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Sammendrag (norsk):

Listeria monocytogenes (Lm) er en vanlig forekommende bakterie som kan fare til infeksjon og sykdom hos
mennesker og dyr. Produksjonsmiljger med kalde og glatte overflater, regnes vanligvis som ugjestmilde for
matbarne humanpatogene bakterier, men Lm har flere egenskaper som gjgr dem i stand til & overleve og vokse der.
Utfordringene med Lm er seerlig aktuelle for lettkonserverte matvarer med lang holdbarhet som skal spises uten
videre varmebehandling, som for eksempel rgkelaks, og rgkelaks og andre lettprosesserte lakseprodukter har de
siste &rene veert knyttet til flere utbrudd i Europa. Forekomst av Lm i produksjonsmilig og i ferdige produkter er
derfor en gkende utfordring for lakseindustrien, og naeringen opplever stadig strengere krav til kontroll av Lm for a
sikre mattrygghet i produktene

| prosjektet Dekontaminering og vekstkontroll av Listeria i lakseprodukter (DekoLaks) var hovedmalsetningen & teste
og dokumentere bruk av barriereteknologi for dekontaminering og vekstkontroll av Listeria i lakseprodukter gjennom
produksjonskjeden. Denne rapporten utgjer leveransen i Arbeidspakke 2, hvor malet var & levere en systematisk
kartlegging av et utvalg metoder som allerede har dokumentert effekt pa reduksjon av Lm, samt identifikasjon av
seerlige problemomrader i slakterier og under videre foredling. Kartleggingen inkluderte samtaler med
lakseprodusenter for & kvalitetssikre at metodene som ble planlagt testet ut i labskala, ikke er uforholdsmessig
teknisk krevende eller for kostbare & innfare, samt at de kan oppskaleres og tas i bruk av prosessanlegg uavhengig
av stgrrelse. Noen lovende strategier ble senere testet ut i labskala i andre arbeidspakker. Metodene ble ogsa, sa
langt det lot seg gjgre, vurdert mot krav i gjeldene regelverk for mulige tilsetningsstoffer/konserveringsmetoder og
merkekrav for matvarer i Norge/EU og viktige importland for norske lakseprodukter.

Metoder som ble utredet var bruk av ozon, hydrogenperoksid, UV-C, hgyfrekvent pulserende lys (HPL), kald plasma
og ultralyd, og flere viser potensiale for & bli tatt i bruk. To av metodene vurdert, ozon og hydrogenperoksid, er
forholdsvis godt kjente kjemiske dekontamineringsmetoder som lenge har veert brukt til desinfeksjon, hovedsakelig
pa overflater eller i vann, men ogsa i noen grad pad matvarer. Begge stoffene er sterkt oksiderende og kan reagere
med produktene, men flere studier indikerer at lave konsentrasjoner kan brukes uten a gi uakseptable forandringer i
sensoriske egenskaper. UV-C straling og HPL i akseptable doser har begge en inaktiverende effekt pd Lm, med noe
hgyere grad av dekontaminering knyttet til bruk av HPL enn ved bruk av UV-C. Begge metodene begrenser seg til
overflatedekontaminering, og fungerer darligere pa ujevne overflater. Lm har ogsa generelt hgy resistens mot denne
behandlingen, mest sannsynlig knyttet til den gram positive celleveggen og et effektivt DNA-reparasjonssystem.
Kald plasma viser lovende resultater for dekontaminering av Lm og biofilmer, med forholdsvis moderate effekter pa
produktkvaliteten. Et mulig problem er at det er stor variabilitet i effektene av kald plasma avhengig av hvordan
plasmaen blir dannet og produktet det brukes pa, og det vil sannsynlig kreve en del metodetilpasning avhengig av
behovet i forskjellige bedrifter. Ultralyd ser hovedsakelig ut til & ha en effekt pa Lm dersom det brukes i kombinasjon
med gkt temperatur, tilsetningsstoffer eller UV eksponering.

Generelt har alle metodene potensiale til & bidra til Lm-dekontaminering, spesielt om de kombineres med hverandre
eller med andre tiltak som for eksempel tilsetningsstoffer og biokonservering.

Sammendrag (engelsk):

Listeria monocytogenes (Lm) are bacteria commonly found in the environment that can cause infection and disease
in humans and animals. Production environments with cold and smooth surfaces are usually considered
inhospitable for food-borne human pathogenic bacteria, but Lm has several properties that enable them to survive
and grow there. Challenges with Lm are particularly relevant for foods with little processing and with a long shelf life
that are to be eaten without further heat treatment, such as smoked salmon. Smoked salmon and other lightly
processed salmon products have in recent years been linked to several outbreaks in Europe. The occurrence of Lm
in production environments and in ready-to-eat products is therefore an increasing challenge for the salmon industry,
and the industry is experiencing increasingly strict requirements for the control of Lm to ensure the food safety of the
products.

In the project Decontamination and growth control of Listeria in salmon products (DekolLaks), the main objective has
been to test and document the use of barrier technology for decontamination and growth control of Listeria in
salmon products throughout the production chain. This report constitutes the deliverable in Work Package 2, where
the goal was to deliver a systematic mapping of a selection of methods that already have a documented effects on
the reduction of Lm, as well as identification of specific problem areas in slaughterhouses and during further
processing. The mapping included discussions with salmon producers to ensure that the methods planned to be
tested at the lab scale are not disproportionately technically demanding or too expensive to implement, and that they
can be scaled up and used by processing plants regardless of the size of the plant. Promising strategies were later
tested at the lab scale in other work packages. The methods were also, as far as possible, assessed against
requirements in current regulations for possible additives/preservation methods and labelling requirements for foods
in Norway and the EU, as well as in major countries the products are exported to.

Methods that were investigated included the use of ozone, hydrogen peroxide, UV-C, high-frequency pulsed light



(HPL), cold plasma and ultrasound, and several show potential for use against Lm. Ozone and hydrogen peroxide
are both relatively well-known chemical decontamination methods that have long history of use for disinfection,
mainly on surfaces or in water, but also to some extent on food products. Both substances are strong oxidizers and
can react with the products, but several studies indicate that low concentrations can be used without causing
unacceptable changes in sensory properties. UV-C radiation and HPL in acceptable doses both have an inactivating
effect on Lm, with a somewhat higher degree of decontamination associated with the use of HPL than with the use
of UV-C. Both methods are limited to surface decontamination and have less effect on uneven surfaces. In addition,
Lm generally have high resistance to this treatment, most likely related to the gram-positive cell wall and an efficient
DNA repair system. Cold plasma shows promising results for decontamination of Lm and biofilms, with relatively
moderate effects on product quality. A possible problem is that there is great variability in the effects of cold plasma
depending on how the plasma is generated and the product it is used on, and this will likely require some method
adaptation depending on the needs of different companies. Ultrasound mainly appears to have an effect on Lm if
used in combination with increased temperature, additives or UV exposure.

In general, all methods have the potential to contribute to Lm decontamination, especially if combined with each
other or with other measures such as additives and biopreservation.
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Kartlegging av metoder for dekontaminering og vekstkontroll av Listeria i lakseprodukter
1 - Bakgrunn

1 - Bakgrunn

Listeria monocytogenes (Lm) er en vanlig forekommende bakterie som kan fare til infeksjon og sykdom hos
mennesker og dyr. Infeksjonsdose varierer med generell helsetilstand (Pouillot et al., 2015; VKM et al., 2021),
og friske mennesker blir vanligvis ikke syke, eller far kun milde symptomer. Svekkede eldre, immunsvekkede,
og gravide kan derimot utvikle alvorlig, invasiv listeriose (VKM, 2018), som har en dgdelighet opp mot 8-12 %
(EFSA, 2022, 2023, 2024).

Produksjonsmiljger med kalde og glatte overflater, regnes vanligvis som ugjestmilde for matbarne
humanpatogene bakterier, men Lm har flere egenskaper som gjar dem i stand til & overleve og vokse der.
Bakteriene har blant annet flere gener for kuldetoleranse (Nichols et al., 2002; Schmid et al., 2009; Zhu et al.,
2005), og vokser derfor bra ved lave temperaturer. De kan danne biofilm pa overflater, noe som beskytter mot
bade mekanisk fierning og desinfeksjonsmidler (Fagerlund et al., 2021), og de kan ga inn i en inaktiv hvilefase
og dermed unnga & ta skade av baktericider (Knudsen et al., 2013).

Utfordringene med Lm er seerlig aktuelle for lettkonserverte matvarer med lang holdbarhet som skal spises uten
videre varmebehandling, som for eksempel rgkelaks (Lambrechts & Rip, 2024). Rgkelaks og andre
lettprosesserte lakseprodukter har de siste arene veert knyttet til flere utbrudd i Europa (EFSA, 2024), blant
annet bearbeidede produkter fra anlegg i Sverige, Polen og Estland, hvor det ikke kunne utelukkes at ravarene
var kontaminert hos primaerprodusenten i Norge (ECDC & EFSA, 2019). Forekomst av Lm i produksjonsmiljg
og i ferdige produkter er derfor en stor utfordring for lakseindustrien, og naeringen opplever stadig strengere
krav til kontroll av Lm for & sikre mattrygghet i produktene. Forordning (EU) 2024/1895 krever fraveer av Lm i
25g i produkter der vekst av Lm er mulig. Alternativt kan produsenten dokumentere produksjonspraksis som
sikrer at Lm i produktene ikke vil overskride 100 CFU/g gjennom hele holdbarhetsperioden (Forordning (EU)
2024/1895). Flere viktige importgrer av norsk sjgmat, som Kina og USA, har nulltoleranse for denne bakterien i
produkter som skal ut pA markedet. En eventuell pavisning av Lm i ferdigpakkede produkter kan fare til
kostbare tilbaketrekninger av hele partier, og det er et behov for mer kunnskap om effektive tiltak for & oppna
gkt kontroll med Lm (Belias et al., 2022).

| prosjektet Dekontaminering og vekstkontroll av Listeria i lakseprodukter (DekoLaks) (FHF prosjektnummer
901839) har hovedmalsetningen veaert & teste og dokumentere bruk av barriereteknologi for dekontaminering og
vekstkontroll av Listeria i lakseprodukter gjennom produksjonskjeden. Hypotesen var at en indirekte
dekontaminering med rensing av prosessvann under utblgdning og direkte dekontaminering av fiskens overflate
i ulike prosesstrinn etter slaying, kan benyttes for & nullstille kontaminering for & oppna @kt kontroll med Lm.
Slike tiltak er i liten grad kartlagt med hensyn til dokumentert effekt og risiko, samt muligheter for
implementering i produksjonskjeden.

Arbeidspakkene i DekoLaks inkluderer: en overordnet kartlegging av kjente metoder for dekontaminering av
produkter med L/steria-bakterier (AP2), undersgkelse av effektene av dekontaminering av prosessvann (AP3),
utprgving i labskala av noen utvalgte industrirelevante fysiokjemiske dekontamineringsmetoder basert pa
informasjon fra AP2 (AP4), og AP5 med hovedfokus p& undersgkelse av mulighet for biologisk vekstkontroll og
dekontaminering ved hjelp av melkesyrebakterier eller produkter fra disse. En egen arbeidspakke (AP6) for
risikovurdering av effektene av tiltak testet i AP3-AP5 er ogsa inkludert i prosjektet. Denne rapporten utgjar
leveransen i Arbeidspakke 2.

Malet i denne delen av prosjektet inkluderte en systematisk kartlegging av et utvalg metoder som allerede har
dokumentert effekt pa reduksjon av Lm, samt identifikasjon av seerlige problemomrader i slakterier og under
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Kartlegging av metoder for dekontaminering og vekstkontroll av Listeria i lakseprodukter
1 - Bakgrunn

videre foredling. Kartleggingen inkluderte samtaler med lakseprodusenter for & kvalitetssikre at metodene som
ble planlagt testet ut i labskala, ikke er uforholdsmessig teknisk krevende eller for kostbare & innfgre, samt at de
kan oppskaleres og tas i bruk av prosessanlegg uavhengig av starrelse. De mest lovende strategiene ble
senere testet ut i labskala.

Det var viktig & undersgke hvilke nye metoder for dekontaminering og vekstkontroll industrien vil finne det
hensiktsmessig & ta i bruk. Et viktig kriterium for innfering av ett eller flere dekontamineringstrinn i
produksjonskjeden er at produktets sensoriske eller fysiokjemiske egenskaper ikke pavirkes negativt. Det vil
videre veere en fordel at behandlingen ikke utlgser krav til merking (“clean label”). Fglgelig ma alle prosesser
som inkluderer bruk av tilsetningsstoffer eller kiemikalier som kan etterlate rester pa produktet vurderes med
tanke pa dette. B ransjens gnske om "clean label” strategier for de ulike metodikkene er tatt i betraktning,
ettersom dette vil ha innvirkning p& eventuelle krav om deklarering av dekontamineringsmetodikkene som er
benyttet.

I tillegg ble metodene, sa langt det lot seg gjare, vurdert mot krav i gjeldene regelverk for mulige
tilsetningsstoffer/konserveringsmetoder og merkekrav for matvarer i Norge/EU og importland for norske
lakseprodukter.

Delmal:
I. ldentifisere problemomrader i slakterier
Il. ldentifisere problemomrader under videreforedling

ll. Kartlegge utvalgte metoder med dokumentert effekt, med seerlig fokus pa fysiokjemiske
dekontamineringsmetoder og prosessvann
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Kartlegging av metoder for dekontaminering og vekstkontroll av Listeria i lakseprodukter
2 - Problemomrader i lakseindustrien — slakterier og videreforedling

2 - Problemomrader i lakseindustrien - slakterier og
videreforedling

Utfordringer med Lm i matvarebransjen har blitt ansett som gkende med hgyere grad av prosessering. Det er
ogsa kjent at persistente Lm-stammer kan etablere seg i produksjonsanlegg og fungere som en kontinuerlig
kilde til kontaminering av produkter under videre prosessering (Holah et al., 2004; Svanevik et al., 2021).
Slakterier og videreforedlingsanlegg bruker betydelige ressurser pé analyser, kartlegging og tiltak for &
forebygge Lm gjennom omfattende renholds- og desinfeksjonsrutiner, samt Igpende kontroller av sine anlegg
og produkter.

Slakterier for laksefisk er av varierende stgrrelse og utforming, men et generalisert flytskjema er vist i Figur 1a.
En rekke trinn i slakteprosessen kan utgjere en utfordring med tanke pa Lm. Det er godt kjent at vate omrader
med mye organisk materiale (blod, slim eller rester av skinn og muskel), gir stgrre utfordringer sammenlignet
med tarre og rene omrader, noe som ogsa bekreftes i samtaler og diskusjon med neeringen. Forskjellige aktarer
identifisere ulike punkt i produksjonen som seerlig kritiske, men felles er smittepotensialet fra tanker og bad,
transportband og maskiner som slgyemaskiner og grader. Et mulig viktig reservoar for Lm pa transportband er
omrader med sprekker som apnes nar det passerer en rulle. Slgyemaskiner, gradere og rensemaskiner kan
ogsa utgjare reservoarer som Lm fra fiskens overflate kan overfares til, og det har veert spekulerti om Lm kan
veere til stede i fiskens tarmsystem, og ved slgying overfgres derfra til overflater i anlegget. Videre vil omrader
hvor biofilm dannes kunne utgjgre en kontinuerlig kilde til Lm som kan kontaminere produkter (Fagerlund et al.,
2022). Tidligere undersgkelser har identifisert avigpsrenner som et seerlig viktig reservoar for Lm (Fagerlund et
al., 2022), og bruk av hgytrykksspyling pa gulv og over renner ma begrenses, siden dette kan virvle opp sma
vanndraper med Lm som kan fraktes rundt i lokalene.

Lm -kontaminering i slakteanlegg er mest sannsynlig knyttet til mengden Lm som kommer inn med fisken, hvor
det kan veere store variasjoner. Sesongvariasjoner i Lm har tidligere blitt observert i andre land og industrier,
hvor det blant annet har blitt rapportert om gkt mengde Lm i melkeindustrien i Nord-Italia om varen og hgsten
(Dalzini et al., 2016). | Norge rapporterer noen aktarer i lakseindustrien om en tendens mot stgrre mengder Lm
pa varen, mens andre rapporterer om lite Lm om varen, men stgrre mengder pa hgsten. Tidligere studier har
pavist Lm pé laks i merder, men kunne ikke fastsl& sesongvariasjoner i forekomsten (Hoel et al., 2021). Det er
mulig at observasjonene fra neeringen kan knyttes til lokale forhold som nedbgr og avrenning fra land neert
oppdrettsanlegg som leverer fisk til slakteriene. Det er godt kjent at listeriose er en seerlig utfordring hos husdyr,
spesielt sau (Grgnstal, 1979), og det kan tenkes at avfagring fra sau og andre husdyr kan ende opp i kystnaere
farvann ved avrenning fra land, og dermed kontaminere fisk som skal til slakting. God kunnskap om lokale
forhold i omradene rundt lakseanleggene kan derfor veere fordelaktig.

Kontaminering av produkter med Lm, eller vekst av bakterier i allerede kontaminerte produkter, kan ogsa skje
senere i produksjonskjeden. Figur 1b. viser typiske trinn i videreforedling av laks, og hvert trinn representerer
en mulighet for & tilfere eller oppformere Lm. Her vil tidsbruk og temperaturen produktene blir utsatt for pa hvert
steg ha stor betydning.
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" Slakteri a
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Figur 1a) Generalisert oversikt over produksfjonskjeden til atlantisk laks fra brannbdt/slaktebat til sortering og pakking. Leddene i
kjeden varierer mellom slakterier, og om fisken blir levert levende fra bronnbat eller ferdlig slaktet fra slaktebat. b) Generalisert oversikt
over produksjonskjeden under videreforedling av sloyd laksefisk. Maskinelle steg er merket i grétt, manuelle steg i hvitt. Trinnene i
kjeden varierer mellom bedrifter, og enkelte bedrifter har i tillegg et steg med injeksjon av saltlake pa enkelte produkter.
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3 - Aktuelle strategier for dekontaminering i andre
matvaresektorer

Lmer i hovedsak en utfordring knyttet til mattrygghet for spiseferdige, lettkonserverte og langtidsholdbare
konsumprodukter (EFSA, 2022). | slike produkter ligger det til rette for vekst av Lm dersom kravene til
kombinasjonen av lagringstid og temperatur ikke blir oppfylt. Aktuelle produktklasser kan veere blgtoster,
spiseferdige kjattprodukter, inkludert palegg, samt ikke varmebehandlede fiskeprodukter. Imidlertid har ogsa
andre produkter, som juice, frukt og grennsaker, veert satt i sammenheng med utbrudd av listeriose (Marik et al.,
2020).

3.1 - Kjemiske og fysiske metoder

Vegetabilske produkter som frukt, grannsaker, sopp, ngtter, frg, og juice konsumeres ofte uten
varmebehandling, og det er dermed fare for smitte av L/ og andre patogener til forbruker (Kljujev et al., 2018;
Parish, 1997). Flytende produkter som juice blir ofte dekontaminert med pasteurisering (Parish, 1997). Veesker
uten mange og store partikler kan sterilfiltreres (Carneiro et al., 2002; Li et al., 2006), og behandling med hgyt
trykk, pulserende elektriske felt, UV bestraling, kontinuerlig pulserende lys, ultralyd, oppvarming ved
stramgjennomfaring (ohmic heating) og haytrykks CO, -prosessering har ogsa blitt foreslatt (Bhattacharjee et
al., 2019; Pataro et al., 2011). Frukt og grennsaker dekontamineres ofte med vann tilsatt aktive komponenter
som hypokloritt (50 til 200 mg/kg i 1 til 2 min), klordioxid (5 mg/kg i opptil 30 min), per-eddiksyre (100 mg/kg i 5
min), ozonert vann (3 mg/kg i 5 min), eller elektrolysert oksyderende vann (i opptil 5 min), hydrogenperoksid
(5% i 2 min) (Pietrysiak et al., 2019). Videre har f ysikalske metoder som UV-lys, pulserende lys, ultralyd og
kaldplasma indusert gass, samt ioniserende straling (gamma og rgntgenstraling) ogsa veert testet ut pa flere
produkter med lovende resultater (Aguero et al., 2016; Khandpur & Gogate, 2016; Pietrysiak et al., 2019).

I meierisektoren benyttes det en rekke strategier for & minimere utfordringene med Lm, blant annet
pasteurisering eller ultrapasteurisering som dreper eventuell Lm som er til stede. For pasteurisert og
ultrapasteurisert melk er oppbevaring i kjgleskap etter &pning av emballasjen vanlig, og kjglingen vil hemme
veksten av Lm og andre mikroorganismer som skulle veere tilfgrt etter dpning (Porcellato et al., 2018). En rekke
nye teknologier er vurdert for reduksjon av Lmi melk og andre meieriprodukter. Disse er avhengig av
produktkategori, og inkluderer blant annet ikke varmebaserte teknologier som hgytrykksbehandling, pulserende
elektriske felt, ultralyd og UV-bestrdling (Lee et al., 2019), tilsetning av eteriske oljer eller andre “naturlige”
konserverende stoffer (Ritota & Manzi, 2020), samt bruk av nanopartikler eller algeekstrakter (El-Zamkan et al.,
2021). Ved kommersiell produksjon av ost, benyttes som regel melk som pé& forhand er pasteurisert, eller melk
som varmes direkte under produksjonen. For & hindre eller senke vekst av L/m ved modning av osten i bad,
benyttes mettet saltlake der salt etterfylles nar deler av dette blir tatt opp i osten. Noen oster tilsettes ogsa
klassiske konserveringsmidler som natriumnitritt eller benzoater (Jelena & Zorana, 2022).

For kjgtt, inkludert fizerfe, brukes mange tilnaerminger for & minimere utfordringene med Lm gjennom hele
produksjonskjeden fra produsent til forbruker. Dette kan vaere vask av dyr far transport og slakting, hygienisk
nedskjeering av slakt, behandling av slakteskrotter med vanndamp, og generell hygiene inkludert vask og
desinfeksjon i produksjonslokalene. En rekke strategier, inkludert bruk av kvarteere ammoniumsforbindelser
(QACs), syrer, klor-dioksid og hypokloritt i kombinasjon med alkaliske rengjgringsmilder, brukes ogsa for &
hindre biofilmdannelse pa produksjonsutstyr som er i kontakt med produkter (Fagerlund et al., 2017; Shimojima
et al., 2023; Tezel & Pavlostathis, 2015). Det er en del utfordringer knyttet til bruk av desinfeksjonsmidler i
produksjonslokaler, blant annet er u tvikling av resistens mot QACs hos Lm et kjent problem (Conficoni et al.,
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2016; Mohapatra et al., 2023; Tezel & Pavlostathis, 2015). Enkelte metoder som er i bruk for & begrense Lm
vekst i produksjonsmiljger, som blant annet vaskemidler og syrer, har ogsa vist seg a selektere for mer
resistens mot andre desinfeksjonsmidler som etanol og hydrogenperoksid (Lou & Yousef, 1996, 1997; Taormina
& Beuchat, 2001). Dekontamineringsm etoder som brukes direkte pa produktene inkluderer ofte mer
tradisjonelle konserveringsmetoder som koking, pH reduksjon ved fermentering, rayking, og reduksjon av
vannaktivitet giennom tarking (Ingham et al., 2004). Disse metodene farer ofte til en betydelige endringer i det
sensoriske uttrykket av produktene. Andre metoder som gir mindre sensoriske endringer har veert undersgkt,
som kontinuerlig UV-C og HPL (Keklik et al., 2012; Nicorescu et al., 2014), ozon (Pandiselvam et al., 2022)
gammastraling (Zhu et al., 2005), og plasmaaktivert vann (Nicorescu et al., 2014; Pandiselvam et al., 2022;
Shanker et al., 2023), men av disse er det hovedsakelig UV-C som er rutinemessig i bruk. Modifisert
atmosfaerepakking (MAP) av produkter hvor oksygen erstattes med gasser som CO, eller nitrogen brukes for
mange kjgttprodukter (Franco-Abuin et al., 1997), hvor forskjellige studier har vist varierende resultater for
hemming av Lm -vekst (Gonzalez-Fandos et al., 2020; Saraiva et al., 2016), men generelt gode resultater nar
MAP kombineres med syretilsetningen eller melkesyrebakterier (Mataragas et al., 2003; Skjerdal et al., 2021;
Williams & Golden, 2001; Yang et al., 2024).

Eteriske oljer som lavendel-, rosmarin- og oreganoolje med antimikrobielle egenskaper har blitt nevnt som
mulige konserveringsmidler p& mange typer matvarer, inkludert kjatt, fisk, melkeprodukter og vegetabilske
produkter (Dogruyol et al., 2020; Gottardo et al., 2022; Khaleque et al., 2016). Mange av disse oljene har sterk
lukt og/eller smak, og vil mest sannsynlig fare til endring i lukt og smak pa produktet, samt fare til krav om
merking. Allergier vil ogsa potensielt kunne fare til problemer ved bruk av eteriske oljer (Tongnuanchan &
Benjakul, 2014).

Flere av metodene som er i bruk, eller vurderes tatt i bruk, kan endre sensorikk og naeringsinnhold i enkelte
produkter, men ha liten effekt p& andre typer produkter. For eksempel vil frukt og grennsaker med hardt skalll
tale mange kjemiske og fysisk dekontamineringsstrategier uten store endringer i smak og utseende, mens bezer,
oppskaret frukt og sopp krever mildere behandling (Pandiselvam et al., 2022; Patra et al., 2022; Shanker et al.,
2023). Felles for mange av metodene som ikke medfgrer store sensoriske endringer pa produktene, er at de
kun dekontaminerer overflaten pa produktene, og eventuelle bakterier som ligger gjemt i porer, sprekker, under
folder eller p& undersiden av produktene vil i liten grad bli pavirket, dette kalles ofte «skyggeeffekt» (Keklik et
al., 2012).

3.2 - Biokonservering

Fermentering er blant de mest tradisjonsrike metodene vi har for konservering av mat, og forbindes kanskje
spesielt med meieriprodukter og grgnnsaker, men det er mange steder ogsa tradisjoner for fermentering av fisk
og kjatt (Barcenilla et al., 2022; Mukherjee et al., 2022; Shi & Maktabdar, 2022). Ved biokonservering brukes
ikke-patogene mikroorganismer (bakterier, sopp og bakteriofager) for & utkonkurrere eller hemme ugnskede og
potensielt skadelige mikroorganismer. Dette skjer enten ved direkte konkurranse mellom mikroorganismene om
neering og overflater, ved a skape et surt, ugjestmildt miljg via fermentering, ved produksjon av bakteriosiner
som hemmer vekst av andre mikroorganismer, ved & aktivt infisere og drepe mikroorganismer, eller en
kombinasjon av disse (Morales-Ramos et al., 2024; Singh, 2018; Yang et al., 2024).

Bruk av biokonserverende mikroorganismer som ikke endrer produktets smak og utseende, er av gkende
interesse for produsenter av mange matvarer (Barcenilla et al., 2022; Morales-Ramos et al., 2024; Shi &
Maktabdar, 2022). Dette kan innebaere tilsetning av bakterier som dreper eller hemmer veksten av andre
mikroorganismer ved at de produserer bakteriosiner, syrer eller en kombinasjon av disse. Bakteriosiner er
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naturlig forekommende antimikrobielle forbindelser som blir syntetisert av en rekke bakterier, bade gram-
negative, og gram-positive, inkludert melkesyrebakterier (Martinez et al., 2019; Mataragas et al., 2003).

Melkesyrebakterier har et stort potensial for biokonservering av sjgmat som fersk og lett prosessert laks siden
de kan vokse ved lav temperatur, tolererer relativt hgye konsentrasjoner av salt og rgyk, samt kan vokse uten
tilgang til oksygen (Stupar et al., 2023; Wiernasz et al., 2017, 2020). | tillegg har flere studier vist ta
melkesyrebakterier hgy grad hemmer vekst av Lm og andre ugnskede mikroorganismer i sjgmat (Ghanbari et
al., 2013; Stupar et al., 2021).

Flere studier har undersgkt den hemmende effekten av forskjellige stammer av melkesyrebakterier som
Pediococcus spp. og Lactobacillus spp. mot Listeria spp., blant annet i ost, grannsaker og kjgttprodukter med
lovende resultater (Aragon-Alegro et al., 2021; Barbosa et al., 2018; Lopez-Mendoza et al., 2007; Mataragas et
al., 2003; Ramos et al., 2020). Studier har ogsa blitt gjort pa den beskyttende effekten melkesyrebakterier kan
ha pa rekelaks og gravlaks med lovende resultater (Aymerich et al., 2019; Wiernasz et al., 2020). | en nylig
publisert studie (Gonzales-Barron et al., 2024) hvor risikoreduserende strategier for Lm i rgkt og gravet fisk ble
vurdert, ble det konkludert at bruk av melkesyrebakterier som biobeskyttende kulturer, sammen med lave
lagringstemperatur er mer effektivt for & redusere listeriarisiko enn & fokusere pa a redusere
kontamineringsnivaet i innkommende fisk.

En annen fordel er at melkesyrebakterier er ansett som trygge ( Ghanbari et al., 2013). Siden bruk av
melkesyrebakterier til fermenteringsformal er utbredt i naeringsmiddelindustrien har de fleste
melkesyrebakteriene en GRAS (Generally Recognized as Safe) eller QPS (Qualified Presumption of Safety)
status (FDA, 2018; Koutsoumanis et al., 2021). QPS-status er resultatet av en forhdndsvurdering som dekker
ulike sikkerhetsaspekter, og listen over bakterier med QPS-status opprettholdes i samsvar med mandatet til
EFSA Biohazard Panel. Den inkluderer flere melkesyrebakterier innen slektene Carnobacterium, Lactococcus,
Leuconostoc, Oenococcus, Pedicoccus og den nylig omklassifiserte Latilactobacillus (Koutsoumanis et al.,
2021). Arter med QPS-status krever fortsatt en sikkerhetsvurdering pa stamme-niva.

Mikroorganismer som brukes til fermentering av tradisjonsrik mat regnes som «ingrediensers» etter Europeisk
lovgivning, og kommer inn under Forordning (EC) No 178/2002 (Mukherjee et al., 2022). Unntaket er mat uten
«signifikant» historie i Europa far 1997, som regnes som «ny mat», etter forordning (EC) No 258/97, og som da
krever en risikovurdering og godkjenning av EFSA (European Food Safety Authority) far produktene kan selges
til forbrukere. Dette forordningen omfatter nye matvarer, nye ingredienser inkludert startkulturer for
fermentering, og nye teknologier for produksjon av matvarer (Mukherjee et al., 2022). | USA har
melkesyrebakterier, bakteriosiner og flere bakteriofagprodukter mot bl.a. Listeria «<GRAS» status (Endersen &
Coffey, 2020; Ramos et al., 2013).

Bakteriofager (fag) er virus som kun infiserer bakterier, og er en annen lovende, men mer kontroversiell metode
for biokonservering (Komora et al., 2021; Martinez et al., 2019; Naanwaab et al., 2014; Perera et al., 2015).
Bakteriofager er ofte veldig spesifikke, og infisere kun fa arter, én art, eller bare én stamme av bakterier
(Thingstad et al., 2014, 2015). De kan dermed brukes spesifikt mot problembakterier uten at det er fare for
infeksjon hos mennesker, dyr eller «nyttige» bakterier. Spesifisiteten kan derimot ogsa veere en barriere for bruk
av bakteriofager fordi det i mange tilfeller vil kreve at det isoleres nye fag for hver bakterieart eller
bakteriestamme man vil hindre vekst av. Bakterier er ogsé i et konstant vapenkapplgp mot bakteriofager og
utvikler ofte resistens mot dem, slik at det kan bli ngdvendig & isolere nye fag (Hill, 1993). Bruk av bakteriofager
kan ogsa vaere kontroversielt med tanke pa forbrukere, som kan veere skeptiske til produkter tilsatt virus selv
om disse er etter grundig vurdering er helt ufarlige (Endersen & Coffey, 2020; Thompson et al., 2024).
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Bruk av mikroorganismer til matkonservering krever merking, og disse produktene har derfor ikke «clean label».
For meieriprodukter og en del andre tradisjonelle produkter tilsatt melkesyrebakterier er dette ukontroversielt for
forbruker og myndigheter ettersom disse konserveringsmetodene har lange tradisjoner, og produkter tilsatt LAB
regnes derimot ofte som ekstra helsebringende (Mukherjee et al., 2022).

3.3 - Barriereteknologi

Barriereteknologi (hurdle technology), innebaerer & bruke en kombinasjon av flere metoder for dekontaminering
og veksthemming for & fierne eller hindre vekst av ugnskede mikroorganismer pa forskjellige stadier i
produksjonen (Parish et al., 2003; Ramos et al., 2013). Barriereteknologi brukes under produksjon av mange
matvarer, og kan blant annet inkludere varmebehandling, trykkbehandling, tilsetning av konserveringsmidler,
kjglt oppbevaring, modifisert atmosfaerepakking, eller tilsetning av bakteriofager eller melkesyrebakterier
(Barbosa et al., 2018; Komora et al., 2021; Lenaerts et al., 2023; Zhang et al., 2021). Et eksempel fra
kigttbransjen er hemming av Lmved & bruke en kombinasjon av MAP og tilsetning av enten syrer eller
melkesyrebakterier (Mataragas et al., 2003; Skjerdal et al., 2021; Williams & Golden, 2001; Yang et al., 2024).
Et annet eksempel er yoghurtproduksjon, hvor melk fgrst varmes opp, sa tilsettes melkesyrebakterier og
fermenteres, og deretter oppbevares kaldt for & unnga vekst av ugnskede mikroorganismer (Wang et al., 2025).
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4 - Aktuelle strategier for dekontaminering i
laksenaeringen

Tilstedeveerelse og etablering av Lm i produksjonsmiljget for Atlantisk laks med péafalgende risiko for
krysskontaminering til rastoffet er antatt hovedarsak til at bakterien pavises i laks. En mulig strategi for & oppné
bedre kontroll med Lm i laksenaeringen vil kunne vaere a innfgre dekontaminerende tiltak langs
produksjonslinjen, enten som en indirekte dekontaminering rettet mot vann i utbladning/kjgle/buffer-tanker
(Figur 1a), eller direkte dekontaminering av rastoff eller ferdig prosesserte lakseprodukter.

4.1 - Dekontaminering av utblgdningsvann

En interessant strategi for indirekte dekontaminering av utblgdningsvann er sentrifugering. Prinsippet bak dette
er at partikler med starre tetthet en den vesken de finnes i kan fjernes ved at de blir spunnet ned gjennom
pafart gkt tyngdekraft i en sentrifuge. Det rensede utblgdningsvannet fares sa tilbake til utblgdningstanken i en
kontinuerlig slgyfe, eventuelt kombinert med ytterligere behandling av lettfasen. Sentrifugering av vannet i
utblgdningstanken vil gke UV-transmittansen og redusere konsentrasjonen av partikler slik at dette
dekontamineringstiltaket kan kombineres med blant annet membranfiltrering, UV bestréling eller bruk av aktive
klorforbindelser for gkt effekt. Denne strategien diskuteres ikke i detalj her, men skal testes ut i AP3.

4.2 - Fysiokjemiske dekontamineringsmetoder

Fysiokjemiske dekontamineringsmetoder som har antatt liten negativ effekt pa produktegenskaper, slik som
kontinuerlig UV-C lys i bglgeomradet rundt 254 nm, hayfrekvent pulserende lys (HPL), kald plasma indusert
vann og is, ozonert vann og bruk av hydrogenperoksid (H,O, ), har blitt kartlagt og vurdert for labskalauttesting.

4.2.1 - Kontinuerlig UV-C lys

Prinsipp: Bruk av UV-straling er en ikke-termisk teknologi som i hovedsak kan brukes til
overflatedekontaminering. B glgelengden til UV straling ligger mellom 100-400 nanometer (nm), sammenlignet
med synlig lys som har bglgelengder mellom 400 og 780 nm. Denne kortere bglgelengden forbundet med UV-
straling og annen elektromagnetisk straling har hgyere energi enn de lengre bglgelengdene i synlig lys. UV-A
har en bglgelengde pa 315-400 nanometer, UV-B pa 280-315 nm, og UV-C pa 200 til 280 nm (Lépez-Malo &
Palou, 2004). Bglgelengdene for UV-C lys regnes som de mest effektive for inaktivering av bakterier og andre
mikroorganismer, hvor den mest effektive og brukte bglgelengden er 254 nm (Lopez-Malo & Palou, 2004). Dette
er fordi DNA har absorbsjonsmaksimum i dette bglgeomradet, og inaktivering av DNA skjer nar UV-C fotoner
absorberes av de nitrogenholdige basene i DNA og farer til krysskoblinger, som igjen inhiberer normal
celledeling og hemmer bakterievekst (Lopez-Malo & Palou, 2004).

Resistens mot UV-C hos ulike bakterier varierer og er knyttet til hvilke DNA reparasjonsmekanismer de har.
Videre vil den fysiologiske tilstanden til bakteriene, som vekstfase og stress, spille en rolle (Gayan et al., 2015).
Lm kan deaktiveres av UV-C lys, men det har blitt rapportert om hgyere resistens hos Lm enn hos andre ikke-
sporedannende patogene bakterier, mest sannsynlig relatert til den gram-positive celleveggen og et effektivt
DNA reparasjonssystem (Beauchamp & Lacroix, 2012; Cheigh et al., 2012; Gayan et al., 2015).
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Dokumentert virkning pa L. monocytogenes og andre mikroorganismer:

UV-C brukes for dekontaminering av overflater pa en rekke produkter og pakningsmaterialer, som utvendig
emballasje eller overflaten pa frukt, grannsaker og bakervarer, og brukes ogsa til & dekontaminere produkter
som flyttes mellom soner med ulike hygienenivaer.

Pa faste overflater eksponert for UV-C lys vil inaktivering av bakterier hovedsakelig skje pa omrader som blir
direkte eksponert. Ujevne overflater, eller overflater som er dekket av ikke-penetrerbar emballasje (f.eks.
etiketter) kan derfor vaere et problem fordi disse omrédene, og eventuelle mikroorganismer til stede, ikke vil bli
tilstrekkelig utsatt for UV-stralingen (Keklik et al., 2012). En studie som undersgkte b ehandling med UV-C pa ra
laks, stal og polyethylen fant forskjeller i graden av inaktivering av bakterier pa de forskjellige overflatene, med
stgrst inaktivering av mikroorganismer pa polyethylen, mindre inaktivering pa stal, og minst pa laks (Pedros-
Garrido et al., 2018). Videre har det blitt funnet lavere inaktivering av mikroorganismer, inkludert Lm pa
raykelaks enn p& abiotiske overflater (Colejo et al., 2018). Pedrés-Garrido et al. (2018), undersgkte forskjellige
eksponeringstider (0-90s) og distanser mellom UV-C kilde og overflate, hvor inaktivering av forskjellige
mikroorganismer, blant annet L/steria spp. ble testet. Studien fant at CFU gikk raskere ned ved bruk av
hgyfrekvent pulserende lys (HPL) enn med UV-C, og med gkt naerhet til produktet ved begge behandlinger (26-
6 cm for UV-C, 11-3,5 cm for HPL), samt at inaktivering av Listeria spp. pa ra lakseprodukter var signifikant
hayere ved bruk av HPL enn ved bruk av UV-C. P& en annen siden fgrte bruk av HPL til mer oksidering av
produktene enn bruk av UV-C (Pedrés-Garrido et al., 2018).

For dekontaminering av flytende medier vil de fysiokjemiske egenskapene i vaesken pavirke effektiviteten av
behandlingen (Gayan et al., 2015). Bestraling med UV-C er utbredt ved behandling av vann etter at partikler i
vannet er fjernet ved filtrering. For andre typer vaesker med lavere grad av gjennomtrengning med UV-C-lys,
avhenger den bakteriedrepende effekten i stor grad av produktsammensetningen, turbiditeten, dybden av
vaesken og konsentrasjonen av mikroorganismer og partikler (Keklik et al., 2012). Det har blitt utviklet UV-
systemer som skaper turbulente stremmer for ugjennomsiktige veesker og dermed muliggjer starre UV-C
eksponering. Effektiviteten til dette har blant annet blitt undersgkt for inaktivering av virus (Blazquez et al., 2019)
og koliforme bakterier i blodplasma (Blazquez et al., 2017), med lovende resultater.

Flere studier har undersgkt effekten av UV-C behandling for inaktivering av Lm med varierende resultater
(Tabell 1). Cheigh et al., (2013) undersgkte effekten av UV-C (eksponering i 0-1960s) pa fiskefilet inokulert med
Lm, men fant ingen endring i CFU av Lm. Bernbom et al., (2011) undersgkte Lm kulturer dyrket i «laksejuice»,
tryptone soy broth (TSB) + glukose og TSB + glukose med NaCl som deretter ble inokulert pa stalplater for
biofiimdannelse, og observerte at Lm dyrket i TSB med glukose inokulert pa stalplater ble inaktivert etter to
minutters UV-C eksponering, mens samme dyrkingsmedia tilsatt NaCl gikk ned 4-5 log enheter ved 8-10 min
eksponering. Tilstedevaerelse av NaCl reduserte derfor effekten av UV-C, mest sannsynlig fordi salter kan fare
til klumping av bakteriene, samt reduserer penetreringen av UV-C lys og biocider (Bernbom et al., 2011). Videre
fant de at UV-C lys alene (254nm, 8-10min) reduserte mengde Lm dyrket i «laksejuice» med 2-5 log nar
behandlingen fant sted en time etter inokulering pa stalplater, men ingen virkning pa syv dager gamle biofilmer.
Lignende resultater ble rapportert av Colejo et al., (2018), som sammenlignet UV-C inaktivering av Lm og andre
patogener pa agarskaler og rgkelaks, og fant lavere inaktivering pa rgkt laks (< 1,3 log reduksjon) enn pa
agarskalene (~2 log reduksjon) selv om hgyere dose ble brukt pa laksen. Salter og organisk materiale ser med
andre ord ut til & ha stor innvirkning pa effektiviteten av UV-C behandling, ikke bare i veesker, men ogsé pa
produksjons- og produktoverflater (Bernbom et al., 2011; Colejo et al., 2018; Gayan et al., 2015).
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Flere studier har undersgkt effekten av UV-C dekontaminering pa den sensoriske kvaliteten til lakseprodukter
og annen sjgmat (Tabell 1). Pedrés-Garrido et al., (2018) undersgkte effekten av UV-C og HPL ved ulike
intensiteter pa lakseproduktet, og observert fargeendringer pa laksen ved UV-C behandling over 45s, eller HPL

behandling over 200 mJ/cm?, hvor laksen fikk et «kokt» utseende. Videre ble det observert hgyere

lipidoksidasjon ved bruk av HPL enn ved bruk av UV-C lys. Den hgyeste undersgkte dosen av begge

behandlingene, gav et synlig blekere produkt og harsk lukt. Colejo et al., (2018) undersgkte UV-C og ikke-

termal plasmabehandling pa rekelaks, og fant at UV-C behandling tilsvarende 900 mJ/cm? fgrte til en 0,5-1,3
log nedgang i CFU (blandet mikrobielt samfunn) uten endring i produktkvaliteten. Behandling med bade UV-C
og kaldplasma gkte inaktiveringsgraden av bakterier ved doser under 500 mJ/cm?2. UV-C lys over 500 mJ/cm?

kombinert med plasma-behandling over lengre tid (> 4 min) gav mindre effekt, og farte ogsa til lipid-oksidasjon

og fargeendringer p& produktet.

Tabell 1: Utvalgte studier med fokus pd UV-C behandling for dekontaminering

Testorganisme(r) Kombinert
med annen
teknologi

L. monocytogenes -

L. monocytogenes S

L. monocytogenes, L. innocua, -

S. Typhimurium, S.

Entereitidis, Staphylococcus

aureus, E. coli, Aeromonas

hydrophila, Plesiomonas

shigelloides
Ikke-termal
plasma

L. monocytogenes -

Matrix

Stélplate,
reker, laks

Stalplater

Rokt laks

R& laks

Kaldrgkt laks

Eksponering
uv-Cc

1000s

Varierende
eksponeringstid

0 -1000
mJ/cm?
(254nm)

0-500 mJ/cm?,
Plasma 0-4 min

0,0075-
0.6J/cm?

0,0075-
0.6J/cm?

Bakteriereduksjon Endringer i

Ingen &penbar
effekt pa Lm

2-3 log reduksjon
ved bruk direkte
etter inokulering av
produkt, ingen
effekt p& 7dg
gamle biofilmer

0,5-1,3log
reduksjon

0,1-1,57 log
reduksjon

0,2-0,9 log
reduksjon

0,7-1,3 log
reduksjon

Referanse
produktkvalitet
Cheigh et
al., 2013
Bernbom
et al.,2011
Reduksjon i Colejo et
sensorisk al., 2018
kvalitet ved
eksponering >
900 mJ/cm2
Ingen effekt pa
produkt ved lav
eksponering,
gulning og gkt
TBARS ved
lang
eksponeringstid
Gjenvekst av Holck et
Lm, men al., 2018
forsinket 7
dager
sammenlignet
med kontroll

Gjenvekst av
Lm, men
forsinket 13
dager
sammenlignet
med kontroll,
ingen
sensoriske
endringer
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Listeria spp., Pseudomonas 26, 16 and 6 Maksimal Fargeendring Pedros-
spp., Brochothrix cm dist, 0-90s inaktivering ved ved > 45s Garrido et
thermosphacta, kortest distanse fra behandling al., 2018
Photobacterium phosphoreum, produkt: 1,0 £ 0,1
Enterobacteriaceae log CFU/g ved 6

cmog 60 s

eksponering

Pseudomonas sp., aerobe Vakuumering Vakuumpakket 360 J/m?+ Redusert vekst av ~ Ingen endringer Damdam
bakterier, LAB laks redusert trykk  Pseudomonasog  isensorisk etal,
(40 kPa) aerobe bakterier, kvalitet 2023
ingen endring i LAB
vekst
Regelverk:

EU/Norge: UV-C er i bruk i industrien i Norge for dekontaminering av overflater, og er godkjent med tanke pa
arbeidsmiljg. «Det kreves ingen godkjenning eller melding til Strélevernet fgr UV-C-anlegg tas i bruk, men
virksomheten plikter & ha oversikt over og kontroll med alle stralekildene (§ 21)...» Videre krever Arbeidstilsynet
at ansatte skal beskyttes mot UV og IR straling.

| EU og Norge faller UV-C behandling inn under kategorien «novel foods» Forordning (EC) No 258/97 ) om
behandling farer til endringer i produktets sammensetning, naeringsverdi eller niva av ugnskede substanser, og
det kreves da «novel food approval» (Koutchma, 2018; Louis Bresson et al., 2016). For eksempel ble UV-C
behandling av bakegjeer og bragd godkjent i henholdsvis 2014 og 2016, og i 2015 ble UV-C behandling av melk
utredet av EFSA i henhold til Forordning (EC) No 258/97, hvor det ble konkludert at dette ikke farte til endringer
i produktkvalitet (Louis Bresson et al., 2016).

USA: | USAregnes UV som straling, og stralingskilder inkludert UV regnes som tilsetningsstoffer (Koutchma,
2018). Bruk av UV har blitt godkjent for bruk pa flere typer matvarer av «the United States Food and Drug
Administration» (US FDA) (Koutchma, 2018; U.S. Food and Drug Administration, 2022).

Kommentarer fra Laksenzringen:

UV-C straling har i mindre grad blitt tatt i bruk i laksenzeringen for dekontaminering av produkter, men der det
har blitt installert ser det ut til & ha liten effekt pa Lm. Det er uvisst hvorfor, men det er naerliggende & tro at det
skyldes en kombinasjon av skyggeeffekt og for kort eksponeringstid. UV-lys blir imidlertid brukt i stor utstrekning
for & rense vann i forbindelse med vanninntaket til kjgletanker i slakterier.

Fordeler:
« Godt kjent metode.
« Det er en ikke-termisk prosess og pavirker ikke produktkvaliteten i starre grad slik haye temperaturer gjar.
« Ingen restforbindelser.
« Ingen kjemikalier benyttes.

« Enkle helse- og sikkerhetstiltak som mange steder allerede er i bruk, sikrer at lyset ikke spres ut fra systemet.
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Ulemper:

« Effektiviteten avhenger i hgy grad av egenskapene til produktet som behandles. Enkelte overflatestrukturer
pa produkter kan ha en innvirkning pa den mikrobielle reduksjonen som oppnas.

« Kun overflatedekontaminering er mulig, metoden gir lav penetreringsdybde.

« Noen mikroorganismer, inkludert Lm, har gode DNA-reparasjonsmekanismer og kan derfor overleve hvis de
utsettes for utilstrekkelige UV-C doser.

» Mulige konsekvenser for produktkvaliteten ved hgye UV-doser for enkelte produkter.

« Lang behandlingstid kreves for effektiv deaktivering, dette gker igjen sannsynligheten for overflateoksidering
pa produktene.

« Tilstedeveerelse av salter og organisk materiale senker effektiviteten til UV-C. UV-C absorberes av organisk
materiale, og bade organisk materiale og salter begrenser penetreringsdybden til UV-C lyset.

« UV-C-bestraling kan veere helseskadelig for mennesker om gyne eller hud blir eksponert. Dette gjelder ogsa
ved lave doser, ettersom skader fra kontinuerlig eksponering kan bygge seg opp over tid. Det ma derfor
brukes verneutstyr eller UV-lamper plassert i lukkede tunneler eller beholdere.

4.2.2 - Hoyfrekvent pulserende lys (HPL)

Andre navn brukt om denne teknologien inkluderer «Intense pulsed light (IPL)», «Pulsed UV (PUV)», og
«Pulsed light technology (PLT)». Hagyfrekvent pulserende lys (HPL) brukes her for & unnga forvirring.

Prinsipp:

Hayfrekvent pulserende lys (HPL) er en ikke-termisk prosess hvor korte, energirike elektriske pulser brukes for
& produsere et intenst, bredspektret lys for sterilisering av overflater (Bohrerova et al., 2008).
Frekvensomradene inkluderer ultrafiolett (UV), synlig (VL) og infrargdt (IR) lys (200-1000nm) (Oms-Oliu et al.,
2010). HPL er raskere og mer effektivt enn UV-straling alene fordi samme mengde energi avgis over et kortere
tidsrom (Bohrerova et al., 2008; Gomez-Lépez et al., 2011). HPL-systemer kan levere lys i form av en enkelt
puls, en serie av pulser, eller en kontinuerlig rekke av pulser. Uavhengig av antall pulser og varigheten, er
kraften som leveres av pulser estimert til & veere rundt 20 000 ganger mer intens enn den som leveres av en
kontinuerlig lysstrale med tilsvarende total energi (Palmieri & Cacace, 2005). Som ved bruk av UV-C, vil HPL
hovedsakelig veere effektivt mot mikroorganismer til stede pa overflater, og inaktiveringseffekten er signifikant
mindre eller fravaerende om bakteriene ligger skjult pa undersider av produkter, i sprekker, eller inne i produkter
(Gémez-Lopez et al., 2005; Keklik et al., 2012). Bruk av HPL-teknologi involverer ikke bruk av toksiske
kiemikalier, og det produseres heller ingen fotolytiske biprodukter fordi bglgelengdene som brukes er sa lange
at de ikke farer til ionisering av sma molekyler (Palmieri & Cacace, 2005).
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Dokumentert virkning pa L. monocytogenes eller andre mikroorganismer:

Fordi HPL-metoden ikke er standardisert og energimengden produktet utsettes for kan varieres med antall
pulser, bglgelengde pa lys og avstand fra produktet, kan det vaere vanskelig & sammenligne resultatene fra
HPL-studier med resultater fra bruk av andre, mer standardiserte metoder fordi selve HPL-metoden kan variere
signifikant mellom studier (Bohrerova et al., 2008). Bohrerova et al. (2008) forsgkte & omga noen av disse
usikkerhetene ved & sammenligne effekten av UV-C lys og HPL med samme bestraling og dose (fluence-niv3,
malt i mJ/cm?), og fant at HPL hadde en signifikant bedre steriliserende effekt enn UV-C lys p&
mikroorganismer.

Flere studier har vist lovende resultater for deaktivering av flere typer bakterier pa forskjellige matvarer, inkludert
laks og annen sjgmat (se Tabell 2 for eksempler). P4 r& laks behandlet med HPL tilsvarende 30 J cm? ble det
rapportert om 0,7 log CFU/g reduksjon av naturlig bakteriell flora og en 1,5-log CFU/g reduksjon av
Pseudomonas fluorescens etter behandling, men det var stor overlevelsesrate, og etterfglgende lagring pa 4 °C
farte til en gkning i CFU for bakgrunnsfloraen (Nicorescu et al., 2014). Samme studie rapporterte ogsa om
lavere inaktiveringsgrad pa ra laks enn pa rgkte svineprodukter nar disse ble utsatt for samme behandling. Det
ble her spekulert i at dette var relatert til hgy konsentrasjon av lipider og proteiner i laksen som kunne absorbere
UV og dermed beskytte bakteriene, hgy vannaktivitet som fremmer bakterievekst, skyggeeffekter pa
lakseoverflater, eller en kombinasjon av disse (Nicorescu et al., 2014). En annen studie som sammenlignet HPL
og UV-C fant at kimtall (CFU) pé& lakseprodukter gikk ned raskere ved bruk av HPL enn med UV-C, og med gkt
neerhet til produktet (11-3,5 cm), samt at inaktivering av Listeria spp. pa ra laks var signifikant hgyere ved bruk
av HPL enn ved bruk av UV-C (1,3 og 0,9 log CFU/g reduksjon respektivt) (Pedrés-Garrido et al., 2018). Ozer &
Demirci, (2006) undersgkte effekten av HPL (med varierende lengde pa pulsene, og med varierende avstand
fra produktet) pa ra laks inokulert med E. coliog Lm, og fant maks deaktiveringsrater pa henholdsvis 1,09 og
1,02 log CFU/qg. Videre har det blitt vist at HPL behandling av bivalver og blekksprut (Hwang et al., 2021), og
reker og fiskefilet (Cheigh et al., 2013) farte til en reduksjon av Lm og E. colii produktene undersgkt, men det
ble rapportert om noen problemer med lavere reduksjon av mikrober i noen produkter som bivalver enn i andre
produkter, mest sannsynlig relatert til en skyggeeffekt (Hwang et al., 2021).

En annen faktor som ma tas i betraktning er at Lm har gode DNA-repareringsmekanismer, og kan etter HPL
eksponering ha fotoreaktivering og vokse opp igjen. Fotoreaktiveringen ser imidlertid ut til & veere lavere etter
HPL behandling enn etter UV-C behandling (Gémez-L6pez et al., 2005). Gjenvekst er generelt et problem ved
HPL behandling, og vekst av Lm og andre mikroorganismer blir dermed forsinket, men ikke hemmet ved videre
lagring (Holck et al., 2018; Nicorescu et al., 2014). Et annet interessant funn er at HPL ser ut til & ha mindre
effekt pa inaktivering av mikroorganismer, inkludert Lm, pa fiskeprodukter enn pa kjgttprodukter (Hierro et al.,
2012; Nicorescu et al., 2014). Arsaken til dette er ikke klar, men et hgyere lipid- og vanninnholdet i fisk, samt
hayt UV-opptak i proteiner kan veere noe av forklaringen (Nicorescu et al., 2014).

Effekt pa produktkvalitet:

Flere studier har rapportert om endringer i produktkvalitet bade pa lakseprodukter og andre produkter ved hgy
HPL eksponering. Hgyere lipidoksidasjon ved bruk av HPL enn ved bruk av UV-C lys ble observert av Pedrés-
Garrido et al., (2018), hvor den hgyeste undersgkte dosen gav et synlig blekere produkt og harsk lukt. Videre
har det blitt rapportert om en gkning i TBARS, som er et mal for nivaet av lipidoksidasjon, i ra laks og rekte
svineprodukter ved HPL behandling p& 30 J cm? (Nicorescu et al., 2014). Overflatetemperaturen pa
lakseprodukter kan bli veldig hgy, noen ganger opp til 100°C, ved lang behandlingstid eller om puls-kilden
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plasseres naert produktet, og fare til fargeendringer og forandringer i produktkvalitet (Ozer & Demirci, 2006).

Tabell 2: Funn fra utvalgte studier som har fokusert pd HPL behandling overflater og produkter av laks eller

annen sjgmat for reduksjon av L. monocytogenes eller andre bakterier.

Testorganisme

L. monocytogenes

L. monocytogenes

Listeria spp., Pseudomonas
spp., Brochothrix
thermosphacta, Photobacterium
phosphoreum,
Enterobacteriaceae

L. monocytogenes, Vibrio
parahaemolyticus, Salmonella
Typhimurium, E. colf

P. fluoresence

E. coli, L. monocytogenes

Matrix

Stalplater

Reker,
laks,
flyndre

Reker,
laks,
flyndre

Raykelaks

R4 laks

Polyethylen

Rustfritt
stal

R4 laks

Tunfisk
carpacchio

Laks

R4 laks

HPL detaljer
(pulserltid/J)

0-2,2 Jlcm?

3600 pulser, 720s, total fl

uence 6,3 J/cm 2

6900 pulser, 1380s, total fl

uence 12,1 J/cm 2

1,3-10,8 J/cm?

1,3-10,8 J/cm?

Varierende
eksponeringstid (s) og

distanse fra produkt (cm),
tilsvarende mJ/cm? doser

pa 14,4-200,7

Varierende
eksponeringstid (s) og

distanse fra produkt (cm),
tilsvarende mJ/cm? doser

pa 14,4-200,7

Varierende
eksponeringstid (s) og

distanse fra produkt (cm),
tilsvarende mJ/cm? doser

pa 140,1-508,5

0,7 — 11,9 Jicm?

3,0 - 30 J/lcm2

Varierende antall pulser og

eksponeringstid

Bakteriereduksjon

4,0-6,0 log
reduksjon, "abrupt
inactivation" ved
0,44 Jlcm?

2,2-,19-,001,7-
log reduksjon

2,4-,2,1-, 09 1,9-
log reduksjon

0,7-1,3 log
reduksjon

0,2-0,9log
(muskel) og 0,4—
1,1 log (skinn)
reduksjon

> 4 log reduksjon
pa doser > 19
mJ/cm?

Maks 2 log
reduksjon pa
hgyeste dose

1,3+0,1 log CFU/g
at3,5cmforl2s

1,0-0,7 log
CFU/cm? reduksjon
ved 8,4-11,9 J/cm?

0,7 - 1log CFU/g
reduksjon

0,74 —1,02 log
CFU/g reduksjon

Endringer i Referanse
produktkvalitet
Cheigh et
al., 2013
Svak temp. gkning
(<5,0 °C), ingen
fargeendring
Svak temp. gkning
(<5,0 °C), ingen
fargeendring
Ingen signifikant Holck et
endring i al., 2018
produktkvalitet
(vurdert av trent og
utrent testpanel)
Pedrés-
Garrido et
al., 2018

Lipidoksidasjon
observert, > 200
mJ/cm? farte til "kokt"
utseende

Ved doser >8,4-11,9 Hierro et

Jlem?, «kokt» al., 2012

utseende og svak

svovel lukt, vurdert

av trent testpanel

Endret sensorikk Nicorescu

(«kokt» utseende) etal,

ved hgyere doser 2014

Hgy temperatur i filet, Ozer &

fargeendringer Demirci,
2006
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Regelverk:

EU/Norge: HPL faller under samme regelverk som UV-C, det vil si at o m behandling farer til endringer i
produktets sammensetning, neeringsverdi eller niva av ugnskede substanser, kreves «novel food approval» i
henhold til Forordning (EC) No 258/97 (Food Safety Authority of Ireland, 2020; Louis Bresson et al., 2016).

USA: | USA regnes HPL, som UV-C, som strdling, og regnes da som tilsetningsstoff (Koutchma, 2018). HPL er
godkijent til bruk p4 mat under falgende forutsetninger:

« (a) The radiation sources consist of xenon flashlamps designed to emit broadband radiation
consisting of wavelengths covering the range of 200 to 1,100 nanometers (nm), and operated so that
the pulse duration is no longer than 2 milliseconds (msec),

(b) The treatment is used for surface microorganism control;

(c) Foods treated with pulsed light shall receive the minimum treatment reasonably required to
accomplish the intended technical effect, and

(d) The total cumulative treatment shall not exceed 12.0 Joules/square centimeter (J/cn? )»

(CFR - Code of Federal Regulations Title 21, 1996)

Kommentarer fra Naeringen: Det er generelt lite erfaring med metoden, men nzeringen er positiv sa lenge
regelverket tillater bruken, og det ikke medfarer endringer i produktkvalitet.

Fordeler:
« Ingen restforbindelser.

» Ingen dekontamineringskjemikalier benyttes.

Ulemper:

« Metoden er ikke standardisert, og det kan derfor veere vanskelig & sammenligne resultatene med f.eks.
resultater fra UV-C behandling av samme produkt, og optimale pulser og bglgelengder ma testes ut fgr bruk.

« Oksidering av produkt kan skje ved stralingsmengder som trengs for & inaktivere bakterier.

« Alle overflater p& produktet ma behandles for & ha god virkning pa bakterier inkludert Lm, noe som kan veere
vanskelig p& produkter med ujevn overflate.

» Haye doser gir gkt temperatur og forandrer sensorisk kvalitet.

4.2.3 - Hydrogenperoksid
Prinsipp:

Hydrogenperoksid (H,0,) er et sterkt oksidasjonsmiddel som kan brukes til desinfeksjon i flytende- eller
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gassform (de Siqueira Oliveira et al., 2018; Jones & Joshi, 2021). Ved bruk av hydrogenperoksid dannes det
radikaler som reagerer med membranlipider, DNA og andre cellekomponenter hos bakterier (Glass et al., 2024),
noe som blant annet kan fare til gkt permeabilitet og gdeleggelse av membraner, og videre at bakterier gar i
opplgsning (lysis) (Jones & Joshi, 2021; Stearns et al., 2022). H,0, er et lite molekyl som kan krysse
cellemembraner, men dette er en sakte prosess, og mange bakterier inkludert Lm har utviklet enzymer som
reagerer med disse reaktive oksygen forbindelsene, og beskytter mot lave konsentrasjoner (Rea et al., 2005;
Sen & Imlay, 2021). Nar bakteriene utsettes for hgyere konsentrasjoner kan cellemaskineriet overbelastes slik
at det blir toksiske konsentrasjoner inne i cellene (Sen & Imlay, 2021).

Om H,0, kombineres med en syre som peredikksyre, bacteriosiner, eller blir brukt sammen med ozon eller UV-
C, har det blitt rapportert om hgyere effektivitet mot Lm, L. innocua og andre ugnskede mikroorganismer enn
om H,0, brukes alene (Bell et al., 1997; Hadjok et al., 2008; Leggett et al., 2016; Martin & Maris, 2012; Stearns
et al., 2022; Ukuku et al., 2005). Blant annet har studier undersgkt bruk av peredikksyre (ogsa kjent som
peroksyeddiksyre) i kombinasjon med H,0, for dekontaminering av produksjonsoverflater og matvarer med
lovende resultater (Brifiez et al., 2006; Lee et al., 2016; Leggett et al., 2016; Walsh et al., 2018).
Peroksyeddiksyre (PAA) er et organisk peroxid som dannes ved en reaksjon mellom eddiksyre og
hydrogenperoksid, og er et godkjent dekontamineringsmiddel med GRAS status pa matvarer (konsentrasjoner
pa 0,005 — 0,2 %) i USA (Stearns et al., 2022). Det eksisterer allerede kommersielle Igsninger med varierende
konsentrasjoner av PAA/H,0, p& markedet. Videre har kombinasjonen av H,O» og syrer dokumentert god
effekt pd mange patogene bakerier, inkludert Lm (Brifiez et al., 2006; Martin & Maris, 2012; Ukuku et al., 2005;
Venkitanarayanan et al., 2002). Mange av disse synergieffektene har blitt relatert til dannelsen av frie radikaler,
med pafglgende celledad og lysis (Miller, 1969; Raffellini et al., 2008). For eksempel kan hydrogenperoksid
tilsatt saltholdige lgsninger som sjgvann og saltlaker reagere med klorioner og danne hypokloritt, som er
dadelig for bakterier. En studie p& bruk av hydrogenperoksid for dekontaminering av Lm i saltlaker for
produksjon av ost, fant at inaktivering av Lm gikk raskere ved hgyere saltkonsentrasjoner (Glass et al., 2024).
Bruk av H,O, i kombinasjon med UV-C farer til dannelse av reaktive, flyktige hydroksyl-radikaler (Hadjok et al.,
2008), og behandlingen av isbergsalat med spray av H,O, i kombinasjon med UV-C har gitt opp til 4-log
reduksjon i totalt bakterietall (Hadjok et al., 2008). Optimal effekt av H,O,/UV-C oppnds imidlertid ved
temperaturer opp mot 50 °C (Bell et al., 1997; Hadjok et al., 2008), og denne metoden er dermed mindre aktuell
til bruk p& varmesensitive matvarer.

Den oksiderende virkningen av H,O, vil ogsa ha effekt p& organiske molekyler som finnes i produktet. H,O, er
anvendt som blekemiddel i mange industrier, inkludert konsumentprodukter for har- og tannbleking, eller til
munnskylling. Den oksiderende effekten har ogsa blitt utnyttet i matproduksjon for & endre farge og tekstur pa
matvarer, blant annet for bleking av sildefilet (Anderson, 1975), for bleking av karpe for produksjon av surimi
(Jafarpour et al., 2008) og Kamaboko (Japansk, kokt surimi) (Shan et al., 2010), eller bleking av torsk- og
hysekjgtt til fiskefarse (Himonides et al., 1999). Men, her er det store forskjeller pa hva som er lovlig i forskjellige
land.

Dokumentert virkning pa L. monocytogenes og andre mikroorganismer:

Hydrogenperoksid har en lang og omfattende historikk som desinfeksjonsmiddel med dokumentert effekt mot
mikroorganismer (Bayliss & Waites, 1979; Krezanoski JZ, 1988; Toledo et al., 1973), blant annet i
produksjonsmiljger hvor tdkelegging med 5% H,0, ut til & ha god effekt mot Lm pa overflater (McDonnell, 2014;
Mgretrg et al., 2019), mot biofilmer (Mgretrg et al., 2019), og pa naeringsmidler inkludert fiskefilet (Tarr &
Sunderland, 1940).
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Flere studier har vist at H,O, gir god hemming av bakterievekst, inkludert Lm, pa frukt, grannsaker, baer og sopp
(Back et al., 2014; de Siqueira Oliveira et al., 2018; Hadjok et al., 2008; Hasani et al., 2019; Sapers & Sites,
2003; Venkitanarayanan et al., 2002). Blant annet ble Lm pé salatblader redusert med opptil 3,15 log CFU/g ved
bruk av tdkelegging med 10% H , O , (Back et al., 2014). Bruk av hydrogenperoksid mot Lm har ogsa vist
lovende resultater i osteproduksjon, bade pa selve osteproduktene og i saltlaker brukt under produksjon (Glass
et al., 2024; Robinson & D’Amico, 2021).

Desinfeksjon med H,O, pa sjgmat er mindre dokumentert, men noen studier har undersgkt antimikrobielle
effekter, blant annet pa fiskefilet og blekksprut. En studie som undersgkte preservering av filet fra oppdrettet
malle med henholdsvis 0,4 og 0,7 % H , O, i 10 minutter, rapporterte 0,47 og 0,92 log CFU/g reduksjon i totalt
antall bakterier (T. J. Kim et al., 2000). En annen studie som undersgkte holdbarhetstid pa blekksprutprodukter
behandlet med det H,05 -holdige tilsetningsstoffet «Cafodos» (Na-citrat + H,O5), fant derimot liten effekt pa
vekst av psykrofile mikroorganismer, og sd i tillegg en endring i tekstur og farge pa produktet (Manimaran et al.,
2016).

Effekter pa produktkvalitet:

H,O, er sterkt oksiderende og kan fare til gkt fettharskning og bleking av pigmenter. De oksiderende
egenskapene til hydrogenperoksid er en av grunnene til at det hovedsakelig har blitt brukt til dekontaminering
av produksjonslokaler og utstyr i kjgtt- og fiskebransjen og mindre direkte pd matvarer, med unntak av produkter
hvor bleking er gnskelig.

Studier av rotter matet med H,O, behandlet kjatt fra torsk (fersk) og sei (kokt), har vist at selv om H,0,
oksiderer aminosyrer som methionine og cystine i fiskeproteiner, endres ikke aminosyretilgjengeligheten
(Raksakulthai et al., 1983; Sjoberg & Bostrom, 1977). En annen studie hvor fersk fillet av malle ble behandlet
med 0,4 og 0,7 % H,0, i 10 minutter fant ingen signifikant endring i utseende sammenlignet med kontrollen, og
produktet hadde ogsa noe lenger holdbarhet (1,5-3 dager), men ogsa hgyere TBARs verdier (T. J. Kim et al.,
2000).

Det er ikke god dokumentasjon knyttet til effekt pa produktkvalitet ved bruk av H,O, mot Lm eller andre
mikroorganismer pa laks og andre fete fiskeprodukter, noe som bgr undersgkes fgr eventuell kommersiell bruk.
Nylig ble effektiviteten av H>O, pa L. innocua pa atlantisk laks undersgkt i en masteroppgave fra NTNU, knyttet
til DekoLaks prosjektet (Kristiansen, 2024). Det ble benyttet konsentrasjoner p& 0,1%, 0,5% og 1%, og
eksponeringstider p& 1 og 30 minutter. Kvalitetsvurderingene inkluderte farge- og lipidinnholdsanalyse for &
overvake sensoriske endringer. Funnene viste at 0,5% konsentrasjon av hydrogenperoksid i 30 minutter var den
mest effektive og gav liten innvirkning pa fiskens visuelle kvalitet og ikke signifikante effekter pa lipider.

Regelverk:

EU og Norge: Hydrogenperoksid har blitt evaluert som et biocid, og star pd European Chemicals Agency
(ECHA)’s liste over godkjente kjemikalier (Artikkel 95, PT05 Drinking water og PT04 Food and Feed area). |
tillegg til EU reguleringen, finnes nasjonale retningslinjer i de individuelle EU/E@S medlemslandene (European
Chemicals Agency, 2014).

Norge faglger Forordning (EU) 2015/1730 som godkjenner hydrogenperoksid som et aktivt stoff til bruk i
biocidprodukter i produkttype 1, 2, 3, 4, 5 og 6, hvor produkttype 4 (PT04) omfatter overflater som kommer i
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kontakt med neeringsmidler og forvarer, og produkttype 5 (PTO5) omfatter drikkevann. | henhold til Forordning
(EU) 2015/1730, den Norske Drikkevannsforskriften (Lovdata, 2016; Mattilsynet, 2023) og Forskrift om biocider
(Miljgdirektoratet, 2023) er det med noen forbehold tillat & bruke hydrogenperoksid som et biocid i drikkevann
og for desinfisering av matproduksjonslokaler. Samme regelverk gjelder for PT04, men det spesifiseres i tillegg
at produktet ikke skal inkorporeres i materialer eller artikler som vil komme i kontakt med mat (EC 1935/2004)
med mindre det er vedtatt spesifikke migrasjonsgrenser eller er fastsatt at slike grenser ikke er ngdvendig.
Dette medfarer at det ma sgkes om nasjonal produktgodkjenning for biocidprodukter som inneholder det aktive
stoffet.

Hydrogenperoksid er i EU ikke et tillat tilsetningsstoff i matvarer, og er dermed ikke tillatt brukt som
tilsetningsstoff i henhold til (EF) NR. 1333/2008. Avhengig av bruk kan H,O, derimot defineres som et «teknisk
hjelpestoff», og vil da veere lovlig & bruke i henhold til Artikkel 3.2 (b) i forordning (EF) nr. 1333/2008, som sier:

« | denne forordningen menes videre med.: b) «teknisk hjelpestoff» ethvert stoff som:
i. lkke inntas som et naeringsmiddel | seg selv

ii. Med hensikt brukes ved bearbeiding av rdvarer, naeringsmidler eller ingredienser i disse, for 4 oppfylle et
bestemt teknisk formal under behandling eller bearbeiding, og

iii. Kan resultere i en utilsiktet eller teknisk uunngaelig forekomst av restmengder av stoffet eller dets
derivater i sluttproduktet, forutsatt at restmengdene ikke utgjor noen helserisiko eller virker teknisk inn pa
sluttproduktet,»

To eksempler fra Italia og Spania indikerer ogsa at medlemsland kan innfare nasjonale regler for bruk i henhold
til Artikkel 3.2 (b) i forordning (EF) nr. 1333/2008, s& lenge sikkerhet for forbruker/konsument kan
dokumenteres.

Eksempel 1: Det Spanske mattilsynet (AESAN) utredet i 2011 bruk av hydrogenperoksid med konsentrasjoner
pa inntil 0,05% som et bakteriostatisk «teknisk hjelpestoff» («processing aid» i henhold til Forordning (EC)

No 1333/2008, Article 3.2(b) ) for bruk pa blekksprut-produkter (Cepeda Séez et al., 2011). Rapporten
konkluderte med at bruk av hydrogenperoksid som et teknisk hjelpestoff i disse konsentrasjonene ikke etterlot
pavisbare rester pa produktet, og ikke medfgrte en risiko for konsumenter, men at produsenter bgr kontrollere
eventuelle reststoffer kvalitativt og kvantitativt. Spanske myndigheter har derfor inkludert en klausul i regelverket
som tillater vask av blekksprut-produkter med opp til 0,05% hydrogenperoksid i inntil 24 timer for & hemme
bakterievekst (Real Decreto 773/2023, de 3 de Octubre, Por El Que Se Regulan Los Tecnolégicos Utilizados En
Los Procesos de Elaboracién Y de Alimentos, 2023).

Eksempel 2:1 2010 forbgd Italia bruk av hydrogenperoksid i behandlingen av blgtdyr i henhold til Forordning
(EC) No 1333/2008. Det Italienske mattilsynet (ALS) og helsedepartementet (Ministerio della Salute) diskuterte
saken med det Spanske mattilsynet (AESAN), som pa bakgrunn av AESANs undersgkelser (Cepeda Saez et
al., 2011) mente behandlingen var trygg ved bruk av H,O, i konsentrasjoner under 8 % (Ministero della Salute,
2016), og det Italienske helsedepartementet stilte seg derfor positive til vask av sjgmat med vann inneholdende
inntil 8 % hydrogenperoksid ( Autorizzazione Ministeriale: Utilizzo Di Una Miscela Contenente Presidio
d’idrogeno per La Lavorazione Dei Molluschi Cefalopodi - Associazione Nazionale Delle Aziende lIttiche, n.d.;
Ministerio della Salute, 2016). | februar 2016, gjeninnfarte det italienske helsedepartementet derfor bruken, ikke
som et tilsetningsstoff, men som et teknisk hjelpestoff under bearbeiding av blekksprut-produkter. Saken ble
videre tatt opp i EU (European Parliament, 2016a, 2016b, 2017), hvor bekymringsmeldingen ikke var knyttet til
helsefare for konsumenter som falge av hydrogenperoksid i seg selv, men var relatert til vanskeligheten med a
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bedgmme hvor ferske H,O, -behandlede produkter er (noe som kan medfgre en helserisiko for enkelte typer
produkter), og det ble lagt ned en pastand om at bading av produkter derfor bgr regnes som matsvindel. EU
parlamentet svarte falgende:

« The Commission is not planning to conduct any survey within the Member States in order to check
which countries are using hydrogen peroxide to process fish and cephalopods. The Italian authorities
have informed that hydrogen peroxide is used, under strict conditions, and after the authorisation of

the Italian Instituto Superiore di Sanita, as a processing aid for the evisceration and removal of
pigmented skin of cephalopods and not as an additive. Processing aids fall out of the scope of the food
additives legislation and do not, therefore, need to be labelled.

N.html)»

Etter 2017 er det vanskelig a finne informasjon om hvor vanlig det er a bruke hydrogenperoksid som et
prosesseringsmiddel i Italia.

| USA har hydrogenperoksid til bruk pd matvarer GRAS (Generally Accepted as Safe) godkjenning, hvor det er
tillatt & bruke lave konsentrasjoner (0,04 - 0,15%) som et biocid («antimicrobial agents) i forskjellige typer
matvarer som blant annet melk til osteproduksjon, stivelse og tarkede egg (FDA, 2016, 2023b). Det er videre
tillatt & bruke hgyere konsentrasjoner hydrogenperoksid, «amount sufficient for the purpose», pA matvarer om
formalet er & oksidere eller bleke produktet (FDA, 2016, 2023b), og H,O, har blant annet blitt brukt for bleking
av marinert sild (Anderson, 1975). Hayere konsentrasjoner er ogsa tillat som desinfeksjon p& jorder under
dyrking av matvarer (Stearns et al., 2022). Bruken av hydrogenperoksid pa matvarer og til desinfeksjon under
matproduksjon forutsetter at rester av hydrogenperoksid fjernes eller omdannes til oksygen og vann far
produktene spises.

Canadatillater anvendelse av produkter som inneholder hydrogenperoksid pa tomater i drivhus, sa lenge
avrenning kontrolleres slik at H,O, ikke ender opp i vann hvor det kan skade vannlevende dyr (Re-Evaluation
Decision Hydrogen Peroxide and Its Associated End-Use Products, 2018).

Japan: Den Japanske mattrygghetskomiteen utredet i 2016 bruk av hydrogenperoksid som et tilsettningsmiddel
til mat, og konkluderte med at et inntak pa 0,105 mg per person per dag ikke utgjorde en helsefare (Food Safety
Commission of Japan, 2016).

| Australia og New Zealand er H,0, konsentrasjoner inntil 5 mg/kg tillat brukt som et prosesseringsmiddel i
«pakket» vann (flaskevann), og for bleking, vasking og «peeling» av alle typer matvarer ( Food Standards
Australia New Zealand Act 1991).

Kommentarer fra Neeringen:

Kommersielle produkter som inneholder H,O, (f.eks. Oxyl-pro) er i bruk for desinfisering av vann pa enkelte
bleggebater, hovedsakelig for & f& ned kimtall fgr fisken legges i tankene. Konsentrasjonene som brukes er
godkjent i henhold til Forordning (EU) 2015/1730, og star pa European chemicals agency (ECHA)'s liste over
godkjente kjemikalier (Artikkel 95, PTO5 Drinking water og PT04 Food and Feed area).

En av naeringsaktgrene opplyste at H,O, tidligere ble brukt for desinfisering av vann, men det ble faset ut av
hensyn til personellet. Det ble i tillegg opplyst at H,O, dannet mye ugnsket skum i tankene.
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Fordeler:
» Reaksjonsproduktene av H,O, er oksygen og vann.

« H,O, er godt kjent og har lang tradisjon for desinfeksjon innen medisin og har historisk sett blitt brukt i store
kvanta til behandling av fisk mot lakselus.

« Flere produkter der H,O, inngar er godkjent i Norge for bruk til desinfeksjon av overflater i
naeringsmiddelindustrien.

* H,O, er allerede i bruk til desinfeksjon av matvarer i mange land utenfor EU, og selv om det ikke er tillatt
brukt i EU, har det blitt gitt dispensasjon i enkelte land til bruk av lave konsentrasjoner om det finnes god
dokumentasjon pa at det ikke medfgrer helsefare ved konsum av produktene.

Ulemper:
« Mulighet for oksidasjon og fettharskning, og fare for bleking av pigmenter i produktene.

« Flere studier rapporterer bedre effekt av H,O, i kombinasjon med andre dekontamineringsmetoder som UV-C
eller syrer (Hadjok et al., 2008; Venkitanarayanan et al., 2002), og det kan derfor veere ngdvendig &
kombinere H,0, med andre behandlinger for & f& optimale resultater.

« Det har blitt rapportert at H,O, kan reagere med metall i staltanker og miste noe av effektiviteten over tid
(Sapers & Sites, 2003). Ved bruk bgr dette tas med i betraktning.

4.2.4 - Ozon

Prinsipp:

Ozon, Og, er en naturlig tilstedeveerende, ustabil gass som kan reagere med og oksidere andre stoffer, inkludert
organiske molekyler (Hoigné & Bader, 1975). Luft bestar av rundt 20% oksygenatomer, i hovedsak i forma av
0,, men en liten andel finnes som ozon, molekyler med tre oksygenatomer, Os. Ozon er svakt blalig, og har en
stikkende lukt ved hayere konsentrasjoner. | de gvre lagene av atmosfeeren produseres ozon kontinuerlig nar
UV-straler fra solen treffer oksygenmolekyler, og det finnes naturlig ved bakkeniva i lave konsentrasjoner (J. G.
Kim et al., 1999). Ozon kan produseres i store mengder industrielt ved & la tarr luft passere gjennom et elektrisk
felt med hgy nok spenning til & spalte oksygenmolekyler, hvorpa de spaltede atomene binder andre
oksygenmolekyler og danner Oz (J. G. Kim et al., 1999). Ozon kan bobles gjennom vann som siden kan brukes
i flytende form eller bli fryst til is, som videre kan bli brukt til lagring av produkter.

Ozon kan enten reagere direkte med andre molekyler (f.eks. cellevegger hos bakterier), eller bli brutt ned til
radikaler (OH, HO,, O,") som sé fungerer som den aktive komponenten (Hoigné & Bader, 1975; J. G. Kim et al.,
1999). Flere mekanismer for den antimikrobielle egenskapen til ozon har blitt diskutert, blant annet at det kan
reagere med lipoproteiner og gjgr cellemembranen mer permeabel, degradere proteiner, og fare til skader pa
DNA (Kim et al., 1999, og studier referert der).
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Dokumentert virkning pa L. monocytogenes og andre mikroorganismer:

Ozonbehandling av sjgvann er dokumentert effektivt mot bakterier i vannet, spesielt om det er lavt innhold av
annet organisk materiale til stede (Sarensen et al., 2002). Den bakteriedrepende effekten av ozon har ogsa
lenge vaert kjent og er godt dokumentert til bruk pa matvarer (J. G. Kim et al., 1999; Pandiselvam et al., 2022;
Zhao et al., 2018), blant annet kyllingkjatt (Mercogliano, 2014), reker (Okpala, 2014; Okpala et al., 2016), og
hvitfisk (Giannoglou et al., 2021).

Spraying av laksefileter med ozonert vann med en konsentrasjon pa 1,5 mg/L far videre kjglelagring er vist & ha
effekt pa generelt kimtall og antall Listeria spp. til stede i produktet, med 0,5 log lavere bakteriemengder i
behandlede produkter enn i ubehandlede kontroller etter ti dagers lagring ved 4 °C (Crowe et al., 2012).

Effekt pa produktkvalitet:

Ozon er sterkt oksiderende og vil kunne gi gkt fettharskning. Det er lite litteratur pa o zonbehandling av sjgmat,
men tilgjengelige studier viser varierende effekt av ozon pa sensoriske egenskaper (Pandiselvam et al., 2022;
Sgrensen et al., 2002; Zhao et al., 2018). En undersgkelser gjort pa hel sild lagret i RSW (refrigerated sea
water) med ozon fant blant annet gkt harskning og bleiking, selv om forskjellene pa behandlet og ubehandlet
sild ikke var stor, og effekten mot mikroorganismer var god (Sgrensen et al., 2002). Andre studier har derimot
ikke funnet uakseptable endringer i sensorikk, inkludert hel laks i utblgdningskar med ozon (Holm et al., 2003),
pa laksefilet sprayet med ozon (Crowe et al., 2012), eller pa reker vasket med ozon og deretter lagret pa is
(Pandiselvam et al., 2022; Zhao et al., 2018).

Regelverk:

Ozonert vann er omtalt brukt til rensing av skalldyr siden 1920-tallet, til rensing av bassengvann siden 1940-
tallet og til reduksjon av generelt smittepress i fiskeoppdrett eller i akvarier siden 1970.

EU og Norge: | EU er ozon sa langt tillatt brukt til behandling av mineralvann, samt for enkelte typer korn for &
oksidere soppgifter (mykotoksiner). | Norge er ozon godkjent til bruk som teknisk desinfeksjonsmiddel for
rengjgring av overflater i fiskeindustrien og til desinfeksjon av brgnner og rar p& brgnnbéater. Dette inkluderer
flere kommersielle produkter som for eksempel Redoxzon og Normex.

EU kommisjonens gjennomfaringsforordning (EU) 2023/1078 av 2. juni 2023 godkjenner ozon generert fra
oksygen som et aktivt stoff til bruk i biocidprodukter av type 2, 4, 5 og 11 i samsvar med europaparlaments- og
radsforordning (EU) No 528/2012, hvor produkttype 4 omfatter overflater som kommer i kontakt med
naeringsmidler og férvarer, produkttype 5 omfatter drikkevann, og produkttype 11 omfatter konserveringsmidler
for veesker i kjgle- og prosessystemer. Dette medfarer at det ma sgkes om nasjonal produktgodkjenning for
biocidprodukter som inneholder det aktive stoffet.

Som hydroge n peroksid er ozon i EU ikke et tillat tilsetningsstoff i matvarer
(https://food.ec.europa.eu/safety/food-improvement-agents/additives_en), men avhengig av bruk kan det
derimot defineres som et «teknisk hjelpestoff», og vil da vaere lovlig & bruke i henhold til Artikkel 3.2 (b) i
Forordning (EC) No 1333/2008. EU tillater bruk av ozonert drikkevann for dekontaminering i kjgttproduksjon i
henhold til Forordning (EC) No 853/2004 (Mercogliano, 2014), og i Polen brukes ozonert vann (konsentrasjoner
falger drikkevannsforskriften) som et teknisk hjelpemiddel til skylling av lakseprodukter uten at det medfarer
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merkekrav, fordi eventuelle rester av ozon raskt omdannes til oksygen (pers. kom.).

USA: Bruk av ozon i direkte kontakt med naeringsmidler, inkludert sjgmat, er godkjent av US Food and Drug
Administration, U.S. Department of Agriculture (FDA, 2023a).

| Japan er ozon tillat som et tilsetningsmiddel i henhold til Article 12 of the Enforcement Regulations under the
Food Sanitation Law (hitps: ' i i o : .
iy )

| Canada kan ozon brukes pa overflater som er i kontakt med mat, men ikke direkte p& matvarer (Gongalves
Alex Augusto, 2019).

Kommentarer fra Neeringen:

Ozon for dekontaminering er i bruk pa videreforedlingsanlegg i Polen hvor ozonert vann (konsentrasjoner felger
drikkevannsforskriften) brukes for a skylle lakseprodukter. Det er rapportert & fungere bra, men det har ikke blitt
gjort studier for & sammenligne produkter med og uten behandling for & bedemme hvor god effekten faktisk er.
Bruken av ozonert vann i Polen medfarer ikke merkekrav. Siden O3 er sveert reaktivt, kan det virke gdeleggende
pa utstyr, szerlig pakninger.

Fordeler:
» Forholdsvis enkel teknologi og ozongeneratorer som tilpasses den enkelte bedrift er tilgjengelige.
« Ingen rester av ozon pa produktet.

e Ozonert vann medfarer ikke merkekrav.

Ulemper:

« Det er kjent at ozon-eksponering hos mennesker kan gi betennelse og fare til skader i luftveiene, samt
svekke luftveisfunksjon og gke Iuftveisplager. Det er etablert grenseverdier for nivaet av ozon i luft. Disse er
100 pg/m 2i 1 time eller 80 pg/m 2i 8 timer (Mercogliano, 2014; Ozon - FHI, 2019).

« Dersom ozonert sjgvann blir brukt, er det knyttet bekymring til om uheldige komponenter som brominer kan
bli dannet.

« Ozon er sterkt oksiderende og kan fgre til harskning pa produktet og gdeleggelse av produksjonsutstyr,
spesielt pakninger.

4.2.5 - Kald plasma

Andre navn som brukes: lkke-termal plasma, Nonthermal plasma (NTP), Atmospheric cold plasma (ACP), Cold
plasma (CP), Atmospheric presure non-thermal plasma (APNTP), one atmosphere uniform glow discharge
plasma (OAUGDP). Her brukes kald plasma og plasmaaktivert vann for & unnga forvirring.
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Prinsipp:

Kald plasma dannes ved lave temperaturer nar en gass med ngytral ladning utsettes for en energikilde og
ioniseres. Gassene kan veere vanlig luft eller konsentrerte gasser som edelgasser (He, Ar, Ne). Gassen blir helt
eller delvis ionisert slik at den inneholder en kombinasjon av frie elektroner og ioner i eksitert eller grunntilstand
(Lacombe et al., 2015; Misra et al., 2011). Energikilden er ofte elektrisitet, men kan ogsé veaere for eksempel
mikrobglger. De ioniserte forbindelsene som dannes er avhengig av opprinnelsesgassen, og om plasmaen
kommer i kontakt med luft eller vann etter dannelse, og forskjellige kombinasjoner av gasser og energikilder kan
derfor gi opphav til en rekke forskjellige plasmasystemer (Niemira, 2012). Det er lettere & produsere plasma
med edelgasser (eller edelgasser tilsatt oksygen) fordi det kreves lavere spenning for selve nedbrytningen enn
det gjar for nedbrytning av luft, men det er ogsa dyrere & benytte edelgasser fordi disse er dyre, og en
minkende ressurs globalt.

Nar plasma dannes starter en kjedereaksjon nar den ioniserte gassen treffer luft, hvor luften som eksponeres
for plasma ogsa blir ionisert, og det dannes nye reaktive forbindelsene av oksygen eller nitrogen, som bl.a. OH,
NO*, hydrogenperoksid og hydroxylradikaler (Mai-Prochnow et al., 2021; Mehta & Yadav, 2022). Om plasma
treffer vann eller et fast materiale kan man i interfasen fa en translokasjon av de reaktive forbindelsene fra den
ioniserte gassen inn i veesken eller det faste materialet, hvor penetreringsdybden avhenger av materialet, og det
dannes mer stabile reaktive forbindelsene enn i en gass (Xiang et al., 2022).

Mekanismene involvert nar kald plasma inaktiverer eller dreper bakterieceller og andre patogener eller bryter
ned biofilm ser ut til & veere avhengig av typen patogen og hvilken type plasmasystem som benyttes (Feizollahi
et al., 2021). Generelt vil de reaktive forbindelsene i plasmaet interagere med celleveggen hos mikroorganismer
og forstyrre bevegelse av biomolekyler over membraner, og bryte ned fettsyrer. Dette farer videre til gkt
oksidativt stress og forstyrrelse av normale celluleere prosesser (Kumar et al., 2022; Nwabor et al., 2022).
Enzymer og DNA, samt DNA replikasjon kan ogsa bli pavirket, og den samlede effekten av flere faktorer som
pavirker cellene reduserer dermed sannsynligheten for utvikling av resistens hos bakteriene (Alkawareek et al.,
2014; Mai-Prochnow et al., 2021).

Kald plasma reaktive forbindelsene kan ogsa trenge inn i biofilm og deaktivere eller drepe bakterieceller som er
til stede der (Abramzon et al., 2006; Mai-Prochnow et al., 2021; Xiong et al., 2011), og i tillegg destabilisere og
bryte ned selve biofilmen (Handorf et al., 2021; Trevisani et al., 2017). Dette skjer ved at de reaktive
forbindelsene til stede i plasma bryter ned bindingene som holder biofilmen sammen og gjegr den mindre
motstandsdyktig mot ekstern pavirkning fra kjemikalier eller fysisk pakjenning som for eksempel skrubbing
(Ziuzina et al., 2015). En kombinasjon av kald plasma etterfulgt av for eksempel et kjemisk
dekontamineringsmiddel som dreper overlevende celler som ikke lenger er beskyttet av en biofilm har derfor et
ekstra potensiale til & redusere mengden Lm bade pa fisk og pa overflater.

Dokumentert virkning pa L. monocytogenes og andre mikroorganismer:

Kald plasma og plasma-aktivert vann har dokumentert deaktivering av Lm og Lm biofilmer pa overflater og pa
forskjellige typer matvarer, men det er forskjeller avhengig av teknologien som er brukt, og om det brukes i
kombinasjon med andre dekontamineringsstrategier (se Tabell 3 for eksempler). Lerouge et al. (2000) fant at
sammensetningen av baeregassen (O,, Ar, CO,, osv.) kan pavirke deaktiveringen av B. subtilis endosporer.
Ermolaeva et al. (2011) og Laroussi et al. (2003) fant at kald plasma var mer effektivt mot gram-negative
bakterier (Pseudomonas aeruginosa, Burkholderia cenocepacia, E. col)) enn gram-positive bakterier
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(Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecium, B. subtilis), og spekulerte i om dette
var relatert til den mer robuste celleveggen til gram-positive bakterier (Laroussi et al., 2003). Det ble ogsa
funnet stgrre spredning i plasmaresistens hos gram-positive enn hos gram-negative bakterier, og tykkere
biofilmer beskyttet bakteriene mer enn tynne (Ermolaeva et al., 2011). Critzer et al., (2007) pa den andre siden,
fant ingen signifikante forskjeller pa gram-positive (Lm) og gram-negative (Salmonella og E. coli) bakterier i en
studie som undersgkte effekten av plasmainaktivering pa frukt og salat, og oppnadde > 3-log reduksjon av
begge. Det ma tas i betraktning at studiene brukte forskjellige plasma-teknologier og matriser for bakterievekst;
«non-thermal argon plasma flow» pa bakteriekolonier pa blodagarskaler, biofilmer pa dekkglass, eller pa
bakterier inokulert i sar pa levende rotter (Ermolaeva et al., 2011), «resistive barrier discharge» pa bakterier
filtrert pa polyester filtre (Laroussi et al., 2003), og «one atmosphere uniform glow discharge plasma» pé frukt-
og salatoverflater inokulert med bakterier (Critzer et al., 2007). Det er derfor vanskelig & sammenligne disse
resultatene med hverandre og med lignende studier.

Plasmaaktivert vann er effektivt mot planktoniske bakterier (Zhao et al., 2020), har blitt vurdert brukt blant annet
i forbindelse med rensing av drikkevann (Nguyen et al., 2020), og kan brukes for & desinfisere mat ved & bade
eller skylle produkter med det aktiverte vannet. En studie som undersgkte effekten pa mikrobiota og
produktkvalitet av & tine frossen kylling i plasmaaktivert vann, fant at det reduserte antall bakterier, men det ble
ogsa observert endringer i proteinstrukturen til kyllingmuskelen (Qian et al., 2022). En annen studie undersgkte
om dynking av fersk havabbor fillet i plasmaaktivert vann tilsatt H,O, (100ppm) pavirket lagringstiden til
produktet, og fant at mikrobiell vekst ble hemmet med opptil 15 dager mer enn i kontrollen (Chaijan et al., 2021).
Samme studie fant imidlertid ogsa gkt proteinoksidasjon og noe endring i farge pa produktet, sa selv om
metoden er lovende for & forlenge lagringstiden kan den fare til noen sensoriske endringer p& produktet
(Chaijan et al., 2021). Som for mange av de andre metodene kan skyggeeffekten hindre effektiv deaktivering av
bakterier i plasmaaktivert vann om vannet inneholder store mengder partikler, fordi partiklene vil reagere med
de reaktive forbindelsene slik at effekten blir mindre p& bakterier og biofilmer (Mai-Prochnow et al., 2021).

P lasmaaktivert vann har ogsa blitt vist & signifikant deaktivere Lm celler i biofilm (Handorf et al., 2021), men
generelt virker Lm & veere mer resistent mot denne behandlingen enn andre bakterier (Jyung et al.,

2022). Effekten av plasmaaktivert vann pa Lm og andre mikroorganismer gker imidlertid om det kombineres
bruk av organiske syrer, spesielt god effekt ble observert med bruk av melkesyre (Jyung et al., 2023; Qian et al.,
2021).

Tabell 3: Utvalgte studier som tar for seqg effekt av kald plasma pa L. monocytogenes aller endringer i kvalitet pa

relevante produkter.
Testorganisme Kombinert Matrix Plasmateknologi Bakteriereduksjon Endringer i Referanse
med annen produktkvalitet
teknologi
L. monocytogenes, L. Alene (for Rokt Plasma jet (lab- 0,6 — 1,2 log cycle Ingen effekt ved kort Colejo et
innocua, S. Typhimurium, kombinasjon laks scale), gass flow inaktivering eksponering, gulning av. al., 2018
S. Entereitidis, med UV-C, rate 10l/min, 2kV  (beregnede produkt ved lengre
Staphylococcus aureus,  se tidligere mellom overlevelseskurver) eksponering, gkt TBARS
E. coli, Aeromonas avsnitt) elektroder, 1s - ved gkt eksponering (ikke
hydrophila, Plesiomonas 15min over grenseverdier)
shigelloides
L. monocytogenes Nisin Epler Plasma jet 30/40s 2,5/4,6 log cfu/g - Ukuku et
+ nisin inaktivering av Lm al., 2019
180s/3600s
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Pseudomonas,

Enterobacteriaceae, LAB,

aerobe mesofile, aerobe
psychrotrofe

L. monocytogenes

Psykrotrofe aerobe, LAB,
Pseudomonas

Lagringsstudie for
kvalitet, ingen mikrobielle
parametre malt

Kimtall psykrofile,
Pseudomonas spp.

Plasma
generert
inne i ferdig
pakkede
produkter

Organiske
syrer

Plasma
generert
inne i ferdig
pakkede
produkter

Effekt pa produktkvalitet:

Atlantisk
sild

Lm
inokulert
direkte i
PAW

Lm
inokulert
direkte i
PAW
m/0,5%
syre

R&
makrell

Fersk
makrell

Asian
sea
bass
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Dielectric barrier
discharge, 70-
80kV i 5min

Plasmaaktivert
vann (25°C),
"coaxial barrier
discharge", 4,5
kV, 20 kHz, gas
flow 1,35 L/min

Plasmaaktivert
vann (25°C),
"coaxial barrier
discharge", 4,5
kV, 20 kHz, gas
flow 1,35 L/mi

Plasmaaktivert is
(4°C), med eller
uten syre

Dielectric barrier
discharge, 80kV i
5min

PAW dannet av
0O, og argon med
vakuumering

Etter 11 dagers
lagring: signifikant
lavere
bakteriemengde i
behandlede
produkter enn i
kontroll

0,84 log CFU/mL
reduksjon

0,34 - 2,49 log
CFU/mL reduksjon

PAWe-is: 0,44 log
reduksjon. PAW-is
m/1% melkesyre:
4,53 log reduksjon

Mikrobiell vekst

under 7 log CFU/g i

25 dager, kontroll
over 7 log CFU/g
etter 10 dager.

Liten endring i sensorikk
vl/lav volt, fargeendring
relatert til H,O, ved
hgyere volt

Ingen signifikant gkning i
TVBN

Ikke gkt lipidoksidasjon
(TBARS), endring i
fettsyrer eller endring i
"nutritional indices"
sammenlignet med
kontroll. Noe
proteinoksidasjon
observert (gkt
karbonylinnhold)

PAW forbedret
lipidstabilitet, men farte til
okt protein oksidasjon og
noe fargeendring

Albertos et
al., 2019

Jyung et
al., 2023

Pérez-
Andrés et
al., 2020

Panpipat
& Chaijan,
2020

Kald plasma kan pavirke sensorikk og produktkvalitet pa forskjellige matvarer (Tabell 3, Olatunde et al., 2021).

Nivaer av lipid-oksidasjon som falge av plasma-behandling varierer mellom forskjellige studier, og det er uklart

om det skyldes forskjeller i plasma-teknologien som er brukt, kombinasjon av plasma med andre

dekontamineringsstrategier, eller selve produktet som undersgkes.

Forsgk utfart av Albertos et al., (2017, 2019) indikerte at kald plasmabehandling av makrell og sild farte til en

nedgang i vannmengden bundet til proteiner. Videre kan kald plasmabehandling fere til gkt dannelse av

karbonyler, som er en indikasjon pa proteinoksidasjon (Pérez-Andrés et al., 2020), og gkt proteinfragmentering

(Panpipat & Chaijan, 2020). Ekezie et al., (2019) fant at endringer i proteinstrukturene i reker gkte med gkt

plasma-eksponering i form av «atmospheric pressure plasma jet», sannsynligvis som en fglge av gkt protein-

aggregering og protein-protein interaksjoner.

En studie gjort pa pakket makrell behandlet med plasma (DBD, 80kV 5min), fant ingen indikasjoner pa lipid-

oksidasjon, og heller ikke negative effekter pa fettsyresammensetning eller nzeringsinnhold (Pérez-Andrés et al.,
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2020), mens en annen studie pa pakket makrell derimot viste en signifikant gkning i lipid-oksidasjon (Albertos et
al., 2017). Videre fant en studie pa filet av havkaruss (Sparus aurata) hgyere nivaer av oksidasjon ved bruk av
kald plasma enn ved andre behandlinger, inkludert ozon-behandling, hayt-trykk og pulsed electromagnetic field
(Giannoglou et al., 2021). Enkelte studier har indikert mindre oksidasjon om kald plasma kombineres med en
antioksidant som for eksempel askorbinsyre (Olatunde et al., 2019), eller andre tilsetningsstoffer som plante-
ekstrakter (Shiekh & Benjakul, 2020).

Regelverk:

Norge/EU: Det er forelgpig ikke et gjeldene regelverk i EU eller Norge som regulerer bruken av kald plasma i
matproduksjon og videreforedling.

Ettersom kald plasma kan inneholde oksygen- og nitrogenforbindelser ioner og ladde partikler (Misra et al.,
2011), er det ogsa usikkert hvilket lovverk det faller inn under, eller om et helt nytt lovverk ma opprettes
(Niemira, 2019). | en kommentar om straling av mat (van der Meulen & Ruggiero, 2018) papeker forfatterne at
Direktivet 1999/2/EC ikke spesifiserer om reglementet kun gjelder ionisering via radioaktivitet, eller om all
ionisering uansett kilde er inkludert, og at dette potensielt kan fare til problemer for ny teknologi som kald
plasma.

Mest sannsynlig vil bruk av kald plasma pa matvarer falle inn under Forskrift om ny mat (EU) 2015/2283, blant
annet har det Irske mattilsynet klassifisert kald (atmosfeerisk) plasma under denne forskriften (Food Safety
Authority of Ireland, 2020). Forskrift (EU) 2015/2283 omfatter matprodukter som aldri har veert laget far, eller
som er laget pd nye mater, og ma da ha EUs «Novel food» - godkjenning for & kunne omsettes pa det
europeiske matvaremarkedet. En tilsvarende «ny mat»-forskrift som falger EUs lovgivning er gjeldene i Norge
(FOR-2017-07-25-1215).

Det er videre en mulighet for at bruk av kald-plasma faller inn under forordning (EU) 1333/2008 om
tilsetningsstoffer om restmengder av nitrogen forbindelsene eller oksygen forbindelsene er hgy, eller blir definert
som et «teknisk hjelpestoff» i henhold til Artikkel 3.2 (b) i samme forordning om det er ikke-pavisbare mengder
reststoff til stede i det ferdige produktet.

USA: Kald plasma er forelgpig ikke godkjent av US Food and Drug Administration, som avventer flere studier
pa hvordan kald plasma pavirker matvarene som blir behandlet.

(https://knowablemagazine.org/article/technology/2018/scienti

Resten av verden: Det er per i dag lite informasjon tilgjengelig om godkjenningsstatusen i andre land.

Kommentarer fra Naeringen: Ingen erfaring med bruk av metoden pé lakseprodukter. Det er en generelt
positiv innstilling, sa lenge regelverket tillater bruken, og det ikke medfgrer endringer i produktkvaliteten.

Fordeler:

« Generering av kald plasma krever atmosfeerisk til lavt trykk, noe som innebeerer lite energi nar systemet farst
er oppe og gar.

» Dokumentert effektivt p& en rekke bakterier, inkludert Lm.

« Anti-biofilm egenskapene er lovende ogséa for dekontaminering av utstyr inne pa anleggene.
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« Det dannes lite eller ingen kjemikalierester.

Ulemper:
» Potensielt store startkostnader.
« Kan fare til oksidasjon av proteiner og lipider.
« Dersom ozon dannes i prosessen og det blir brukt i sjgvann, kan brominer bli et problem.

« Usikkerhet rundt lovverket bade i Norge/EU, USA og Asia.

4.2.6 - Ultralyd

Prinsipp:

Ultralyd er definert som lydbglger med en frekvens over 20kHz, og som dermed ikke kan hgres av mennesker.
Metoden regnes som ikke-termal og det deles inn i to typer ultralyd; 1) lavfrekvent (20-100kHz) hgyeffekts
(>1W/cm?) ultralyd, og hayfrekvent (> 100 kHz) laveffekts (<1W/cm?) ultralyd. Forholdet mellom intensitet og
frekvens er omvendt proporsjonalt (Bariya et al., 2023). Ultralydbglger skaper kavitasjon i produktet, sma
gasshobler som gker i starrelse pa grunn av vekselvis hgyt og lavt trykk. Nar boblene klapper sammen
(imploderer), skapes det sjokkbglge som kan gdelegge enzymer, cellevegger og DNA (Bahrami et al., 2020).
Ultralyd med hgy effekt er den det er vanligst & bruke i naeringsmiddelindustri, og brukes for en rekke matvarer,
blant annet for sterilisering av juice, melkeprodukter, kjgttprodukter og alkoholholdig drikke (Khaire et al., 2022).
Ultralyd kan ogséa skape frie radikaler og dermed ogséa pavirke produktet negativt ved a endre smak, lukt og
tekstur. En ma derfor velge intensitet som gir best forhold mellom god dekontaminering og lite pavirkning av
produktet (Beitia et al., 2023).

Dokumentert virkning:

Ultralyd har vist & veere mer effektiv mot gram positive stavbakterier fordi de mangler yttermembran og har
stagrre overflate (Beitia et al., 2023). En rekke publikasjoner pa Listeria spp. i ulike matvarer rapporterer likevel
variabel effekt av ultralyd alene (Bahrami et al., 2020; Zhao et al., 2021). Mange av disse nevner at ultralyd er
mest effektiv dersom brukt sammen med andre dekontamineringsmetoder, og termosonikering som kombinerer
ultralyd og varme (Onyeaka et al., 2023), men ogsa kombinasjon med UV eller andre tilsetningsstoffer
(pereddiksyre, sinkoksid) har vist seg a veere effektive. Ultralyd viser starst potensiale for dekontaminering av
flytende matvarer og gkt produktfasthet begrenser effektiviteten eller reduserer produktkvaliteten (Beitia et al.,
2023). Det er derfor fa studier hvor ultralyd tas i bruk for dekontaminering av fisk. En studie av Lm pa overflaten
av fersk laks fant at ultralyd i kombinasjon med UV eksponering kunne gi god effekt, men viser seg a pavirke
lukt og smak, men ikke fasthet i muskulaturen (Mik§-Krajnik et al., 2017). En annet studie med fersk laks fant
starst reduksjon i Lm konsentrasjoner ved 5 min ultralydbehandling kombinert med oppvarming til 50 °C
(Pennisi et al., 2020). | en studie av L. innocua i makrellfileter viste ultralyd kun effekt i kombinasjon med
pereddiksyre (Zhao et al 2023).
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Regelverk:

| EU/Norge og USA er det ikke klare regler for bruk av ultralyd pa matvarer, men kan en regne med at
regelverket ikke er til hinder for slik bruk sa lenge bruken ikke endrer produktene i sa stor grad at det faller
under Forordning (EU) 2015/2283. Teknologien er allerede i bruk p& en rekke klasser av matvarer.

Kommentarer fra Neeringen:

Det er generelt liten erfaring med ultralyd i produksjon av sjgmat.

Fordeler:
« Enkel, relativt billig og energigkonomisk metodikk.

« Ultralyd er relativt godt kjent og brukes ved pragveopparbeiding i laboratorier (sonikering), i industrien til
rensebad for blant annet metallkomponenter, samt hos urmakere og gullsmeder.

Ulemper:

« Ultralyd ser bare ut til & effekt pa Lm dersom den anvendes i kombinasjon med gkt temperatur, bruk av
tilsetningsstoffer eller UV-eksponering.

« Ultralyd kan skape frie radikaler som kan pavirke produktet negativt.

« Utbredt bruk av ultralyd i en bedrift vil kreve at utstyret skjermes. Selv om ultralyd i seg selv ikke han hgres vil
lydgeneratoren avgi stay.

« Usikkerhet knyttet til HMS.
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Forskjellige metoder for dekontaminering og vekstkontroll av Listeria monocytogenes i lakseindustrien har blitt
utredet, og flere viser potensiale for & bli tatt i bruk. Kriterier som ble lagt til grunn var at produktets sensoriske
og fysiokjemiske egenskaper ikke pavirkes negativt, og det er en fordel om metoden ikke etterlater reststoffer og
medfarer krav til merking. Metodene ble ogsa vurdert mot krav i gjeldene regelverk for mulige tilsetningsstoffer,
konserveringsmetoder og merkekrav for matvarer i Norge, EU og viktige importland for norske lakseprodukter.

To av metodene vurdert, ozon og hydrogenperoksid er forholdsvis godt kjente kjemiske
dekontamineringsmetoder som lenge har veert brukt til desinfeksjon, hovedsakelig pa overflater eller i vann,
men ogsé i noen grad pa matvarer. Hydrogenperoksid spaltes til oksygen og vann, mens ozon blir omdannet til
oksygen. Begge stoffene er sterkt oksiderende og kan reagere med produktene, men flere studier indikerer at
lave konsentrasjoner kan brukes uten 8 gi uakseptable forandringer i sensoriske egenskaper. Regelverket kan
veere en hindring, spesielt med tanke pa hydrogenperoksid i EU og Norge, men det har veert i bruk i enkelte EU
land for dekontaminering av sjgmatprodukter.

UV-C straling og hgyfrekvent pulserende lys - HPL i akseptable doser har begge en inaktiverende effekt p& Lm,
med noe hgyere grad av dekontaminering knyttet til bruk av HPL enn ved bruk av UV-C. Begge metodene
begrenser seg til overflatedekontaminering, og fungerer darlig pa ujevne overflater. Lm har ogsa generelt hgy
resistens mot denne behandlingen, mest sannsynlig knyttet til den gram positive celleveggen og et effektivt
DNA-reparasjonssystem. Bade UV-C og HPL kommer under «ny mat» regelverket Forordning (EU) 2015/2283)
om det ikke har blitt brukt pa matvarer fgr 15. mai 1997, men UV-C har senere blitt godkjent til bruk pa flere
typer matvarer, og er generelt sett pd som uproblematisk.

Kald plasma er en forholdsvis ny teknologi som viser lovende resultater for dekontaminering av Lm og biofilmer,
med forholdsvis moderate effekter p& produktkvaliteten. Et mulig problem er at det er stor variabilitet i effektene
av kald plasma avhengig av hvordan plasmaen blir dannet og produktet det brukes pa, og det vil sannsynlig
kreve en del metodetilpasning avhengig av behovet i forskjellige bedrifter. Som ved bruk av UV-C og HPL, kan
skyggeeffekter kan ogsa veere et problem. Det er noe usikkerhet om hvilket regelverk kald plasma faller under,
men det er sannsynlig at det i Norge vil bli regulert under Forskrift om ny mat (EU) 2015/2283 slik det har blitt
gjort av det Irske mattilsynet, men EU reglementene for ionisering og tilsetningsstoffer ogsa har blitt nevnt som
to muligheter.

Ultralyd ser hovedsakelig ut til & ha en effekt pd Lm dersom det brukes i kombinasjon med gkt temperatur,
tilsetningsstoffer eller UV eksponering. Det er ogsa knyttet noe usikkerhet til effekter pa arbeidsmiljzet.
Regelverket er noe uklart i henhold til bruk av ultralyd, men det er allerede i bruk for dekontaminering av mange
matvarer.

Generelt har alle metodene potensiale til & bidra til Lm-dekontaminering, spesielt om de kombineres med
hverandre eller med andre tiltak som for eksempel tilsetningsstoffer og biokonservering.
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verdifulle erfaringer:

Ane-Marte @ye, Hofseth International, Alesund

Randi Nordstoga, MOWI, Bergen

Simon @kland, Bremnes Seashore, Bamlo
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Asne Sangolt, Mattilsynet, Hovedkontoret, Seksjon for sjgmat

Carl Johan Sandberg, Grieg Seafood, Bergen
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