstedeværelse av salter og organisk materiale senker effektiviteten til UV-C. UV-C absorberes av organisk
materiale, og både organisk materiale og salter begrenser penetreringsdybden til UV-C lyset.

UV-C-bestråling kan være helseskadelig for mennesker om øyne eller hud blir eksponert. Dette gjelder også
ved lave doser, ettersom skader fra kontinuerlig eksponering kan bygge seg opp over tid. Det må derfor
brukes verneutstyr eller UV-lamper plassert i lukkede tunneler eller beholdere.

 

4.2.2 - Høyfrekvent pulserende lys (HPL)

Andre navn brukt om denne teknologien inkluderer «Intense pulsed light (IPL)», «Pulsed UV (PUV)», og
«Pulsed light technology (PLT)». Høyfrekvent pulserende lys (HPL) brukes her for å unngå forvirring.

 

Prinsipp:

Høyfrekvent pulserende lys (HPL) er en ikke-termisk prosess hvor korte, energirike elektriske pulser brukes for
å produsere et intenst, bredspektret lys for sterilisering av overflater (Bohrerova et al., 2008).
Frekvensområdene inkluderer ultrafiolett (UV), synlig (VL) og infrarødt (IR) lys (200-1000nm) (Oms-Oliu et al.,
2010). HPL er raskere og mer effektivt enn UV-stråling alene fordi samme mengde energi avgis over et kortere
tidsrom (Bohrerova et al., 2008; Gómez-López et al., 2011). HPL-systemer kan levere lys i form av en enkelt
puls, en serie av pulser, eller en kontinuerlig rekke av pulser. Uavhengig av antall pulser og varigheten, er
kraften som leveres av pulser estimert til å være rundt 20 000 ganger mer intens enn den som leveres av en
kontinuerlig lysstråle med tilsvarende total energi (Palmieri & Cacace, 2005). Som ved bruk av UV-C, vil HPL
hovedsakelig være effektivt mot mikroorganismer til stede på overflater, og inaktiveringseffekten er signifikant
mindre eller fraværende om bakteriene ligger skjult på undersider av produkter, i sprekker, eller inne i produkter
(Gómez-López et al., 2005; Keklik et al., 2012). Bruk av HPL-teknologi involverer ikke bruk av toksiske
kjemikalier, og det produseres heller ingen fotolytiske biprodukter fordi bølgelengdene som brukes er så lange
at de ikke fører til ionisering av små molekyler (Palmieri & Cacace, 2005).
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Dokumentert virkning på L. monocytogenes eller andre mikroorganismer:

Fordi HPL-metoden ikke er standardisert og energimengden produktet utsettes for kan varieres med antall
pulser, bølgelengde på lys og avstand fra produktet, kan det være vanskelig å sammenligne resultatene fra
HPL-studier med resultater fra bruk av andre, mer standardiserte metoder fordi selve HPL-metoden kan variere
signifikant mellom studier (Bohrerova et al., 2008). Bohrerova et al. (2008) forsøkte å omgå noen av disse
usikkerhetene ved å sammenligne effekten av UV-C lys og HPL med samme bestråling og dose (fluence-nivå,
målt i mJ/cm  ), og fant at HPL hadde en signifikant bedre steriliserende effekt enn UV-C lys på
mikroorganismer.

Flere studier har vist lovende resultater for deaktivering av flere typer bakterier på forskjellige matvarer, inkludert
laks og annen sjømat (se Tabell 2 for eksempler). På rå laks behandlet med HPL tilsvarende 30 J cm  ble det
rapportert om 0,7 log CFU/g reduksjon av naturlig bakteriell flora og en 1,5-log CFU/g reduksjon av
Pseudomonas fluorescens etter behandling, men det var stor overlevelsesrate, og etterfølgende lagring på 4 °C
førte til en økning i CFU for bakgrunnsfloraen (Nicorescu et al., 2014). Samme studie rapporterte også om
lavere inaktiveringsgrad på rå laks enn på røkte svineprodukter når disse ble utsatt for samme behandling. Det
ble her spekulert i at dette var relatert til høy konsentrasjon av lipider og proteiner i laksen som kunne absorbere
UV og dermed beskytte bakteriene, høy vannaktivitet som fremmer bakterievekst, skyggeeffekter på
lakseoverflater, eller en kombinasjon av disse (Nicorescu et al., 2014). En annen studie som sammenlignet HPL
og UV-C fant at kimtall (CFU) på lakseprodukter gikk ned raskere ved bruk av HPL enn med UV-C, og med økt
nærhet til produktet (11-3,5 cm), samt at inaktivering av Listeria spp. på rå laks var signifikant høyere ved bruk
av HPL enn ved bruk av UV-C (1,3 og 0,9 log CFU/g reduksjon respektivt) (Pedrós-Garrido et al., 2018). Ozer &
Demirci, (2006) undersøkte effekten av HPL (med varierende lengde på pulsene, og med varierende avstand
fra produktet) på rå laks inokulert med E. coli og Lm, og fant maks deaktiveringsrater på henholdsvis 1,09 og
1,02 log CFU/g. Videre har det blitt vist at HPL behandling av bivalver og blekksprut (Hwang et al., 2021), og
reker og fiskefilet (Cheigh et al., 2013) førte til en reduksjon av Lm og E. coli i produktene undersøkt, men det
ble rapportert om noen problemer med lavere reduksjon av mikrober i noen produkter som bivalver enn i andre
produkter, mest sannsynlig relatert til en skyggeeffekt (Hwang et al., 2021).

En annen faktor som må tas i betraktning er at Lm har gode DNA-repareringsmekanismer, og kan etter HPL
eksponering ha fotoreaktivering og vokse opp igjen. Fotoreaktiveringen ser imidlertid ut til å være lavere etter
HPL behandling enn etter UV-C behandling (Gómez-López et al., 2005). Gjenvekst er generelt et problem ved
HPL behandling, og vekst av Lm og andre mikroorganismer blir dermed forsinket, men ikke hemmet ved videre
lagring (Holck et al., 2018; Nicorescu et al., 2014). Et annet interessant funn er at HPL ser ut til å ha mindre
effekt på inaktivering av mikroorganismer, inkludert Lm, på fiskeprodukter enn på kjøttprodukter (Hierro et al.,
2012; Nicorescu et al., 2014). Årsaken til dette er ikke klar, men et høyere lipid- og vanninnholdet i fisk, samt
høyt UV-opptak i proteiner kan være noe av forklaringen (Nicorescu et al., 2014).

 

Effekt på produktkvalitet:

Flere studier har rapportert om endringer i produktkvalitet både på lakseprodukter og andre produkter ved høy
HPL eksponering. Høyere lipidoksidasjon ved bruk av HPL enn ved bruk av UV-C lys ble observert av Pedrós-
Garrido et al., (2018), hvor den høyeste undersøkte dosen gav et synlig blekere produkt og harsk lukt. Videre
har det blitt rapportert om en økning i TBARS, som er et mål for nivået av lipidoksidasjon, i rå laks og røkte
svineprodukter ved HPL behandling på 30 J cm  (Nicorescu et al., 2014). Overflatetemperaturen på
lakseprodukter kan bli veldig høy, noen ganger opp til 100°C, ved lang behandlingstid eller om puls-kilden

2

2

2

Kartlegging av metoder for dekontaminering og vekstkontroll av Listeria i lakseprodukter
4 - Aktuelle strategier for dekontaminering i laksenæringen

19/55



plasseres nært produktet, og føre til fargeendringer og forandringer i produktkvalitet (Ozer & Demirci, 2006).

 

Tabell 2: Funn fra utvalgte studier som har fokusert på HPL behandling overflater og produkter av laks eller
annen sjømat for reduksjon av L. monocytogenes eller andre bakterier.

Testorganisme Matrix HPL detaljer
(pulser/tid/J)

Bakteriereduksjon Endringer i
produktkvalitet

Referanse

L. monocytogenes Stålplater 0-2,2 J/cm 4,0-6,0 log
reduksjon, "abrupt
inactivation" ved
0,44 J/cm

 Cheigh et
al., 2013

 Reker,
laks,
flyndre

3600 pulser, 720s, total 
uence 6,3 J/cm 

2,2-, 1,9-, og 1,7-
log reduksjon

Svak temp. økning
(<5,0 °C), ingen
fargeendring

 

 Reker,
laks,
flyndre

6900 pulser, 1380s, total 
uence 12,1 J/cm 

2,4-, 2,1-, og 1,9-
log reduksjon

Svak temp. økning
(<5,0 °C), ingen
fargeendring

 

L. monocytogenes Røykelaks 1,3–10,8 J/cm 0,7-1,3 log
reduksjon

Ingen signifikant
endring i
produktkvalitet
(vurdert av trent og
utrent testpanel)

Holck et
al., 2018

 Rå laks 1,3–10,8 J/cm 0,2–0,9 log
(muskel) og 0,4–
1,1 log (skinn)
reduksjon

  

Listeria spp., Pseudomonas
spp., Brochothrix
thermosphacta, Photobacterium
phosphoreum,
Enterobacteriaceae

Polyethylen Varierende
eksponeringstid (s) og
distanse fra produkt (cm),
tilsvarende mJ/cm  doser
på 14,4-200,7

> 4 log reduksjon
på doser > 19
mJ/cm

 Pedrós-
Garrido et
al., 2018

Rustfritt
stål

Varierende
eksponeringstid (s) og
distanse fra produkt (cm),
tilsvarende mJ/cm  doser
på 14,4-200,7

Maks 2 log
reduksjon på
høyeste dose

  

Rå laks Varierende
eksponeringstid (s) og
distanse fra produkt (cm),
tilsvarende mJ/cm doser
på 140,1-508,5

1,3 ± 0,1 log CFU/g
at 3,5 cm for 12 s

Lipidoksidasjon
observert, > 200
mJ/cm  førte til "kokt"
utseende

 

L. monocytogenes, Vibrio
parahaemolyticus, Salmonella
Typhimurium, E. coli

Tunfisk
carpacchio

0,7 – 11,9 J/cm 1,0 – 0,7 log
CFU/cm  reduksjon
ved 8,4-11,9 J/cm

Ved doser >8,4-11,9
J/cm , «kokt»
utseende og svak
svovel lukt, vurdert
av trent testpanel

Hierro et
al., 2012

P. fluoresence Laks 3,0 - 30 J/cm2 0,7 - 1 log CFU/g
reduksjon

Endret sensorikk
(«kokt» utseende)
ved høyere doser

Nicorescu
et al.,
2014

E. coli, L. monocytogenes Rå laks Varierende antall pulser og
eksponeringstid

0,74 – 1,02 log
CFU/g reduksjon

Høy temperatur i filet,
fargeendringer

Ozer &
Demirci,
2006
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Regelverk:

EU/Norge: HPL faller under samme regelverk som UV-C, det vil si at o m behandling fører til endringer i
produktets sammensetning, næringsverdi eller nivå av uønskede substanser, kreves «novel food approval» i
henhold til Forordning (EC) No 258/97 (Food Safety Authority of Ireland, 2020; Louis Bresson et al., 2016).

USA: I USA regnes HPL, som UV-C, som stråling, og regnes da som tilsetningsstoff (Koutchma, 2018). HPL er
godkjent til bruk på mat under følgende forutsetninger:

« (a) The radiation sources consist of xenon flashlamps designed to emit broadband radiation
consisting of wavelengths covering the range of 200 to 1,100 nanometers (nm), and operated so that
the pulse duration is no longer than 2 milliseconds (msec);

(b) The treatment is used for surface microorganism control;

(c) Foods treated with pulsed light shall receive the minimum treatment reasonably required to
accomplish the intended technical effect; and

(d) The total cumulative treatment shall not exceed 12.0 Joules/square centimeter (J/cm  )»

(CFR - Code of Federal Regulations Title 21, 1996)

 

Kommentarer fra Næringen: Det er generelt lite erfaring med metoden, men næringen er positiv så lenge
regelverket tillater bruken, og det ikke medfører endringer i produktkvalitet.

 

Fordeler:

Ingen restforbindelser.

Ingen dekontamineringskjemikalier benyttes.

 

Ulemper:

Metoden er ikke standardisert, og det kan derfor være vanskelig å sammenligne resultatene med f.eks.
resultater fra UV-C behandling av samme produkt, og optimale pulser og bølgelengder må testes ut før bruk.

Oksidering av produkt kan skje ved strålingsmengder som trengs for å inaktivere bakterier.

Alle overflater på produktet må behandles for å ha god virkning på bakterier inkludert Lm, noe som kan være
vanskelig på produkter med ujevn overflate.

Høye doser gir økt temperatur og forandrer sensorisk kvalitet.

 

4.2.3 - Hydrogenperoksid

Prinsipp:

Hydrogenperoksid (H O ) er et sterkt oksidasjonsmiddel som kan brukes til desinfeksjon i flytende- eller

2
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gassform (de Siqueira Oliveira et al., 2018; Jones & Joshi, 2021). Ved bruk av hydrogenperoksid dannes det
radikaler som reagerer med membranlipider, DNA og andre cellekomponenter hos bakterier (Glass et al., 2024),
noe som blant annet kan føre til økt permeabilitet og ødeleggelse av membraner, og videre at bakterier går i
oppløsning (lysis) (Jones & Joshi, 2021; Stearns et al., 2022). H O  er et lite molekyl som kan krysse
cellemembraner, men dette er en sakte prosess, og mange bakterier inkludert Lm har utviklet enzymer som
reagerer med disse reaktive oksygen forbindelsene, og beskytter mot lave konsentrasjoner (Rea et al., 2005;
Sen & Imlay, 2021). Når bakteriene utsettes for høyere konsentrasjoner kan cellemaskineriet overbelastes slik
at det blir toksiske konsentrasjoner inne i cellene (Sen & Imlay, 2021).

Om H O  kombineres med en syre som peredikksyre, bacteriosiner, eller blir brukt sammen med ozon eller UV-
C, har det blitt rapportert om høyere effektivitet mot Lm, L. innocua og andre uønskede mikroorganismer enn
om H O brukes alene (Bell et al., 1997; Hadjok et al., 2008; Leggett et al., 2016; Martin & Maris, 2012; Stearns
et al., 2022; Ukuku et al., 2005). Blant annet har studier undersøkt bruk av peredikksyre (også kjent som
peroksyeddiksyre) i kombinasjon med H O for dekontaminering av produksjonsoverflater og matvarer med
lovende resultater (Briñez et al., 2006; Lee et al., 2016; Leggett et al., 2016; Walsh et al., 2018).
Peroksyeddiksyre (PAA) er et organisk peroxid som dannes ved en reaksjon mellom eddiksyre og
hydrogenperoksid, og er et godkjent dekontamineringsmiddel med GRAS status på matvarer (konsentrasjoner
på 0,005 – 0,2 %) i USA (Stearns et al., 2022). Det eksisterer allerede kommersielle løsninger med varierende
konsentrasjoner av PAA/H O  på markedet. Videre har kombinasjonen av H O  og syrer dokumentert god
effekt på mange patogene bakerier, inkludert Lm (Briñez et al., 2006; Martin & Maris, 2012; Ukuku et al., 2005;
Venkitanarayanan et al., 2002). Mange av disse synergieffektene har blitt relatert til dannelsen av frie radikaler,
med påfølgende celledød og lysis (Miller, 1969; Raffellini et al., 2008). For eksempel kan hydrogenperoksid
tilsatt saltholdige løsninger som sjøvann og saltlaker reagere med klorioner og danne hypokloritt, som er
dødelig for bakterier. En studie på bruk av hydrogenperoksid for dekontaminering av Lm i saltlaker for
produksjon av ost, fant at inaktivering av Lm gikk raskere ved høyere saltkonsentrasjoner (Glass et al., 2024).
Bruk av H O  i kombinasjon med UV-C fører til dannelse av reaktive, flyktige hydroksyl-radikaler (Hadjok et al.,
2008), og behandlingen av isbergsalat med spray av H O  i kombinasjon med UV-C har gitt opp til 4-log
reduksjon i totalt bakterietall (Hadjok et al., 2008). Optimal effekt av H O /UV-C oppnås imidlertid ved
temperaturer opp mot 50 °C (Bell et al., 1997; Hadjok et al., 2008), og denne metoden er dermed mindre aktuell
til bruk på varmesensitive matvarer.

Den oksiderende virkningen av H O  vil også ha effekt på organiske molekyler som finnes i produktet. H O  er
anvendt som blekemiddel i mange industrier, inkludert konsumentprodukter for hår- og tannbleking, eller til
munnskylling. Den oksiderende effekten har også blitt utnyttet i matproduksjon for å endre farge og tekstur på
matvarer, blant annet for bleking av sildefilet (Anderson, 1975), for bleking av karpe for produksjon av surimi
(Jafarpour et al., 2008) og Kamaboko (Japansk, kokt surimi) (Shan et al., 2010), eller bleking av torsk- og
hysekjøtt til fiskefarse (Himonides et al., 1999). Men, her er det store forskjeller på hva som er lovlig i forskjellige
land.

 

Dokumentert virkning på L. monocytogenes og andre mikroorganismer:

Hydrogenperoksid har en lang og omfattende historikk som desinfeksjonsmiddel med dokumentert effekt mot
mikroorganismer (Bayliss & Waites, 1979; Krezanoski JZ, 1988; Toledo et al., 1973), blant annet i
produksjonsmiljøer hvor tåkelegging med 5% H O ut til å ha god effekt mot Lm på overflater (McDonnell, 2014;
Møretrø et al., 2019), mot biofilmer (Møretrø et al., 2019), og på næringsmidler inkludert fiskefilet (Tarr &
Sunderland, 1940).
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Flere studier har vist at H O gir god hemming av bakterievekst, inkludert Lm, på frukt, grønnsaker, bær og sopp
(Back et al., 2014; de Siqueira Oliveira et al., 2018; Hadjok et al., 2008; Hasani et al., 2019; Sapers & Sites,
2003; Venkitanarayanan et al., 2002). Blant annet ble Lm på salatblader redusert med opptil 3,15 log CFU/g ved
bruk av tåkelegging med 10% H  O  (Back et al., 2014). Bruk av hydrogenperoksid mot Lm har også vist
lovende resultater i osteproduksjon, både på selve osteproduktene og i saltlaker brukt under produksjon (Glass
et al., 2024; Robinson & D’Amico, 2021).

Desinfeksjon med H O  på sjømat er mindre dokumentert, men noen studier har undersøkt antimikrobielle
effekter, blant annet på fiskefilet og blekksprut. En studie som undersøkte preservering av filet fra oppdrettet
malle med henholdsvis 0,4 og 0,7 % H  O  i 10 minutter, rapporterte 0,47 og 0,92 log CFU/g reduksjon i totalt
antall bakterier (T. J. Kim et al., 2000). En annen studie som undersøkte holdbarhetstid på blekksprutprodukter
behandlet med det H O  -holdige tilsetningsstoffet «Cafodos» (Na-citrat + H O ), fant derimot liten effekt på
vekst av psykrofile mikroorganismer, og så i tillegg en endring i tekstur og farge på produktet (Manimaran et al.,
2016).

 

Effekter på produktkvalitet:

H O  er sterkt oksiderende og kan føre til økt fettharskning og bleking av pigmenter. De oksiderende
egenskapene til hydrogenperoksid er en av grunnene til at det hovedsakelig har blitt brukt til dekontaminering
av produksjonslokaler og utstyr i kjøtt- og fiskebransjen og mindre direkte på matvarer, med unntak av produkter
hvor bleking er ønskelig.

Studier av rotter matet med H O  behandlet kjøtt fra torsk (fersk) og sei (kokt), har vist at selv om H O
oksiderer aminosyrer som methionine og cystine i fiskeproteiner, endres ikke aminosyretilgjengeligheten
(Raksakulthai et al., 1983; Sjöberg & Boström, 1977). En annen studie hvor fersk fillet av malle ble behandlet
med 0,4 og 0,7 % H O  i 10 minutter fant ingen signifikant endring i utseende sammenlignet med kontrollen, og
produktet hadde også noe lenger holdbarhet (1,5-3 dager), men også høyere TBARs verdier (T. J. Kim et al.,
2000).

Det er ikke god dokumentasjon knyttet til effekt på produktkvalitet ved bruk av H O  mot Lm eller andre
mikroorganismer på laks og andre fete fiskeprodukter, noe som bør undersøkes før eventuell kommersiell bruk.
Nylig ble effektiviteten av H O  på L. innocua på atlantisk laks undersøkt i en masteroppgave fra NTNU, knyttet
til DekoLaks prosjektet (Kristiansen, 2024). Det ble benyttet konsentrasjoner på 0,1%, 0,5% og 1%, og
eksponeringstider på 1 og 30 minutter. Kvalitetsvurderingene inkluderte farge- og lipidinnholdsanalyse for å
overvåke sensoriske endringer. Funnene viste at 0,5% konsentrasjon av hydrogenperoksid i 30 minutter var den
mest effektive og gav liten innvirkning på fiskens visuelle kvalitet og ikke signifikante effekter på lipider.

 

Regelverk:

EU og Norge: Hydrogenperoksid har blitt evaluert som et biocid, og står på European Chemicals Agency
(ECHA)’s liste over godkjente kjemikalier (Artikkel 95, PT05 Drinking water og PT04 Food and Feed area). I
tillegg til EU reguleringen, finnes nasjonale retningslinjer i de individuelle EU/EØS medlemslandene (European
Chemicals Agency, 2014).

Norge følger Forordning (EU) 2015/1730 som godkjenner hydrogenperoksid som et aktivt stoff til bruk i
biocidprodukter i produkttype 1, 2, 3, 4, 5 og 6, hvor produkttype 4 (PT04) omfatter overflater som kommer i
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kontakt med næringsmidler og fôrvarer, og produkttype 5 (PT05) omfatter drikkevann. I henhold til Forordning
(EU) 2015/1730, den Norske Drikkevannsforskriften (Lovdata, 2016; Mattilsynet, 2023) og Forskrift om biocider
(Miljødirektoratet, 2023) er det med noen forbehold tillat å bruke hydrogenperoksid som et biocid i drikkevann
og for desinfisering av matproduksjonslokaler. Samme regelverk gjelder for PT04, men det spesifiseres i tillegg
at produktet ikke skal inkorporeres i materialer eller artikler som vil komme i kontakt med mat (EC 1935/2004)
med mindre det er vedtatt spesifikke migrasjonsgrenser eller er fastsatt at slike grenser ikke er nødvendig.
Dette medfører at det må søkes om nasjonal produktgodkjenning for biocidprodukter som inneholder det aktive
stoffet.

Hydrogenperoksid er i EU ikke et tillat tilsetningsstoff i matvarer, og er dermed ikke tillatt brukt som
tilsetningsstoff i henhold til (EF) NR. 1333/2008. Avhengig av bruk kan H O  derimot defineres som et «teknisk
hjelpestoff», og vil da være lovlig å bruke i henhold til Artikkel 3.2 (b) i forordning (EF) nr. 1333/2008, som sier:

« I denne forordningen menes videre med: b) «teknisk hjelpestoff» ethvert stoff som:

i. Ikke inntas som et næringsmiddel i seg selv

ii. Med hensikt brukes ved bearbeiding av råvarer, næringsmidler eller ingredienser i disse, for å oppfylle et
bestemt teknisk formål under behandling eller bearbeiding, og

iii. Kan resultere i en utilsiktet eller teknisk uunngåelig forekomst av restmengder av stoffet eller dets
derivater i sluttproduktet, forutsatt at restmengdene ikke utgjør noen helserisiko eller virker teknisk inn på
sluttproduktet,»

To eksempler fra Italia og Spania indikerer også at medlemsland kan innføre nasjonale regler for bruk i henhold
til Artikkel 3.2 (b) i forordning (EF) nr. 1333/2008, så lenge sikkerhet for forbruker/konsument kan
dokumenteres.

Eksempel 1: Det Spanske mattilsynet (AESAN) utredet i 2011 bruk av hydrogenperoksid med konsentrasjoner
på inntil 0,05% som et bakteriostatisk «teknisk hjelpestoff» («processing aid» i henhold til Forordning (EC)
No 1333/2008, Article 3.2(b) ) for bruk på blekksprut-produkter (Cepeda Sáez et al., 2011). Rapporten
konkluderte med at bruk av hydrogenperoksid som et teknisk hjelpestoff i disse konsentrasjonene ikke etterlot
påvisbare rester på produktet, og ikke medførte en risiko for konsumenter, men at produsenter bør kontrollere
eventuelle reststoffer kvalitativt og kvantitativt. Spanske myndigheter har derfor inkludert en klausul i regelverket
som tillater vask av blekksprut-produkter med opp til 0,05% hydrogenperoksid i inntil 24 timer for å hemme
bakterievekst (Real Decreto 773/2023, de 3 de Octubre, Por El Que Se Regulan Los Tecnológicos Utilizados En
Los Procesos de Elaboración Y de Alimentos, 2023).

Eksempel 2: I 2010 forbød Italia bruk av hydrogenperoksid i behandlingen av bløtdyr i henhold til Forordning
(EC) No 1333/2008. Det Italienske mattilsynet (ALS) og helsedepartementet (Ministerio della Salute) diskuterte
saken med det Spanske mattilsynet (AESAN), som på bakgrunn av AESANs undersøkelser (Cepeda Sáez et
al., 2011) mente behandlingen var trygg ved bruk av H O i konsentrasjoner under 8 % (Ministero della Salute,
2016), og det Italienske helsedepartementet stilte seg derfor positive til vask av sjømat med vann inneholdende
inntil 8 % hydrogenperoksid ( Autorizzazione Ministeriale: Utilizzo Di Una Miscela Contenente Presidio
d’idrogeno per La Lavorazione Dei Molluschi Cefalopodi - Associazione Nazionale Delle Aziende Ittiche, n.d.;
Ministerio della Salute, 2016). I februar 2016, gjeninnførte det italienske helsedepartementet derfor bruken, ikke
som et tilsetningsstoff, men som et teknisk hjelpestoff under bearbeiding av blekksprut-produkter. Saken ble
videre tatt opp i EU (European Parliament, 2016a, 2016b, 2017), hvor bekymringsmeldingen ikke var knyttet til
helsefare for konsumenter som følge av hydrogenperoksid i seg selv, men var relatert til vanskeligheten med å
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bedømme hvor ferske H O  -behandlede produkter er (noe som kan medføre en helserisiko for enkelte typer
produkter), og det ble lagt ned en påstand om at bading av produkter derfor bør regnes som matsvindel. EU
parlamentet svarte følgende:

« The Commission is not planning to conduct any survey within the Member States in order to check
which countries are using hydrogen peroxide to process fish and cephalopods. The Italian authorities
have informed that hydrogen peroxide is used, under strict conditions, and after the authorisation of
the Italian Instituto Superiore di Sanità, as a processing aid for the evisceration and removal of
pigmented skin of cephalopods and not as an additive. Processing aids fall out of the scope of the food
additives legislation and do not, therefore, need to be labelled.
(https://www.europarl.europa.eu/doceo/document/E-8-2017-001477-ASW_EN.html)»

Etter 2017 er det vanskelig å finne informasjon om hvor vanlig det er å bruke hydrogenperoksid som et
prosesseringsmiddel i Italia.

I USA har hydrogenperoksid til bruk på matvarer GRAS (Generally Accepted as Safe) godkjenning, hvor det er
tillatt å bruke lave konsentrasjoner (0,04 - 0,15%) som et biocid («antimicrobial agent») i forskjellige typer
matvarer som blant annet melk til osteproduksjon, stivelse og tørkede egg (FDA, 2016, 2023b). Det er videre
tillatt å bruke høyere konsentrasjoner hydrogenperoksid, «amount sufficient for the purpose», på matvarer om
formålet er å oksidere eller bleke produktet (FDA, 2016, 2023b), og H O  har blant annet blitt brukt for bleking
av marinert sild (Anderson, 1975). Høyere konsentrasjoner er også tillat som desinfeksjon på jorder under
dyrking av matvarer (Stearns et al., 2022). Bruken av hydrogenperoksid på matvarer og til desinfeksjon under
matproduksjon forutsetter at rester av hydrogenperoksid fjernes eller omdannes til oksygen og vann før
produktene spises.

Canada tillater anvendelse av produkter som inneholder hydrogenperoksid på tomater i drivhus, så lenge
avrenning kontrolleres slik at H O  ikke ender opp i vann hvor det kan skade vannlevende dyr (Re-Evaluation
Decision Hydrogen Peroxide and Its Associated End-Use Products, 2018).

Japan: Den Japanske mattrygghetskomiteen utredet i 2016 bruk av hydrogenperoksid som et tilsettningsmiddel
til mat, og konkluderte med at et inntak på 0,105 mg per person per dag ikke utgjorde en helsefare (Food Safety
Commission of Japan, 2016).

I Australia og New Zealand er H O  konsentrasjoner inntil 5 mg/kg tillat brukt som et prosesseringsmiddel i
«pakket» vann (flaskevann), og for bleking, vasking og «peeling» av alle typer matvarer ( Food Standards
Australia New Zealand Act 1991 ).

 

Kommentarer fra Næringen:

Kommersielle produkter som inneholder H O  (f.eks. Oxyl-pro) er i bruk for desinfisering av vann på enkelte
bløggebåter, hovedsakelig for å få ned kimtall før fisken legges i tankene. Konsentrasjonene som brukes er
godkjent i henhold til Forordning (EU) 2015/1730, og står på European chemicals agency (ECHA)’s liste over
godkjente kjemikalier (Artikkel 95, PT05 Drinking water og PT04 Food and Feed area).

En av næringsaktørene opplyste at H O  tidligere ble brukt for desinfisering av vann, men det ble faset ut av
hensyn til personellet. Det ble i tillegg opplyst at H O  dannet mye uønsket skum i tankene.
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Fordeler:

Reaksjonsproduktene av H O er oksygen og vann.

H O er godt kjent og har lang tradisjon for desinfeksjon innen medisin og har historisk sett blitt brukt i store
kvanta til behandling av fisk mot lakselus.

Flere produkter der H O inngår er godkjent i Norge for bruk til desinfeksjon av overflater i
næringsmiddelindustrien.

H O er allerede i bruk til desinfeksjon av matvarer i mange land utenfor EU, og selv om det ikke er tillatt
brukt i EU, har det blitt gitt dispensasjon i enkelte land til bruk av lave konsentrasjoner om det finnes god
dokumentasjon på at det ikke medfører helsefare ved konsum av produktene.

 

Ulemper:

Mulighet for oksidasjon og fettharskning, og fare for bleking av pigmenter i produktene.

Flere studier rapporterer bedre effekt av H O i kombinasjon med andre dekontamineringsmetoder som UV-C
eller syrer (Hadjok et al., 2008; Venkitanarayanan et al., 2002), og det kan derfor være nødvendig å
kombinere H O med andre behandlinger for å få optimale resultater.

Det har blitt rapportert at H O kan reagere med metall i ståltanker og miste noe av effektiviteten over tid
(Sapers & Sites, 2003). Ved bruk bør dette tas med i betraktning.

 

4.2.4 - Ozon

 

Prinsipp:

Ozon, O , er en naturlig tilstedeværende, ustabil gass som kan reagere med og oksidere andre stoffer, inkludert
organiske molekyler (Hoigné & Bader, 1975). Luft består av rundt 20% oksygenatomer, i hovedsak i forma av
O , men en liten andel finnes som ozon, molekyler med tre oksygenatomer, O . Ozon er svakt blålig, og har en
stikkende lukt ved høyere konsentrasjoner. I de øvre lagene av atmosfæren produseres ozon kontinuerlig når
UV-stråler fra solen treffer oksygenmolekyler, og det finnes naturlig ved bakkenivå i lave konsentrasjoner (J. G.
Kim et al., 1999). Ozon kan produseres i store mengder industrielt ved å la tørr luft passere gjennom et elektrisk
felt med høy nok spenning til å spalte oksygenmolekyler, hvorpå de spaltede atomene binder andre
oksygenmolekyler og danner O  (J. G. Kim et al., 1999). Ozon kan bobles gjennom vann som siden kan brukes
i flytende form eller bli fryst til is, som videre kan bli brukt til lagring av produkter.

Ozon kan enten reagere direkte med andre molekyler (f.eks. cellevegger hos bakterier), eller bli brutt ned til
radikaler (OH, HO , O ) som så fungerer som den aktive komponenten (Hoigné & Bader, 1975; J. G. Kim et al.,
1999). Flere mekanismer for den antimikrobielle egenskapen til ozon har blitt diskutert, blant annet at det kan
reagere med lipoproteiner og gjør cellemembranen mer permeabel, degradere proteiner, og føre til skader på
DNA (Kim et al., 1999, og studier referert der).
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Dokumentert virkning på L. monocytogenes og andre mikroorganismer:

Ozonbehandling av sjøvann er dokumentert effektivt mot bakterier i vannet, spesielt om det er lavt innhold av
annet organisk materiale til stede (Sørensen et al., 2002). Den bakteriedrepende effekten av ozon har også
lenge vært kjent og er godt dokumentert til bruk på matvarer (J. G. Kim et al., 1999; Pandiselvam et al., 2022;
Zhao et al., 2018), blant annet kyllingkjøtt (Mercogliano, 2014), reker (Okpala, 2014; Okpala et al., 2016), og
hvitfisk (Giannoglou et al., 2021).

Spraying av laksefileter med ozonert vann med en konsentrasjon på 1,5 mg/L før videre kjølelagring er vist å ha
effekt på generelt kimtall og antall Listeria spp. til stede i produktet, med 0,5 log lavere bakteriemengder i
behandlede produkter enn i ubehandlede kontroller etter ti dagers lagring ved 4 °C (Crowe et al., 2012).

 

Effekt på produktkvalitet:

Ozon er sterkt oksiderende og vil kunne gi økt fettharskning. Det er lite litteratur på o zonbehandling av sjømat,
men tilgjengelige studier viser varierende effekt av ozon på sensoriske egenskaper (Pandiselvam et al., 2022;
Sørensen et al., 2002; Zhao et al., 2018). En undersøkelser gjort på hel sild lagret i RSW (refrigerated sea
water) med ozon fant blant annet økt harskning og bleiking, selv om forskjellene på behandlet og ubehandlet
sild ikke var stor, og effekten mot mikroorganismer var god (Sørensen et al., 2002). Andre studier har derimot
ikke funnet uakseptable endringer i sensorikk, inkludert hel laks i utblødningskar med ozon (Holm et al., 2003),
på laksefilet sprayet med ozon (Crowe et al., 2012), eller på reker vasket med ozon og deretter lagret på is
(Pandiselvam et al., 2022; Zhao et al., 2018).

 

Regelverk:

Ozonert vann er omtalt brukt til rensing av skalldyr siden 1920-tallet, til rensing av bassengvann siden 1940-
tallet og til reduksjon av generelt smittepress i fiskeoppdrett eller i akvarier siden 1970.

EU og Norge: I EU er ozon så langt tillatt brukt til behandling av mineralvann, samt for enkelte typer korn for å
oksidere soppgifter (mykotoksiner). I Norge er ozon godkjent til bruk som teknisk desinfeksjonsmiddel for
rengjøring av overflater i fiskeindustrien og til desinfeksjon av brønner og rør på brønnbåter. Dette inkluderer
flere kommersielle produkter som for eksempel Redoxzon og Normex.

EU kommisjonens gjennomføringsforordning (EU) 2023/1078 av 2. juni 2023 godkjenner ozon generert fra
oksygen som et aktivt stoff til bruk i biocidprodukter av type 2, 4, 5 og 11 i samsvar med europaparlaments- og
rådsforordning (EU) No 528/2012, hvor produkttype 4 omfatter overflater som kommer i kontakt med
næringsmidler og fôrvarer, produkttype 5 omfatter drikkevann, og produkttype 11 omfatter konserveringsmidler
for væsker i kjøle- og prosessystemer. Dette medfører at det må søkes om nasjonal produktgodkjenning for
biocidprodukter som inneholder det aktive stoffet.

Som hydroge n peroksid er ozon i EU ikke et tillat tilsetningsstoff i matvarer
(https://food.ec.europa.eu/safety/food-improvement-agents/additives_en), men avhengig av bruk kan det
derimot defineres som et «teknisk hjelpestoff», og vil da være lovlig å bruke i henhold til Artikkel 3.2 (b) i
Forordning (EC) No 1333/2008. EU tillater bruk av ozonert drikkevann for dekontaminering i kjøttproduksjon i
henhold til Forordning (EC) No 853/2004 (Mercogliano, 2014), og i Polen brukes ozonert vann (konsentrasjoner
følger drikkevannsforskriften) som et teknisk hjelpemiddel til skylling av lakseprodukter uten at det medfører
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merkekrav, fordi eventuelle rester av ozon raskt omdannes til oksygen (pers. kom.).

USA: Bruk av ozon i direkte kontakt med næringsmidler, inkludert sjømat, er godkjent av US Food and Drug
Administration, U.S. Department of Agriculture (FDA, 2023a).

I Japan er ozon tillat som et tilsetningsmiddel i henhold til Article 12 of the Enforcement Regulations under the
Food Sanitation Law (https://www.ffcr.or.jp/en/tenka/list-of-designated-additives/list-of-designated-
additives.html).

I Canada kan ozon brukes på overflater som er i kontakt med mat, men ikke direkte på matvarer (Gonçalves
Alex Augusto, 2019).

Kommentarer fra Næringen:

Ozon for dekontaminering er i bruk på videreforedlingsanlegg i Polen hvor ozonert vann (konsentrasjoner følger
drikkevannsforskriften) brukes for å skylle lakseprodukter. Det er rapportert å fungere bra, men det har ikke blitt
gjort studier for å sammenligne produkter med og uten behandling for å bedømme hvor god effekten faktisk er.
Bruken av ozonert vann i Polen medfører ikke merkekrav. Siden O  er svært reaktivt, kan det virke ødeleggende
på utstyr, særlig pakninger.

 

Fordeler:

Forholdsvis enkel teknologi og ozongeneratorer som tilpasses den enkelte bedrift er tilgjengelige.

Ingen rester av ozon på produktet.

Ozonert vann medfører ikke merkekrav.

 

Ulemper:

Det er kjent at ozon-eksponering hos mennesker kan gi betennelse og føre til skader i luftveiene, samt
svekke luftveisfunksjon og øke luftveisplager. Det er etablert grenseverdier for nivået av ozon i luft. Disse er
100 µg/m i 1 time eller 80 µg/m i 8 timer (Mercogliano, 2014; Ozon - FHI, 2019).

Dersom ozonert sjøvann blir brukt, er det knyttet bekymring til om uheldige komponenter som brominer kan
bli dannet.

Ozon er sterkt oksiderende og kan føre til harskning på produktet og ødeleggelse av produksjonsutstyr,
spesielt pakninger.

 

 

4.2.5 - Kald plasma

Andre navn som brukes: Ikke-termal plasma, Nonthermal plasma (NTP), Atmospheric cold plasma (ACP), Cold
plasma (CP), Atmospheric presure non-thermal plasma (APNTP), one atmosphere uniform glow discharge
plasma (OAUGDP). Her brukes kald plasma og plasmaaktivert vann for å unngå forvirring.
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Prinsipp:

Kald plasma dannes ved lave temperaturer når en gass med nøytral ladning utsettes for en energikilde og
ioniseres. Gassene kan være vanlig luft eller konsentrerte gasser som edelgasser (He, Ar, Ne). Gassen blir helt
eller delvis ionisert slik at den inneholder en kombinasjon av frie elektroner og ioner i eksitert eller grunntilstand
(Lacombe et al., 2015; Misra et al., 2011). Energikilden er ofte elektrisitet, men kan også være for eksempel
mikrobølger. De ioniserte forbindelsene som dannes er avhengig av opprinnelsesgassen, og om plasmaen
kommer i kontakt med luft eller vann etter dannelse, og forskjellige kombinasjoner av gasser og energikilder kan
derfor gi opphav til en rekke forskjellige plasmasystemer (Niemira, 2012). Det er lettere å produsere plasma
med edelgasser (eller edelgasser tilsatt oksygen) fordi det kreves lavere spenning for selve nedbrytningen enn
det gjør for nedbrytning av luft, men det er også dyrere å benytte edelgasser fordi disse er dyre, og en
minkende ressurs globalt.

Når plasma dannes starter en kjedereaksjon når den ioniserte gassen treffer luft, hvor luften som eksponeres
for plasma også blir ionisert, og det dannes nye reaktive forbindelsene av oksygen eller nitrogen, som bl.a. OH,
NO*, hydrogenperoksid og hydroxylradikaler (Mai-Prochnow et al., 2021; Mehta & Yadav, 2022). Om plasma
treffer vann eller et fast materiale kan man i interfasen få en translokasjon av de reaktive forbindelsene fra den
ioniserte gassen inn i væsken eller det faste materialet, hvor penetreringsdybden avhenger av materialet, og det
dannes mer stabile reaktive forbindelsene enn i en gass (Xiang et al., 2022).

Mekanismene involvert når kald plasma inaktiverer eller dreper bakterieceller og andre patogener eller bryter
ned biofilm ser ut til å være avhengig av typen patogen og hvilken type plasmasystem som benyttes (Feizollahi
et al., 2021). Generelt vil de reaktive forbindelsene i plasmaet interagere med celleveggen hos mikroorganismer
og forstyrre bevegelse av biomolekyler over membraner, og bryte ned fettsyrer. Dette fører videre til økt
oksidativt stress og forstyrrelse av normale cellulære prosesser (Kumar et al., 2022; Nwabor et al., 2022).
Enzymer og DNA, samt DNA replikasjon kan også bli påvirket, og den samlede effekten av flere faktorer som
påvirker cellene reduserer dermed sannsynligheten for utvikling av resistens hos bakteriene (Alkawareek et al.,
2014; Mai-Prochnow et al., 2021).

Kald plasma reaktive forbindelsene kan også trenge inn i biofilm og deaktivere eller drepe bakterieceller som er
til stede der (Abramzon et al., 2006; Mai-Prochnow et al., 2021; Xiong et al., 2011), og i tillegg destabilisere og
bryte ned selve biofilmen (Handorf et al., 2021; Trevisani et al., 2017). Dette skjer ved at de reaktive
forbindelsene til stede i plasma bryter ned bindingene som holder biofilmen sammen og gjør den mindre
motstandsdyktig mot ekstern påvirkning fra kjemikalier eller fysisk påkjenning som for eksempel skrubbing
(Ziuzina et al., 2015). En kombinasjon av kald plasma etterfulgt av for eksempel et kjemisk
dekontamineringsmiddel som dreper overlevende celler som ikke lenger er beskyttet av en biofilm har derfor et
ekstra potensiale til å redusere mengden Lm både på fisk og på overflater.

 

Dokumentert virkning på L. monocytogenes og andre mikroorganismer:

Kald plasma og plasma-aktivert vann har dokumentert deaktivering av Lm og Lm biofilmer på overflater og på
forskjellige typer matvarer, men det er forskjeller avhengig av teknologien som er brukt, og om det brukes i
kombinasjon med andre dekontamineringsstrategier (se Tabell 3 for eksempler). Lerouge et al. (2000) fant at
sammensetningen av bæregassen (O , Ar, CO , osv.) kan påvirke deaktiveringen av B. subtilis endosporer.
Ermolaeva et al. (2011) og Laroussi et al. (2003) fant at kald plasma var mer effektivt mot gram-negative
bakterier (Pseudomonas aeruginosa, Burkholderia cenocepacia, E. coli) enn gram-positive bakterier
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(Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecium, B. subtilis), og spekulerte i om dette
var relatert til den mer robuste celleveggen til gram-positive bakterier (Laroussi et al., 2003). Det ble også
funnet større spredning i plasmaresistens hos gram-positive enn hos gram-negative bakterier, og tykkere
biofilmer beskyttet bakteriene mer enn tynne (Ermolaeva et al., 2011). Critzer et al., (2007) på den andre siden,
fant ingen signifikante forskjeller på gram-positive (Lm) og gram-negative (Salmonella og E. coli) bakterier i en
studie som undersøkte effekten av plasmainaktivering på frukt og salat, og oppnådde > 3-log reduksjon av
begge. Det må tas i betraktning at studiene brukte forskjellige plasma-teknologier og matriser for bakterievekst;
«non-thermal argon plasma flow» på bakteriekolonier på blodagarskåler, biofilmer på dekkglass, eller på
bakterier inokulert i sår på levende rotter (Ermolaeva et al., 2011), «resistive barrier discharge» på bakterier
filtrert på polyester filtre (Laroussi et al., 2003), og «one atmosphere uniform glow discharge plasma» på frukt-
og salatoverflater inokulert med bakterier (Critzer et al., 2007). Det er derfor vanskelig å sammenligne disse
resultatene med hverandre og med lignende studier.

Plasmaaktivert vann er effektivt mot planktoniske bakterier (Zhao et al., 2020), har blitt vurdert brukt blant annet
i forbindelse med rensing av drikkevann (Nguyen et al., 2020), og kan brukes for å desinfisere mat ved å bade
eller skylle produkter med det aktiverte vannet. En studie som undersøkte effekten på mikrobiota og
produktkvalitet av å tine frossen kylling i plasmaaktivert vann, fant at det reduserte antall bakterier, men det ble
også observert endringer i proteinstrukturen til kyllingmuskelen (Qian et al., 2022). En annen studie undersøkte
om dynking av fersk havabbor fillet i plasmaaktivert vann tilsatt H O  (100ppm) påvirket lagringstiden til
produktet, og fant at mikrobiell vekst ble hemmet med opptil 15 dager mer enn i kontrollen (Chaijan et al., 2021).
Samme studie fant imidlertid også økt proteinoksidasjon og noe endring i farge på produktet, så selv om
metoden er lovende for å forlenge lagringstiden kan den føre til noen sensoriske endringer på produktet
(Chaijan et al., 2021). Som for mange av de andre metodene kan skyggeeffekten hindre effektiv deaktivering av
bakterier i plasmaaktivert vann om vannet inneholder store mengder partikler, fordi partiklene vil reagere med
de reaktive forbindelsene slik at effekten blir mindre på bakterier og biofilmer (Mai-Prochnow et al., 2021).

P lasmaaktivert vann har også blitt vist å signifikant deaktivere Lm celler i biofilm (Handorf et al., 2021), men
generelt virker Lm å være mer resistent mot denne behandlingen enn andre bakterier (Jyung et al.,
2022). Effekten av plasmaaktivert vann på Lm og andre mikroorganismer øker imidlertid om det kombineres
bruk av organiske syrer, spesielt god effekt ble observert med bruk av melkesyre (Jyung et al., 2023; Qian et al.,
2021).

Tabell 3: Utvalgte studier som tar for seg effekt av kald plasma på L. monocytogenes aller endringer i kvalitet på
relevante produkter.

Testorganisme Kombinert
med annen
teknologi

Matrix Plasmateknologi Bakteriereduksjon Endringer i
produktkvalitet

Referanse

L. monocytogenes, L.
innocua, S. Typhimurium,
S. Entereitidis,
Staphylococcus aureus,
E. coli, Aeromonas
hydrophila, Plesiomonas
shigelloides

Alene (for
kombinasjon
med UV-C,
se tidligere
avsnitt)

Røkt
laks

Plasma jet (lab-
scale), gass flow
rate 10l/min, 2kV
mellom
elektroder, 1s -
15min

0,6 – 1,2 log cycle
inaktivering
(beregnede
overlevelseskurver)

Ingen effekt ved kort
eksponering, gulning av
produkt ved lengre
eksponering, økt TBARS
ved økt eksponering (ikke
over grenseverdier)

Colejo et
al., 2018

L. monocytogenes Nisin Epler Plasma jet 30/40s
+ nisin
180s/3600s

2,5/4,6 log cfu/g
inaktivering av Lm

- Ukuku et
al., 2019
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Pseudomonas,
Enterobacteriaceae, LAB,
aerobe mesofile, aerobe
psychrotrofe

Plasma
generert
inne i ferdig
pakkede
produkter

Atlantisk
sild

Dielectric barrier
discharge, 70-
80kV i 5min

Etter 11 dagers
lagring: signifikant
lavere
bakteriemengde i
behandlede
produkter enn i
kontroll

Liten endring i sensorikk
v/lav volt, fargeendring
relatert til H O ved
høyere volt

Albertos et
al., 2019

L. monocytogenes Organiske
syrer

Lm
inokulert
direkte i
PAW

Plasmaaktivert
vann (25°C),
"coaxial barrier
discharge", 4,5
kV, 20 kHz, gas
flow 1,35 L/min

0,84 log CFU/mL
reduksjon

- Jyung et
al., 2023

  Lm
inokulert
direkte i
PAW
m/0,5%
syre

Plasmaaktivert
vann (25°C),
"coaxial barrier
discharge", 4,5
kV, 20 kHz, gas
flow 1,35 L/mi

0,34 – 2,49 log
CFU/mL reduksjon

-  

Psykrotrofe aerobe, LAB,
Pseudomonas

 Rå
makrell

Plasmaaktivert is
(4°C), med eller
uten syre

PAW-is: 0,44 log
reduksjon. PAW-is
m/1% melkesyre:
4,53 log reduksjon

Ingen signifikant økning i
TVBN

 

Lagringsstudie for
kvalitet, ingen mikrobielle
parametre målt

Plasma
generert
inne i ferdig
pakkede
produkter

Fersk
makrell

Dielectric barrier
discharge, 80kV i
5min

- Ikke økt lipidoksidasjon
(TBARS), endring i
fettsyrer eller endring i
"nutritional indices"
sammenlignet med
kontroll. Noe
proteinoksidasjon
observert (økt
karbonylinnhold)

Pérez-
Andrés et
al., 2020

Kimtall psykrofile,
Pseudomonas spp.

 Asian
sea
bass

PAW dannet av
O og argon med
vakuumering

Mikrobiell vekst
under 7 log CFU/g i
25 dager, kontroll
over 7 log CFU/g
etter 10 dager.

PAW forbedret
lipidstabilitet, men førte til
økt protein oksidasjon og
noe fargeendring

Panpipat
& Chaijan,
2020

 

Effekt på produktkvalitet:

Kald plasma kan påvirke sensorikk og produktkvalitet på forskjellige matvarer (Tabell 3, Olatunde et al., 2021).
Nivåer av lipid-oksidasjon som følge av plasma-behandling varierer mellom forskjellige studier, og det er uklart
om det skyldes forskjeller i plasma-teknologien som er brukt, kombinasjon av plasma med andre
dekontamineringsstrategier, eller selve produktet som undersøkes.

Forsøk utført av Albertos et al., (2017, 2019) indikerte at kald plasmabehandling av makrell og sild førte til en
nedgang i vannmengden bundet til proteiner. Videre kan kald plasmabehandling føre til økt dannelse av
karbonyler, som er en indikasjon på proteinoksidasjon (Pérez-Andrés et al., 2020), og økt proteinfragmentering
(Panpipat & Chaijan, 2020). Ekezie et al., (2019) fant at endringer i proteinstrukturene i reker økte med økt
plasma-eksponering i form av «atmospheric pressure plasma jet», sannsynligvis som en følge av økt protein-
aggregering og protein-protein interaksjoner.

En studie gjort på pakket makrell behandlet med plasma (DBD, 80kV 5min), fant ingen indikasjoner på lipid-
oksidasjon, og heller ikke negative effekter på fettsyresammensetning eller næringsinnhold (Pérez-Andrés et al.,

2 2 
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2020), mens en annen studie på pakket makrell derimot viste en signifikant økning i lipid-oksidasjon (Albertos et
al., 2017). Videre fant en studie på filet av havkaruss (Sparus aurata) høyere nivåer av oksidasjon ved bruk av
kald plasma enn ved andre behandlinger, inkludert ozon-behandling, høyt-trykk og pulsed electromagnetic field
(Giannoglou et al., 2021). Enkelte studier har indikert mindre oksidasjon om kald plasma kombineres med en
antioksidant som for eksempel askorbinsyre (Olatunde et al., 2019), eller andre tilsetningsstoffer som plante-
ekstrakter (Shiekh & Benjakul, 2020).

 

Regelverk:

Norge/EU: Det er foreløpig ikke et gjeldene regelverk i EU eller Norge som regulerer bruken av kald plasma i
matproduksjon og videreforedling.

Ettersom kald plasma kan inneholde oksygen- og nitrogenforbindelser ioner og ladde partikler (Misra et al.,
2011), er det også usikkert hvilket lovverk det faller inn under, eller om et helt nytt lovverk må opprettes
(Niemira, 2019). I en kommentar om stråling av mat (van der Meulen & Ruggiero, 2018) påpeker forfatterne at
Direktivet 1999/2/EC ikke spesifiserer om reglementet kun gjelder ionisering via radioaktivitet, eller om all
ionisering uansett kilde er inkludert, og at dette potensielt kan føre til problemer for ny teknologi som kald
plasma.

Mest sannsynlig vil bruk av kald plasma på matvarer falle inn under Forskrift om ny mat (EU) 2015/2283, blant
annet har det Irske mattilsynet klassifisert kald (atmosfærisk) plasma under denne forskriften (Food Safety
Authority of Ireland, 2020). Forskrift (EU) 2015/2283 omfatter matprodukter som aldri har vært laget før, eller
som er laget på nye måter, og må da ha EUs «Novel food» - godkjenning for å kunne omsettes på det
europeiske matvaremarkedet. En tilsvarende «ny mat»-forskrift som følger EUs lovgivning er gjeldene i Norge
(FOR-2017-07-25-1215).

Det er videre en mulighet for at bruk av kald-plasma faller inn under forordning (EU) 1333/2008 om
tilsetningsstoffer om restmengder av nitrogen forbindelsene eller oksygen forbindelsene er høy, eller blir definert
som et «teknisk hjelpestoff» i henhold til Artikkel 3.2 (b) i samme forordning om det er ikke-påvisbare mengder
reststoff til stede i det ferdige produktet.

USA: Kald plasma er foreløpig ikke godkjent av US Food and Drug Administration, som avventer flere studier
på hvordan kald plasma påvirker matvarene som blir behandlet.
(https://knowablemagazine.org/article/technology/2018/scientists-look-new-technologies-make-food-safer )

Resten av verden: Det er per i dag lite informasjon tilgjengelig om godkjenningsstatusen i andre land.

Kommentarer fra Næringen: Ingen erfaring med bruk av metoden på lakseprodukter. Det er en generelt
positiv innstilling, så lenge regelverket tillater bruken, og det ikke medfører endringer i produktkvaliteten.

 

Fordeler:

Generering av kald plasma krever atmosfærisk til lavt trykk, noe som innebærer lite energi når systemet først
er oppe og går.

Dokumentert effektivt på en rekke bakterier, inkludert Lm.

Anti-biofilm egenskapene er lovende også for dekontaminering av utstyr inne på anleggene.

Kartlegging av metoder for dekontaminering og vekstkontroll av Listeria i lakseprodukter
4 - Aktuelle strategier for dekontaminering i laksenæringen

32/55

https://knowablemagazine.org/article/technology/2018/scientists-look-new-technologies-make-food-safer)


Det dannes lite eller ingen kjemikalierester.

 

Ulemper:

Potensielt store startkostnader.

Kan føre til oksidasjon av proteiner og lipider.

Dersom ozon dannes i prosessen og det blir brukt i sjøvann, kan brominer bli et problem.

Usikkerhet rundt lovverket både i Norge/EU, USA og Asia.

 

4.2.6 - Ultralyd

 

Prinsipp:

Ultralyd er definert som lydbølger med en frekvens over 20kHz, og som dermed ikke kan høres av mennesker.
Metoden regnes som ikke-termal og det deles inn i to typer ultralyd; 1) lavfrekvent (20-100kHz) høyeffekts
(>1W/cm ) ultralyd, og høyfrekvent (> 100 kHz) laveffekts (<1W/cm ) ultralyd. Forholdet mellom intensitet og
frekvens er omvendt proporsjonalt (Bariya et al., 2023). Ultralydbølger skaper kavitasjon i produktet, små
gassbobler som øker i størrelse på grunn av vekselvis høyt og lavt trykk. Når boblene klapper sammen
(imploderer), skapes det sjokkbølge som kan ødelegge enzymer, cellevegger og DNA (Bahrami et al., 2020).
Ultralyd med høy effekt er den det er vanligst å bruke i næringsmiddelindustri, og brukes for en rekke matvarer,
blant annet for sterilisering av juice, melkeprodukter, kjøttprodukter og alkoholholdig drikke (Khaire et al., 2022).
Ultralyd kan også skape frie radikaler og dermed også påvirke produktet negativt ved å endre smak, lukt og
tekstur. En må derfor velge intensitet som gir best forhold mellom god dekontaminering og lite påvirkning av
produktet (Beitia et al., 2023).

 

Dokumentert virkning:

Ultralyd har vist å være mer effektiv mot gram positive stavbakterier fordi de mangler yttermembran og har
større overflate (Beitia et al., 2023). En rekke publikasjoner på Listeria spp. i ulike matvarer rapporterer likevel
variabel effekt av ultralyd alene (Bahrami et al., 2020; Zhao et al., 2021). Mange av disse nevner at ultralyd er
mest effektiv dersom brukt sammen med andre dekontamineringsmetoder, og termosonikering som kombinerer
ultralyd og varme (Onyeaka et al., 2023), men også kombinasjon med UV eller andre tilsetningsstoffer
(pereddiksyre, sinkoksid) har vist seg å være effektive. Ultralyd viser størst potensiale for dekontaminering av
flytende matvarer og økt produktfasthet begrenser effektiviteten eller reduserer produktkvaliteten (Beitia et al.,
2023). Det er derfor få studier hvor ultralyd tas i bruk for dekontaminering av fisk. En studie av Lm på overflaten
av fersk laks fant at ultralyd i kombinasjon med UV eksponering kunne gi god effekt, men viser seg å påvirke
lukt og smak, men ikke fasthet i muskulaturen (Mikš-Krajnik et al., 2017). En annet studie med fersk laks fant
størst reduksjon i Lm konsentrasjoner ved 5 min ultralydbehandling kombinert med oppvarming til 50 °C
(Pennisi et al., 2020). I en studie av L. innocua i makrellfileter viste ultralyd kun effekt i kombinasjon med
pereddiksyre (Zhao et al 2023).
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Regelverk:

I EU/Norge og USA er det ikke klare regler for bruk av ultralyd på matvarer, men kan en regne med at
regelverket ikke er til hinder for slik bruk så lenge bruken ikke endrer produktene i så stor grad at det faller
under Forordning (EU) 2015/2283. Teknologien er allerede i bruk på en rekke klasser av matvarer.

 

Kommentarer fra Næringen:

Det er generelt liten erfaring med ultralyd i produksjon av sjømat.

 

Fordeler:

Enkel, relativt billig og energiøkonomisk metodikk.

Ultralyd er relativt godt kjent og brukes ved prøveopparbeiding i laboratorier (sonikering), i industrien til
rensebad for blant annet metallkomponenter, samt hos urmakere og gullsmeder.

 

Ulemper:

Ultralyd ser bare ut til å effekt på Lm dersom den anvendes i kombinasjon med økt temperatur, bruk av
tilsetningsstoffer eller UV-eksponering.

Ultralyd kan skape frie radikaler som kan påvirke produktet negativt.

Utbredt bruk av ultralyd i en bedrift vil kreve at utstyret skjermes. Selv om ultralyd i seg selv ikke han høres vil
lydgeneratoren avgi støy.

Usikkerhet knyttet til HMS.
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5 - Konklusjon
Forskjellige metoder for dekontaminering og vekstkontroll av Listeria monocytogenes i lakseindustrien har blitt
utredet, og flere viser potensiale for å bli tatt i bruk. Kriterier som ble lagt til grunn var at produktets sensoriske
og fysiokjemiske egenskaper ikke påvirkes negativt, og det er en fordel om metoden ikke etterlater reststoffer og
medfører krav til merking. Metodene ble også vurdert mot krav i gjeldene regelverk for mulige tilsetningsstoffer,
konserveringsmetoder og merkekrav for matvarer i Norge, EU og viktige importland for norske lakseprodukter.

To av metodene vurdert, ozon og hydrogenperoksid er forholdsvis godt kjente kjemiske
dekontamineringsmetoder som lenge har vært brukt til desinfeksjon, hovedsakelig på overflater eller i vann,
men også i noen grad på matvarer. Hydrogenperoksid spaltes til oksygen og vann, mens ozon blir omdannet til
oksygen. Begge stoffene er sterkt oksiderende og kan reagere med produktene, men flere studier indikerer at
lave konsentrasjoner kan brukes uten å gi uakseptable forandringer i sensoriske egenskaper. Regelverket kan
være en hindring, spesielt med tanke på hydrogenperoksid i EU og Norge, men det har vært i bruk i enkelte EU
land for dekontaminering av sjømatprodukter.

UV-C stråling og høyfrekvent pulserende lys - HPL i akseptable doser har begge en inaktiverende effekt på Lm,
med noe høyere grad av dekontaminering knyttet til bruk av HPL enn ved bruk av UV-C. Begge metodene
begrenser seg til overflatedekontaminering, og fungerer dårlig på ujevne overflater. Lm har også generelt høy
resistens mot denne behandlingen, mest sannsynlig knyttet til den gram positive celleveggen og et effektivt
DNA-reparasjonssystem. Både UV-C og HPL kommer under «ny mat» regelverket Forordning (EU) 2015/2283)
om det ikke har blitt brukt på matvarer før 15. mai 1997, men UV-C har senere blitt godkjent til bruk på flere
typer matvarer, og er generelt sett på som uproblematisk.

Kald plasma er en forholdsvis ny teknologi som viser lovende resultater for dekontaminering av Lm og biofilmer,
med forholdsvis moderate effekter på produktkvaliteten. Et mulig problem er at det er stor variabilitet i effektene
av kald plasma avhengig av hvordan plasmaen blir dannet og produktet det brukes på, og det vil sannsynlig
kreve en del metodetilpasning avhengig av behovet i forskjellige bedrifter. Som ved bruk av UV-C og HPL, kan
skyggeeffekter kan også være et problem. Det er noe usikkerhet om hvilket regelverk kald plasma faller under,
men det er sannsynlig at det i Norge vil bli regulert under Forskrift om ny mat (EU) 2015/2283 slik det har blitt
gjort av det Irske mattilsynet, men EU reglementene for ionisering og tilsetningsstoffer også har blitt nevnt som
to muligheter.

Ultralyd ser hovedsakelig ut til å ha en effekt på Lm dersom det brukes i kombinasjon med økt temperatur,
tilsetningsstoffer eller UV eksponering. Det er også knyttet noe usikkerhet til effekter på arbeidsmiljøet.
Regelverket er noe uklart i henhold til bruk av ultralyd, men det er allerede i bruk for dekontaminering av mange
matvarer.

Generelt har alle metodene potensiale til å bidra til Lm-dekontaminering, spesielt om de kombineres med
hverandre eller med andre tiltak som for eksempel tilsetningsstoffer og biokonservering.

, 
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Takk til
Vi ønsker å takke følgende personer og bedrifter/organisasjoner for å stille sin tid til disposisjon og dele av sine
verdifulle erfaringer:

Ane-Marte Øye, Hofseth International, Ålesund

Randi Nordstoga, MOWI, Bergen

Simon Økland, Bremnes Seashore, Bømlo

Sissel Djuvik, Havline/Norwegian Gannet

Åsne Sangolt, Mattilsynet, Hovedkontoret, Seksjon for sjømat

Carl Johan Sandberg, Grieg Seafood, Bergen
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