Report series:
IMR-PINRO 2025-6Published: 01.07.2025Project No.: 15565 Approved by:
Research Director(s):
Geir Huse
Program leader(s):
Maria Fossheim
External:
Research Director Oleg Bulatov (VNIRO)
Summary
On 30th March 2022 all Russian participation in ICES was temporally suspended. Although the announcement of the suspension stressed the role of ICES as a “multilateral science organization”, this suspension applied not only to research activities but also to the ICES work providing fisheries advice for the sustainable management of fish stocks and ecosystems. On 9th December 2024 Russia announced its intention to leave ICES by 9th December 2025. As a result, since 2022 the ICES AFWG has provided advice only for saithe, coastal cod north, coastal cod south, and golden redfish. Northeast Arctic (NEA) cod, haddock, beaked redfish, Greenland halibut, and capelin assessments have been conducted outside of ICES in a bilateral Joint Russian-Norwegian Working Group on Arctic Fisheries (JRN-AFWG). Although this work has been conducted independently of ICES, the methodologies agreed at ICES benchmarks and agreed HCRs (Harvest Control Rules) have been followed in providing this advice.
The chapter numbering in this report is not continuous (Chapter 2,5 and 7 are missing). This is
done in order to be consistent with the chapter numbering in ICES AFWG reports.
In 2025 we are giving advice for NEA cod and haddock. There is a 2-year advice for both Greenland halibut and beaked redfish, with the next advice release planned for 2026. The capelin advice is conducted and released in the autumn via a separate report. The beaked redfish model is planned for a method revision prior to the next advice.
We would note that both cod and haddock had TAC quota set above advice in 2025. Both stocks are projected to increase provided the HCRs are followed. However, any further fishing above scientific advice would imperil the improvements for these stocks, and for NEA cod in particular would increase the risk of the stock falling below Blim.
Advice on fishing opportunities for NEA cod
The NEA cod stock is continuing to decline following a prolonged period of moderate to poor recruitment, and is currently below Bpa but above Blim. Revisions in the weight at age and maturity have resulted in a downward revision of the stock, and quota set above advice for 2025 has resulted in a lower projected stock development.
Following the agreed HCR, the advice for 2026 is that catches should be no more than 269 440 tonnes, down from an advice of 311 587 tonnes and a quota of 340 000 tonnes in 2025. Provided that this advice is followed, then projections indicate that at current recruitment levels the stock should stabilize and start to rise slightly. Further quota above advice could be expected to delay any recovery for this stock, and potentially lead to further decline.
Advice on fishing opportunities for NEA haddock
Following a period of low recruitment the stock is rising as a result of a relatively good yearclass in 2021, and a further good yearclass in 2022 is predicted to enter the fishery in 2026.
Following the agreed HCR, the advice is that catches in 2026 should not exceed 153 293 tonnes, up from an advice of 106 912 tonnes and a quota of 130 000 tonnes in 2025. Provided that this yearclass is not heavily caught at small sizes then then this should lead to a continued increase in stock and catches as long as the advice is followed. In recent years there has been a rise in the catch of small haddock, and if this is not curtailed then there is a risk that a large part of the incoming yearclass could be fished before reaching a size to give optimum yield.
Chapter 1. Ecosystem considerations
The aim of this chapter is to identify important ecosystem information influencing the fish stocks. Ecosystem and climate changes, along with fishery, determine the stock dynamics of commercial species. Water temperature and ice conditions influence the distribution of the commercial fishes in the Barents Sea. Apart from this, temperature also impacts growth rate and mortality at the early stages (larvae, juveniles). Currents affect the strength of year-classes by providing transport of eggs, larvae and 0-group of commercial species from the spawning areas into the Barents Sea. Food availability is another important ecosystem driver that influence the rate of growth and maturation of commercial fishes. It depends not only on the prey availability, but also on feeding competition. Mortality due to predation, including cannibalism, can greatly affect population abundance of commercial species. The impact of ecosystem changes on the dynamics of bycatches of juveniles and non-target species in mixed fisheries should also be taken into account.
The Barents Sea ecosystem survey (BESS):
The aim of the Barents Sea ecosystem survey (BESS) in August-October is to monitor the status and changes in the Barents Sea ecosystem. In 2018, and 2022, BESS coverage was incomplete, and in 2020 it was delayed, making the evaluation of the ecosystem status more uncertain. The 2024 BESS was carried out during the period from 17-th August 2024 to 12th October by three Norwegian and one Russian research vessels. The temporal and spatial progression during the survey was good, despite technical problems and bad weather (Figure 1.1a and b).
Figure 1.1. The spatial (a, left) and temporal (b, right) progression during the survey.
Current state and changes
Abiotic conditions
Sea Surface Temperature (SST) in both the southern and northern Barents Sea were at, or slightly below, the long-term mean (1991-2020) for the first half of 2024. However, the SSTs rapidly increased in late June/early July reaching 3-3.5oC above the seasonal mean in August-September. These conditions were associated with a marine heatwave. The sea surface stayed warmer than the long-term mean for the rest of 2024 and at least to the end of February 2025. Despite a strong marine heat wave at the surface, it did not reach deeper waters at the time. Observations from the full water column in August-October reveal that the heat wave was present only in the upper 30 m of the water column. Below, most of the ocean had temperatures 0-1o C above the long-term mean. The exception was some patches with higher anomalies around Svalbard.
The southwestern Barents Sea is strongly affected by the varying characteristics of the inflowing Atlantic Water (AW). The long-term time series from standard sections reveal an increasing temperature trend in the Atlantic Water since the late 1970s. Temperatures in the inflowing water decreased from 2015-2019/2021 . The last 4-5 years the temperatures in summer have increased, but the winter temperatures do not show the same pattern (Figure 1.2).
Figure 1.2. Temperature in the AW flowing into the Barents Sea in Fugløya-Bear Island (red) and Vardø-North (blue). Left panels show winter while right panels show summer.
Sea ice conditions in the northern Barents Sea in early winter 2024 were highly fluctuating with more sea ice than the long-term mean for about two weeks in January followed by small amounts of sea ice in February and then increasing SIA to levels above the long-term mean during late March to April. SIA was close to normal during May and the first half of June, and well below the long-term mean for the rest of 2024 and in January-February 2025.
The area of the Barents Sea occupied by bottom waters with a temperature < 0°C amounted to 31%, which was substantially higher compared to 2023 and somewhat below the level of 2019-2022 (Fig. 1.3). According to the expert evaluation, Atlantic water temperature in the Murman Current in 2025 is expected to remain typical of warm years. Due to high temperatures and low sea-ice extent in recent years, the ice coverage of the Barents Sea is expected to remain below normal. Lower-than-average ice coverage and longer duration of ice-free season increase the primary productivity of the Barents Sea.
Figure 1.3. Area of bottom waters with different temperature ranges in the Barents Sea in September-October 2000-2024.
There is no trend in the volume transport across the Barents Sea Opening when investigating the full time series. However, there appear to be shifts between periods. The period 1997-2006 had highly varying volume transports. The period 2007-2020, on the other hand, was more stable, with the exception of the extreme years of 2015-2016. From 2021 and onwards, the volume transport has been rather weak compared to before, in particular in spring/early summer and fall.
Mesozooplankton
The total mesozooplankton biomass in autumn 2024 was similar to preceding years in most of the Barents Sea. However, in several subareas of the Norwegian sector, where size-fractioned biomass data are available, the biomass of the mid-size fraction (typically representing older stages of large copepods like Calanus spp.) has been very low since 2020. During the same period, the biomass of the smallest size-fraction (typically representing young stages of intermediately sized copepods, as well as smaller species) has displayed a strong increase.
The changes in the biomasses of the intermediate and small zooplankton size-fractions may reflect a combination of factors including the predation pressure from the large fish stocks, possibly a lower advection of mesozooplankton with inflowing waters into the BS in recent years, as well as variability in local production rates.
Krill indices of biomass have shown increasing trends over recent decades to the increased contribution from M. norvegica in the BS.
Prey stocks
Euphausiids, amphipods and shrimp are important prey for most commercial fish in the Barents Sea. In 2023 the total biomass of euphausiids was slightly less than long term mean (1980-2023). In recent years, the northern shrimp stock has remained stable, showing fluctuations but without a clear trend. Indices were not updated in 2024.
Capelin, polar cod and young herring are the main forage pelagic fish in the Barents Sea, which are important prey for most predators in the area, including commercial demersal species. These species are very sensitive to various changes in the ecosystem, the influence of predators, fishing, or the plankton . Total biomass of the main pelagic species during 1986–2024 has fluctuated between ca. 0.5 and 9 million tonnes; largely driven by fluctuations in the capelin stock (Figure 1.4). During 2020-2024 (except for the year 2022 with poor survey coverage), the combined biomass of capelin, herring, polar cod, and blue whiting has been above the long-term average after a low-biomass period from 2014-2019. The biomass during this latter period has been dominated first by capelin from the 2019 and 2020 year-classes, and in the last two years by herring from the 2021 and 2022 year-classes.
Figure 1.4. Total biomass of pelagic fish (excluding 0-group) in the Barents Sea in 1986-2024. Note that herring survey estimates are available from 1999 and blue whiting estimates from 2004. Biomass estimates for herring between 1988 and 1998 are derived from the NSS-herring assessment (age 1-3). The dashed line denotes average biomass summed over all the included pelagic species for 1988-2024.
The recent strong recruitment to the polar cod stock in 2016 and 2020 led to sudden increases in stock size, but the stock sizes decreased again rapidly (Figure 1.4). Polar cod are predicted to experience decrease in habitat and abundance with a warmer and more ice-free Barents Sea, and t here is also a high probability that polar cod are now distributed outside the standard survey area in the Barents Sea.
Specification of the ecosystem impact on the assessed species:
Cod
The cod stock has been decreasing, but predictions indicate that it will stabilize on a low level. The main effect of the ecosystem impact on cod stock dynamics is manifested in the change in the abundance of its recruitment. There have not been any strong year-classes of cod since 2005 despite high cod SSB and above average sea temperatures. Recruitment has previously been shown to be positively correlated with both those factors, but in recent years this is no longer the case. Meso-zooplankton is important for survival of larvae and 0-group cod, so their distribution must overlap with areas of relatively high plankton biomasses. Despite a large number of studies (see e.g. summary in Ottersen et al., 2014), the underlying mechanism of the impact of the Barents Sea ecosystem on cod recruitment is still not well understood.
Cod diet
Cod is a main predator among fishes in the Barents Sea. Its diet was relatively stable in recent years; capelin was the main prey. The diet composition of cod in 2024 was rather similar to that in 2023 (Figure 1.5). Since 2013 the importance of snow crab in cod diet considerably increased and has since then consisted of 3-7 % by weight (Figure 1.6). It should be noted that in 2022-2023 an unexpected increase of red king crab, up to 3-5 % by weight in the diet was observed (Figure 1.6), but cod consume only crab legs, empty carapaxes after molting or individuals with soft carapax immediately after molting. Figure 1.7 shows the consumption by cod in the period 1984-2024. Consumption of most prey has decreased in recent years due to decreasing cod abundance. Total prey consumption in 2024 was very close to that in 2023.
Figure 1.8 and 1.9 show the proportion of cod and haddock in the diet of cod. Predation of cod on juvenile cod and haddock was relatively low in 2020-2023, but the proportion of haddock in cod diet increased considerably from 2023 to 2024, which is consistent with the increased abundance of young haddock in recent years. The proportion of cod in cod diet also increased somewhat from 2023 to 2024.
Individual growth of cod now seems to have stabilized. Feeding conditions for cod are expected to be adequate in the near future, as the cod likely will be able to feed on other prey despite the present low capelin stock level (see Gjøsæter et al. 2009 for a discussion of ecosystem effects of capelin collapses). Also, the cod stock is low so there will be less competition for food.
Figure 1.5. Diet consumption of cod in the Barents Sea in 1984-2024, % by weight
Figure 1.6. Importance of snow crab and red king crab in diet of cod in 1984-2024, % by weight
Figure 1.7. Consumption of various prey items by cod in 1984-2024. Norwegian calculations.
Figure 1.8. Proportion of cod in cod diet by predator age group.
Figure 1.9. Proportion of haddock in cod diet by predator age group.
Haddock
Warm conditions are necessary, but not sufficient conditions to ensure good recruitment and growth. Plankton bloom (timing and strength) and influx are important for year-class formation. The year classes 2018-2020 were poor, but the reasons are not fully explored. The year-classes 2021-2024 appear to be average, or above average. There is no clear recent trend in the condition factor of haddock (Figure 1.10). Older haddock includes a high proportion of benthic invertebrates in their diet, but the availability of this prey group is not known. The low cod stock should lead to less predation on haddock by cod, and therefore lower mortality on both pre-recruits and younger haddock recruited into the fishery.
Figure 1.10. Fulton’s K (100*weight (g) /length (cm)^3) calculated from average weights and lengths from the winter survey 1994-2025 (Godiksen et al. 2025)
Haddock diet
The diet composition of haddock is presented in Figure 1.11. Haddock is a benthivorous species and feeds mainly on polychaets, echinoderms and molluscs (on average up to 43 % by weight). However, euphausiids and fish (including capelin and herring) can be important prey items (on average up to 13 % and 17 % by weight respectively).
Figure 1.11. Diet composition of haddock in the Barents Sea in 1993-2024, % by weight
Greenland halibut
The distribution of the Northeast Arctic Greenland halibut stock is very uneven in the Barents Sea and adjacent waters and strongly depends on the migrations that it makes throughout its life. The highest densities of adult fish are observed in spawning grounds on the slope of the continental shelf. Juveniles are widely distributed along the northern part of the shelf and the northern part of the Barents Sea. Their abundance in the Barents Sea may be affected by water temperature and currents, although the effect of these factors is not fully understood and uncertain. Growth and maturation of the Greenland halibut depend on prey abundance. Greenland halibut feeds on zooplankton, shrimp, capelin, herring, polar cod and other small fishes. Cod can be both predator and food competitor for Greenland halibut, but spatial overlap is observed mainly between cod and Greenland halibut juveniles. Cannibalism can also be observed in areas with the overlapping of adults and juveniles. Mammals can consume Greenland halibut in the spawning areas.
The Greenland halibut stock has experienced notable changes over the past two decades. In the early 2000s, the stock was considered relatively stable, supported by moderate fishing pressure. From 2009, fishing activity has increased significantly, which has contributed to a gradual decline in both harvestable biomass and spawning stock biomass (SSB). By 2024, stock indicators suggested increased pressure on the population, as the SSB had fallen below precautionary reference points and the harvest rate exceeded sustainable levels. These developments highlight the importance of continued monitoring and adaptive management to support the long-term sustainability of the stock.
Beaked redfish
As a boreal species, it is benefiting from the warming in the Barents Sea. Its stock has increased in recent years, but stock assessment of this species is characterized by high uncertainty. Feeding condition for beaked redfish, which feeds on zooplankton and small fish (capelin), in 2022-2023 were likely to be relatively stable. Cod and Greenland halibut are main predators for the beaked redfish. However, as abundance of these species is declining and abundance of capelin, herring and polar cod is increased, the predation pressure on redfish is probably relatively low. In recent years, the total number of redfish juveniles, mostly S. mentella , caught as bycatch in the international shrimp fishery has increased (see text and figure below). This strongly depends on the overlap between the distribution areas of redfish juveniles and shrimp fishery areas. The stock size and distribution of shrimp as well as currents and temperature affect this.
Marine mammals
In the Barents Sea, about 15 cetacean species, 7 seal species and the polar bear can potentially be observed. The white-beaked dolphin is the most common cetacean species to be seen within the Barents Sea as it is distributed all over the area. Among the large baleen whales, especially minke whales, but also fin whales, are distributed over large parts of the Barents Sea, and are seasonally present at relatively high numbers. Humpback whales have much more aggregated distributions north and west of Hopen and around Bear Island, and these locations are also shared by the other baleen whale species.
In 2024, white-beaked dolphins were the most frequently observed, although lower in numbers than in previous years. Dominant species in the group of baleen whales were humpback whales and fin whales. Aggregations of humpback whales in areas East of Svalbard commonly overlap with capelin distribution.
Food web and species interactions
The Barents Sea food web is a relatively well-studied, cold-water marine ecosystem characterized by strong seasonal productivity and top-down control by predators (Blanchard et al. 2002, Wassmann and Reigstad 2011 ) . At its base, the food web starts with phytoplankton, which bloom in spring and are grazed by zooplankton such as Calanus finmarchicus . These in turn support a variety of pelagic fish like capelin ( Mallotus villosus ), herring, polar cod and the early life-stages of demersal fish. Demersal fish (e.g., cod, Gadus morhua ) feed on both pelagic and benthic prey, while marine mammals (such as harp seals and whales) and seabirds (e.g., auks) act as apex predators. The web is influenced by climate-driven changes in ice cover and inflow of Atlantic waters, affecting species composition and productivity.
A model for assessing the food web of marine mammals and fish in Barents Seas developed by Planque et al. (2024) is shown in Figure 1.12. Marine mammals consume large quantities of food, comprised of fish, including cod and lower trophic level species that support commercial fish stocks.
Figure 1.12. Results from a food-web assessment model for marine mammals, fish, and fisheries in the Barents and Norwegian Seas (Planque et al. 2024). Note the legends in lower left corner of the figure.
According to Mauritzen et al. (2022) marine mammals consume about 535 000 tons of gadoid species annually in the Barents Sea. We should get more information about the gadoid species composition and size of this prey in their diet to better evaluate the mortality caused by marine mammals compared to cannibalism, fishing mortality and other natural mortalities. For Northeast Arctic cod, total cannibalism during the record high spawning stock biomasses (SSB) during 2011-2015 was up to 370 000 tons (2013), while cannibalism in 2024 was estimated to 112 000 tons (Table 1.1).
Table 1.1. The North-east arctic COD stock's consumption of various prey species in 1984-2024 (1000 tonnes) based on Norwegian consumption calculations. Same data as for Figs. 5 and 7.
Year
Other
Amphipods
Krill
Shrimp
Capelin
Herring
Polar cod
Cod
Haddock
Redfish
G. halibut
Blue whiting
Long rough dab
Snow crab
1984
522
30
140
459
747
83
16
23
55
376
0
0
25
0
1985
1239
185
63
177
1765
212
3
31
53
242
0
2
48
0
1986
675
1424
136
163
948
161
155
74
108
339
0
0
66
0
1987
804
1356
88
231
292
38
223
26
6
337
1
0
11
0
1988
445
1415
337
150
381
8
98
11
2
258
0
5
6
0
1989
671
822
235
123
591
3
37
8
10
222
0
0
67
0
1990
1154
124
77
162
1411
7
5
16
14
190
0
82
87
0
1991
699
65
73
164
2455
7
10
23
16
266
7
8
242
0
1992
822
94
151
352
2261
275
91
46
88
172
23
2
94
0
1993
710
242
645
304
2865
155
268
260
69
91
2
2
27
0
1994
610
553
694
507
1056
146
599
222
48
76
0
1
43
0
1995
830
980
530
359
606
117
245
366
113
194
2
0
36
0
1996
604
627
1182
346
539
46
100
528
66
94
0
10
36
0
1997
477
421
564
348
974
5
114
347
44
33
0
33
15
0
1998
450
415
527
375
825
102
172
161
36
9
0
14
18
0
1999
429
168
314
296
2024
149
256
66
29
18
1
34
8
0
2000
424
187
499
500
1923
61
217
83
58
8
0
40
21
0
2001
723
178
393
292
1834
75
263
68
51
6
1
157
31
0
2002
375
95
257
240
1996
86
279
108
127
1
0
238
16
0
2003
547
286
542
238
2152
216
276
110
166
3
0
74
52
0
2004
624
559
346
246
1247
214
356
126
197
3
11
56
64
1
2005
772
568
514
271
1388
131
386
117
324
2
4
114
52
0
2006
860
220
1047
352
1736
167
106
79
360
12
2
162
123
0
2007
1255
308
1077
429
2145
284
263
87
376
46
0
44
73
0
2008
1579
158
920
388
2873
105
513
186
290
59
12
18
92
0
2009
1492
240
586
267
3987
121
732
194
250
28
3
5
115
2
2010
1607
415
997
282
3901
52
333
240
263
138
10
14
132
7
2011
1533
247
842
219
4068
81
418
280
274
114
0
26
120
9
2012
1953
305
788
343
3613
50
513
370
217
50
33
8
123
7
2013
1716
252
528
260
3573
50
134
367
195
107
1
21
162
15
2014
1368
321
468
199
3634
70
30
350
85
31
10
18
103
9
2015
1583
622
662
246
3205
126
142
206
172
138
40
58
81
33
2016
1652
512
698
294
2158
93
340
188
218
56
5
85
115
9
2017
1040
127
588
249
2891
192
87
309
267
44
4
24
135
50
2018
1161
373
854
220
2778
195
233
236
267
32
67
45
51
42
2019
774
245
529
302
2549
173
159
178
201
44
0
2
97
47
2020
815
463
470
158
1837
104
400
98
81
26
11
12
149
86
2021
883
139
372
196
2182
96
393
186
25
111
0
13
94
39
2022
680
66
310
196
1893
145
299
116
76
81
4
30
73
43
2023
622
109
181
182
1614
165
101
55
67
105
0
58
112
29
2024
613
113
215
137
1499
176
64
112
293
33
6
23
71
24
Sum
37790
16029
20439
11224
82416
4744
9433
6656
5656
4194
260
1538
3086
452
Concerns have been raised, and questions asked why the number of Northeast Arctic cod surviving to age 3 did not increase despite the record high SSBs producing these year-classes in 2011-2015, and the evidence of strong new year-classes being produced at the 0-group stage (Figure 1. 13a-c ). Possible explanations for the low survival to age 3 are fishing (e.g., bycatch of juveniles in shrimp fishery), climate, food, predation, cannibalism and random effects. All these explanations should be further investigated to see if one in the future could gain more long-lasting effects of keeping high SSBs although cannibalism and predations by marine mammals are likely the main reasons.
A: B: C:
Figure. 1.13. Illustrating the low survival of promising year-classes of cod produced by record high SSBs during 2011-2015. A - comparing SSB with corresponding year-classes at age 0, B - comparing SSB with corresponding year-classes at age 2 and 3 and C- comparing SSB with corresponding year-classes at age 3.
Discards and young fish bycatch in mixed fishery
In this report, the terms ‘landings’ and ‘catches’ are, somewhat incorrectly, used as synonyms, as discards are in no cases used in the assessments. This does not mean, however, that discards have not occurred, but the WG has no information on the likely extent. Available information indicates low discard rates at present (less than 5% of catch), and it therefore is assumed that discards are negligible in the context of the precision of the advice.
We would note that there have been historical periods with significant mis-reporting, and for further information on under- and misreporting, we refer to the 2016 and 2022 AFWG reports.
Bycatch estimates (1994–2024) of redfish, cod, haddock, Greenland halibut and polar cod juveniles in the commercial shrimp fishery in the Barents Sea are presented in Figure 1. 14 . These estimates are obtained with a spatio-temporal model based on a procedure elaborated in Breivik et al. (2017). In Breivik et al. (2017) an extensive validation study indicates that the procedure obtains bycatch estimates with approximately correct uncertainty. The bycatch estimates illustrated in Figure 1. 14 are available for each quarter in each main statistical area (not shown in report). Note the increase in bycatch of redfish juveniles in recent years. In the Barents Sea , genetic analyses of redfish juveniles collected from bycatches in the shrimp fishery some years ago showed that 97% of the redfish juveniles were S. mentella (K. Nedreaas, pers.com .). Most of the redfish bycatch are 8-15 cm and 1-3 years old S. mentella with an average weight of about 22 g. A bycatch of 30 million redfish hence corresponds to 650 tons bycatch compared to 33 000 tons eaten by cod in 2024. On the other hand, 10 million 2-year-old redfish bycatch (i.e., 1/3 of the total bycatch) is about 4% of the assessed total stock number of 2 year olds (Howell et al. 2024). The current stock assessment of S. mentella is less accurate with regards to small fish since it mainly focuses on the fished part of the stock. The natural mortality of the smallest redfish caught as bycatch is also likely higher than M=0.05 used in the current stock assessment.
The time-series in Figure 1.14 are obtained by scaling the estimated bycatch in the Norwegian shrimp fishery with the international fishery in e.g., each season and ICES area. The scaling procedure assumes that the Norwegian fishery is representative of the international shrimp fishery with regards to bycatch. This assumption is necessary because the international catch data are available only to a low spatio-temporal resolution. If the international vessels to a relatively high degree trawl at locations not trawled by Norwegian vessels, the bycatch estimates illustrated in Figure 1. 14 may be biased. The estimated bycatches do not include larger fish kept in escapement bags in some countries’ shrimp fisheries in international waters (the “Loop-hole”).
The same spatio-temporal model may also be used as a tool to open closed areas.
Figure. 1.14. Estimated bycatch of cod, haddock, redfish, Greenland halibut and polar cod (Boreogadus saida) in the Barents Sea international shrimp fishery. Intervals are 90% confidence intervals.
Sampling of commercial catches – age and length sampling
Tables 1.2–1.5 show the development of the Norwegian, Russian, Spanish and German sampling of commercial catches in the period 2008–2024. The tables show the total sampling effort, but do not show how well the sampling covers the fishery. Indices of coverage should be developed to indicate this. The main reason for the general strong decrease in numbers of Norwegian samples in the first part of this period is the termination of the port sampling program in northern Norway. This program is now up and running again. It should be considered whether catch sampling carried out by different countries fishing by trawl for the same time and area could be coordinated and data shared on a detailed level to a greater extent than is done today. It is also possible for Norway to provide stock coordinators in other countries with samples collected by the Norwegian Coastguard during their inspections of foreign vessels.
Year
No of unique vessels
No of length samples
No of length-measured individuals
No of unique vessels (***)
No of age samples
No of aged individuals
Landing tonnes
Length-samples per 1000 t
Age samples per 1000 t
Aged individuals per 1000 t
EU DCF for comparison per 1000 t
NEA-cod + coastal cod
2008
336
2526
51263
464
16026
196067
12.9
2.4
81.7
125
2009
272
2669
53350
417
14170
224816
11.9
1.9
63.0
125
2010
175
2542
39733
338
7671
263816
9.6
1.3
29.1
125
2011
273
2305
46227
434
10043
331535
7.0
1.3
30.3
125
2012
356
3132
57954
618
14710
363207
8.6
1.7
40.5
125
2013
266
2917
81583
84
1275
13940
464258
6.3
2.7
30.0
125
2014
556
2063
254627
306
1170
14815
465554
4.4
2.5
31.8
125
2015
498
1654
130514
89
1392
16500
413741
4.0
3.4
39.9
125
2016
482
2500
91590
401
1398
17027
403907
6.2
3.5
42.2
125
2017
413
2615
91366
348
1458
15471
408423
6.4
3.6
37.9
125
2018
873
3163
122788
346
1545
15535
369897
8.6
4.2
42.0
125
2019
842
3093
135375
337
1457
12519
322233
9.6
4.5
38.9
125
2020
389
1869
53587
259
653
12431
334773
5.6
2.0
37.1
125
2021
2022
2023
2024
NEA-haddock
2008
285
2177
45038
281
9474
72553
30.0
3.9
130.6
125
2009
233
2255
41481
206
6010
104882
21.5
2.0
57.3
125
2010
154
2155
38045
232
5458
123517
17.4
1.9
44.2
125
2011
227
2028
39663
312
7225
158293
12.8
2.0
45.6
125
2012
258
2609
47995
386
8191
159008
16.4
2.4
51.5
125
2013
89
2142
62193
86
965
5718
99127
21.6
9.7
57.7
125
2014
425
1479
114560
126
825
7297
91333
16.2
9.0
79.9
125
2015
397
1380
76574
47
967
8394
95086
14.5
10.2
88.3
125
2016
237
1986
47032
208
391
8202
108718
18.3
3.6
75.4
125
2017
215
2108
57461
150
1084
8805
113206
18.6
9.6
77.8
125
2018
536
2435
85303
130
1088
8397
93839
25.9
11.6
89.5
125
2019
497
2269
83378
123
1003
7652
93860
24.2
10.7
81.5
125
2020
142
1055
32009
70
342
6589
88108
12.0
3.9
74.8
125
2021
2022
2023
2024
Beaked redfish (S. mentella) **
2008
13
178
1038
0
0
2214
80.4
0.0
0.0
125
2009
12
319
1841
2
40
2567
124.3
0.8
15.6
125
2010
11
284
3664
11
320
2245
126.5
4.9
142.5
125
2011
9
255
3210
11
298
2690
94.8
4.1
110.8
125
2012
13
166
2187
13
241
2098
79.1
6.2
114.9
125
2013
14
184
383
5
13
390
1361
135.2
9.6
286.6
125
2014
11
36
4664
12
49
5
13402
2.7
3.7
0.4
125
2015
22
295
8324
5
19
174
19433
15.2
1.0
9.0
125
2016
23
285
5470
9
23
169
18191
15.7
1.3
9.3
125
2017
22
234
3507
7
29
177
17077
13.7
1.7
10.4
125
2018
26
407
7295
8
41
374
18594
21.9
2.2
20.1
125
2019
21
345
5884
6
38
329
23844
14.5
1.6
13.8
125
2020
29
475
10796
9
75
686
32950
14.4
2.3
20.8
125
2021
27
623
17001
6
53
970
43794
14.2
1.2
22.1
125
2022
27
488
10658
7
71
1238
40716
12.0
1.7
30.4
125
2023
2024
Greenland halibut
2008
56
622
20307
7394
84.1
125
2009
35
753
17233
8446
89.2
125
2010
44
541
9222
7685
70.4
125
2011
52
504
9239
8273
60.9
125
2012
51
637
9765
10074
63.2
125
2013
53
523
10554
1
2
12613
41.5
0.16
0.0
125
2014
52
391
5140
10876
36.0
125
2015
92
440
11200
21
22
944
10704
41.1
2.1
88.9
125
2016
120
415
8040
22
29
1128
12573
33.0
2.3
89.7
125
2017
107
486
10385
24
28
1128
13194
36.8
2.1
85.5
125
2018
98
505
9083
5
27
629
14876
33.9
1.8
42.3
125
2019
93
455
9286
47
86
697
14813
30.7
5.8
47.0
125
2020
89
509
9110
52
80
14532
35.0
5.5
0.0
125
2021
73
590
10804
40
66
979
14008
42.1
4.7
69.9
125
2022
64
502
8164
40
59
0
13138
38.2
4.5
0.0
125
2023
76
335
7290
38
48
0
13919
23.1
3.5
0.0
125
2024
Capelin
2008
4
3
150
0
0
5000
0.6
0.0
0.0
125
2009
18
97
7039
39
1039
233000
0.4
0.2
4.5
125
2010
75
230
6191
47
1291
246000
0.9
0.2
5.2
125
2011
115
315
8346
48
1313
273000
1.2
0.2
4.8
125
2012
84
308
9337
29
843
181328
1.7
0.2
4.6
125
2013
12
213
12215
47
47
773
156340
1.4
0.3
4.9
125
2014
27
113
9054
1
8
1086
40021
2.8
0.2
27.1
125
2015
65
722
83776
65
722
5393
71435
10.1
10.1
75.5
125
2016
7
27
1863
7
27
649
0
125
2017
21
43
2294
14
25
305
0
125
2018
68
207
15022
33
76
823
123461
1.7
0.6
6.7
125
2019
4
26
260
2
13
0
0
125
2020
0
125
2021
0
125
2022
23
2256
673
42597
125
2023
16
1539
480
37652
125
2024
Table 1.2 . Age and length sampling by Norway of commercial catches in 2008–202 4 . Number of samples and average number of fish per sample. Also, number of age samples and aged individuals per 1 000 t caught. For comparison, also the EU DCF requirements are shown.
**In addition to age the otoliths are also used for identification of coastal cod.
**Age samples from surveys with commercial trawl come in addition.
***From 2013 No. of unique vessels are split by length and age samples.
****Only from large, meshed gillnets as basis for assessment.
Year
No of length-measured individuals (commercial catches)
No of aged individuals (commercial catches)
No of aged individuals (surveys)
Total no of aged individuals
Landings tonnes
Length-measured individuals per 1000 t
Aged individuals per 1000 t (commercial catches)
Total aged individuals per 1000 t
EU DCF for comparison per 1000 t
NEA-cod*
2008
380592
3097
7565
10662
190225
2001
16.3
56.0
125
2009
178038
1075
7426
8501
229291
776
4.7
37.1
125
2010
126502
1828
7670
9498
267547
473
6.8
35.5
125
2011
122623
2376
5783
8159
310326
395
7.7
26.3
125
2012***
140028
2040
7742
9782
329943
424
6.2
29.6
125
2013
131455
1999
8103
10102
432314
304
4.6
23.4
125
2014
114538
3110
7154
10264
433479
264
7.2
23.7
125
2015***
105721
2486
6095
8581
381188
277
6.5
22.5
125
2016
158006
5090
2704
7794
394107
401
12.9
19.8
125
2017
161192
4918
6121
11039
396195
407
12.4
27.9
125
2018
157048
3129
1982
5111
340364
461
9.2
15.0
125
2019***
83018
2093
3737
5830
316813
262
6.6
18.4
125
2020***
112950
3105
3858
6963
312683
361
9.9
22.3
125
2021
2022
2023
2024
NEA-haddock
2008
216959
2498
5677
8175
68792
3154
36.3
118.8
125
2009
43254
489
5421
5910
85514
506
5.7
69.1
125
2010
85445
834
5060
5894
111372
767
7.5
52.9
125
2011
61990
1570
3584
5154
139912
443
11.2
36.8
125
2012***
87880
1545
5034
6579
143886
611
10.7
45.7
125
2013
42927
1205
4021
5226
85668
501
14.1
61.0
125
2014
45447
899
3796
4695
78725
577
11.4
59.6
125
2015***
31009
914
2972
3886
91864
338
9.9
42.3
125
2016
55598
2691
1884
4575
115710
480
23.3
39.5
125
2017
74297
3554
2614
6168
106714
696
33.3
57.8
125
2018
61360
2274
1136
3410
90486
678
25.1
37.7
125
2019***
44728
1923
1778
3701
76125
588
25.3
48.6
125
2020***
69301
2356
1575
3931
89030
778
26.5
44.2
125
2021
2022
2023
2024
S. mentella
2008
21446
471
3379
3850
7117
3013
66.2
541.0
125
2009
29435
761
1447
2208
3843
7659
198.0
574.6
125
2010
2776
100
2295
2395
6414
433
15.6
373.4
125
2011
917
7
640
647
5037
182
1.4
128.4
125
2012
7802
422
1146
1568
4101
1902
102.9
382.3
125
2013
19092
1253
1625
2878
3677
5192
340.8
782.7
125
2014
817
25
1297
1322
1704
479
14.7
775.8
125
2015
771
1818
1818
1142
675
0.0
1591.9
125
2016
27765
1076
85
1161
8419
3298
127.8
137.9
125
2017
958
99
1000
1099
4952
193
20.0
221.9
125
2018
21004
845
39
884
10497
2001
80.5
84.2
125
2019
6881
400
469
869
13164
523
30.4
66.0
125
2020
8718
340
612
952
13997
623
24.3
68.0
125
2021
2022
2023
2024
Greenland halibut
2008
106411
1519
3366
4885
5294
20100
286.9
922.7
125
2009
77554
819
2282
3101
3335
23255
245.6
929.8
125
2010
32090
416
2784
3200
6888
4659
60.4
464.6
125
2011
9892
115
1541
1656
7053
1403
16.3
234.8
125
2012
82943
2140
2506
4646
10041
8260
213.1
462.7
125
2013
12608
555
2756
3311
10310
1223
53.8
321.1
125
2014
24346
633
2106
2739
10061
2420
62.9
272.2
125
2015
22116
575
2489
3064
12953
1707
44.4
236.5
125
2016
11818
574
221
795
10576
1117
54.3
75.2
125
2017
24061
1205
1579
2784
10713
2246
112.5
259.9
125
2018
21893
954
308
1262
12072
1814
79.0
104.5
125
2019
861
125
1552
1677
12198
71
10.2
137.5
125
2020
1387
165
1853
2018
12266
113
13.5
164.5
125
2021
2022
2023
2024
Capelin
2008**
82625
1644
2341
3985
5000
16525
328.8
797.0
125
2009
94541
900
2511
3411
73000
1295
12.3
46.7
125
2010
67265
1072
4043
5115
77000
874
13.9
66.4
125
2011
63784
1273
2271
3544
86531
737
14.7
41.0
125
2012
20023
1130
1783
2913
68182
294
16.6
42.7
125
2013
54708
1565
1007
2572
60413
906
25.9
42.6
125
2014
13206
850
1249
2099
25720
513
33.0
81.6
125
2015
27200
1000
1004
2004
115
125
2016
8669
3954
1047
5001
0
125
2017
4115
4115
6
125
2018
14491
250
1050
1300
65934
220
3.8
19.7
125
2019
1498
1498
34
125
2020
1245
1245
19
125
2021
2022
2023
2024
Table 1.3 . Age and length sampling by Russia of commercial catches and age sampling of surveys in 2008–202 4 . Also, length-measured individuals and aged individuals per 1000 t caught. For comparison also the EU DCF requirements are shown.
*In addition, also used long-term mean age–length keys.
**Age samples from surveys with commercial trawl come in addition.
***In addition, used samples from Russian vessels, sampled by the Norwegian Coast Guard in 2012, 2015, 2019, and 2020.
Stock
Year
No of vessels
No of length-measured individuals (commercial catches)
No of aged individuals (commercial catches)
No of aged individuals (surveys)
Total no of aged individuals
Landings tonnes
Length-measured individuals per 1000 t
Aged individuals per 1000 t (commercial catches)
Total aged individuals per 1000 t
EU DCF for comparison per 1000 t
NEA-cod
2008
2
10108
610
610
9658
1047
63
63
125
2009
2
8733
1834
1834
12013
727
153
153
125
2010
2
28297
1735
1735
12657
2236
137
137
125
2011
2
11633
964
964
13291
875
73
73
125
2012
2
9849
998
998
12814
769
78
78
125
2013
2
30295
2381
2381
15041
2014
158
158
125
2014
2
27828
2306
2306
16479
1689
140
140
125
2015
2
18568
1445
1445
18772
989
77
77
125
2016
2
27937
1246
1246
14640
1908
85
85
125
2017
2
33984
2018
2018
14414
2358
140
140
125
2018
1
25933
911
911
14415
1799
63
63
125
2019
1
5781
1117
1117
13939
415
80
80
125
2020
11403
125
2021
2
23891
1314
1314
11080
2156
119
119
125
2022
2
22791
345
345
12214
1866
28
28
125
2023
2024
NEA-haddock*
2009
1
2561
240
2010
1
3243
379
2011
1
1796
408
2012
2
3198
647
2013
1
660
413
2014
1
2460
370
2015
1
702
418
2016
2
701
357
2017
1
710
156
2018
1
154
169
2019
280
2020
45
2021
131
2022
187
2023
2024
S. mentella
2008**
1
2275
28
987
2304
28
0
125
2011*
1
86
1237
2012**
2
11579
476
1612
7183
295
0
125
2014**
1
6177
1146
5390
2015**
1
6117
2371
2580
2016**
1
11806
3133
3768
2017**
1
5015
2624
1911
2018**
1
11638
2399
4851
2019**
1
11952
1908
6265
2020**
737
2021**
1
2074
157
280
7396
2022
277
2023
2024
Greenland halibut
2008
2
11662
112
103826
2009
1
3383
210
16143
2010
1
5783
182
31800
2011
1
8541
169
50600
2012
1
4809
186
25907
2013
1
11988
190
63019
2014
1
12002
206
58262
2015
1
17552
111
158126
2016
1
15031
218
68837
2017
2018
2019
1
49
2020
96
2021
125
2022
164
2023
72
2024
Table 1.4 . Age and length sampling by Spain 0F 1 of commercial catches and length sampling of surveys in 2008–202 4 . Also, length-measured individuals and aged individuals per 1000 t caught. For comparison also the EU DCF requirements are shown.
*Sampling from bycatch in cod fishery.
**Sampling from pelagic redfish fishery.
***Sampling from Spanish Greenland halibut survey.
Year
No of unique vessels
No of length samples
No of length-measured individuals
No of aged individuals
Landings tonnes
Length-measured individuals per 1000 t
Age-sampled individuals per 1000 t
EU DCF for comparison
NEA cod
2008
5
3
65800
2033
4955
13280
410
125
2009
5
2
43107
2419
8585
5021
282
125
2010
5
2
51923
3075
8442
6151
364
125
2011
4
1
7318
769
4621
1584
166
125
2012
4
2
16315
1924
8500
1919
226
125
2013
4
2
29281
2043
7939
3688
257
125
2014
4
1
23137
1291
6225
3717
207
125
2015
4
1
39335
886
6427
6120
138
125
2016
3
1
22109
1060
6636
3332
160
125
2017
4
1
19942
785
5969
3341
132
125
2018
4
2
43371
2283
7774
5579
294
125
2019
2
1
17954
1444
8535
2104
169
125
2020
2
1
21716
1021
9786
2219
104
125
2021
2
1
21548
1393
5470
3939
255
125
2022
2
1
14795
986
7171
2063
137
125
2023
2024
NEA haddock
2008
5
3
5548
442
535
10370
826
125
2009
5
2
23348
958
1957
11931
490
125
2010
5
2
54704
1039
3539
15457
294
125
2011
4
1
1925
160
1724
1117
93
125
2012
4
2
4088
502
1111
3680
452
125
2013
4
1
7040
478
501
14052
954
125
2014
4
1
3113
261
340
9156
768
125
2015
4
1
616
325
124
4968
2621
125
2016
3
1
4807
544
170
28276
3200
125
2017
4
1
3464
527
155
22348
3400
125
2018
4
2
4345
497
391
11113
1271
125
2019
2
1
5031
393
208
24188
1889
125
2020
2
1
2979
356
283
10527
1258
125
2021
2
1
2808
344
368
7630
935
125
2022
2
1
3270
399
271
12066
1472
125
2023
2024
Redfish
2008
5
3
330
0
46
7174
0
125
2009
8
2
0
0
100
0
0
125
2010
6
2
0
0
52
0
0
125
2011
6
1
7937
0
844
9404
0
125
2012
9
2
4036
0
584
6911
0
125
2013
4
1
1315
0
81
16235
0
125
2014
4
1
571
0
451
1266
0
125
2015
4
1
76
0
266
286
0
125
2016
3
1
6095
0
497
12264
0
125
2017
4
1
977
0
770
1269
0
125
2018
4
2
3438
0
2508
1371
0
125
2019
2
1
8958
0
1741
5145
0
125
2020
3
1
4248
0
1998
2126
0
125
2021
2
1
2261
0
743
3043
0
125
2022
2
1
8525
0
896
9515
0
125
2023
2024
Greenland halibut
2008
5
2
0
0
5
0
0
125
2009
3
2
0
0
19
0
0
125
2010
2
2
0
0
14
0
0
125
2011
3
1
0
0
81
0
0
125
2012
4
2
0
0
40
0
0
125
2013
3
1
1298
0
49
26544
0
125
2014
4
1
1076
0
34
31647
0
125
2015
4
1
658
0
32
20563
0
125
2016
3
1
365
0
9
40556
0
125
2017
4
1
0
0
21
0
0
125
2018
4
1
257
0
52
4942
0
125
2019
2
1
511
0
45
11356
0
125
2020
2
1
305
0
74
4122
0
125
2021
2
1
160
0
88
2222
0
125
2022
2
1
672
0
95
7074
0
125
2023
2
1
161
0
76
2118
0
125
2024
Table 1.5 . Age and length sampling by Germany of commercial catches and age sampling of surveys in 2008–202 4 . Also, length-measured individuals and aged individuals per 1 000 t caught. For comparison also the EU DCF requirements are shown.
References
Blanchard, A. L., et al. (2002). "The structure of a community strongly affected by top predators: The Barents Sea." Polar Biology, 25(5), 310–320.
Breivik, O.N, Storvik, G. and Nedreaas, K. 2017. Latent Gaussian models to predict historical bycatch in commercial fishery, Fisheries Research, Volume 185, Pages 62-72, ISSN 0165-7836, https://doi.org/10.1016/j.fishres.2016.09.033.
Gjøsæter, H., Bogstad, B., and Tjelmeland, S. 2009. Ecosystem effects of three capelin stock collapses in the Barents Sea. In Haug, T., Røttingen, I., Gjøsæter, H., and Misund, O. A. (Guest Editors). 2009. Fifty Years of Norwegian-Russian Collaboration in Marine Research. Thematic issue No. 2, Marine Biology Research 5(1):40-53. Doi: 10.1080/17451000802454866
Mette Skern-Mauritzen , Ulf Lindstrøm , Martin Biuw , Bjarki Elvarsson , Thorvaldur Gunnlaugsson , Tore Haug , Kit M Kovacs , Christian Lydersen , Margaret M McBride , Bjarni Mikkelsen , Nils Øien , Gísli Víkingsson 2022. Marine mammal consumption and fisheries removals in the Nordic and Barents Seas. ICES Journal of Marine Science, Volume 79, Issue 5, July 2022, Pages 1583–1603, https://doi.org/10.1093/icesjms/fsac096
Ottersen, G., Bogstad, B., Yaragina, N. A., Stige, L. C., Vikebø, F., and Dalpadado, P. 2014. A review of early life history dynamics of Barents Sea cod ( Gadus morhua ). ICES Journal of Marine Science 71(8): 2064-2087.
Planque, B., Bas, L., Biuw, M., Blanchet M.A., Bogstad, B., Eriksen, E., et al. .2024. A food-web assessment model for marine mammals, fish, and fisheries in the Norwegian and Barents Seas. Progress in Oceanography, https://doi.org/10.1016/j.pocean.2024.103361
The state of biological resources of the Barents, White and Kara Seas and the North Atlantic in 2025. / Murmansk, PINRO 2025, 183 p.
van der Meeren, G. and Prozorkevitch, D. (eds.) 2024. Survey report from the joint Norwegian/Russian Ecosystem Survey in the Barents Sea and the adjacent waters August- December 2024. IMR/PINRO-report series x/2023 (in prep)
Wassmann, P., & Reigstad, M. (2011). "Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic coupling." Oceanography, 24(3), 220–231.
Chapter 3. Cod in subareas 1 and 2 (Northeast Arctic)
Status of the fisheries
Historical development of the fisheries (Table 3.1)
From a level of about 900 000 t in the mid-1970s, total catch declined steadily to around 300 000 t in 1983—1985 (Table 3.1). Catches increased to above 500 000 t in 1987 before dropping to 212 000 t in 1990, the lowest level recorded in the post-war period. The catches increased rapidly from 1991 onwards, stabilizing at around 750 000 t in 1994—1997 but decreased to about 414 000 t in 2000. From 2000—2009, the reported catches were between 400 000 and 520 000 t. In addition, there were unreported catches (see below). Catches decreased from a peak of 986 000 t in 2014 to 693 000 t in 2019-2020 before increasing to 767 000 t in 2021 and decreasing again to 582 552 t in 2023 and 453 040 t in 2024.
The fishery is conducted both with an international trawler fleet and with coastal vessels using traditional fishing gears. Quotas were introduced in 1978 for the trawler fleets and in 1989 for the coastal fleets. In addition to quotas, the fishery is regulated by a minimum catch size, a minimum mesh size in trawls and Danish seines, a maximum bycatch of undersized fish, closure of areas having high densities of juveniles and by seasonal and area restrictions.
Reported catches prior to 2025 (Tables 3.1-3.4, Figure 3.1)
The provisional catch of cod in Subarea 1 and divisions 2.a and 2.b for 2024 reported to the working group is 483 867 t (including both NEA cod and NCC catches).
The historical practice (considering catches between 62°N and 67°N for the whole year and catches between 67°N and 69°N for the second half of the year to be Norwegian coastal cod) has been used for estimating the Norwegian landings of Northeast Arctic cod up to and including 2011 (Table 3.2). The catches of coastal cod subtracted from total cod catches in Subarea 1 and divisions 2.a and 2.b for the period 1960—2024 are given in Table 3.2. For 2012–2024 the Norwegian catches have been analyzed by an ECA-version designed for simultaneously providing estimates of catch numbers-at-age for each of the two stocks.
Coastal cod catches in 2024 for the southern and northern area combined were 30 827 tonnes and this amount was as in previous years subtracted from the total cod catch north of 62° N to get the figure for NEA cod used in that assessment (Table 3.1 and 3.2).
The time series for coastal cod catches are now inconsistent with the coastal cod catches presented in ICES AFWG 2025 Chapter 2, as the coastal cod catch time series were revised at WKBarFar (ICES 2021a), but not the NEA cod time series. At WKBarFar, the proposal for revision of NEA cod catch data series was rejected, as Norwegian data for many years and age groups (especially ages 12+ in years prior to 2013) were changed considerably and the reason for this was not sufficiently explained. WKBarFar recommended that when the revision of the historical Norwegian catch data is ready it should be submitted to ICES for review, ideally by a review attached to the AFWG.
The catch by area is shown in Table 3.1 and further split into trawl and other gears in Table 3.3. The distribution of catches by gears in 2024 was similar to 2023, while the proportion of catches taken in area 2a increased markedly. The nominal landings by country are given in Table 3.4.
There is information on cod discards (see ICES AFWG 2021 section 0.4, ICES 2021b) but it was not included in the assessment because these data are fragmented and different estimates are in contradiction with each other. Moreover, the level of discards is relatively small in the recent period and including these estimates in the assessment should not change our perception of NEA cod stock size.
In summer/autumn 2018, a Norwegian vessel caught 441 t of cod in the Jan Mayen EEZ, which is a part of ICES area 2a, mostly by long-line. Cod is known to occasionally occur in this area, but rarely in densities which are suitable for commercial fisheries. The cod caught in this area in 2018 was large (65-110 cm), and otolith readings and genetics both showed this cod to be a mix of Northeast Arctic and Icelandic cod. Norway did in 2019-2020 carry out an experimental long-line fishery during four different periods in each year in order to investigate further the occurrence of cod in this area in space and time as well as stock identity. A description of this fishery as well as a historic overview of cod observations around Jan Mayen is given in Bogstad (2023).
Quotas, catches and advice for the period 2019-2025 for cod in the Jan Mayen area are given in Table 3.1a. These catches are not included in the catch statistics for Northeast Arctic cod. No directed fishery for cod was allowed in 2024, but 6 t were caught as bycatch in the Greenland halibut fishery.
Unreported catches of Northeast Arctic cod (Table 3.1)
In the years 2002—2008, certain quantities of unreported catches (IUU catches) have been added to the reported landings. More details on this issue are given in the Working group reports for that period.
There are no reliable data on level of IUU catches outside the periods 1990—1994 and 2002—2008, but it is believed that their level was not substantial enough to influence historical stock assessment.
According to reports from the Norwegian-Russian analysis group on estimation of total catches, the total catches of cod since 2009 were very close to officially reported landings.
TACs and advised catches for 2024 and 2025
The Joint Norwegian-Russian Fisheries Commission (JNRFC) agreed on a cod TAC of 453 427 t for 2024, and in addition 21 000 t Norwegian coastal cod. The total reported catch of 453 040 t in 2024 was 387 t below the agreed TAC. Since 2015, JNRFC has decided that Norway and Russia can transfer to next year or borrow from last year 10% of the cod country’s quota. That may lead to some deviation between agreed TAC and reported catch. As an extraordinary measure due to expected underfishing of the TAC in 2021, JNRFC decided that it should be possible to transfer 15% of the TAC between 2021 and 2022, but thereafter the maximum transfer was reset back to the agreed 10%.
The advice for 2025 given by JRN-AFWG in 2024 was 311 587 t based on the agreed harvest control rule. The quota established by JNRFC for 2025 was set to 340 000 t. In addition, the TAC for Norwegian Coastal Cod was set to the same value for 2025 as for 2024: 21 000 t.
Status of research
Fishing effort and CPUE (Table A1, Figure 3.4-3.5)
CPUE series of the Russian and Norwegian trawl fisheries are given in Table A1 and described in Kovalev (WD1) and Gundersen et al. (WD2). The Russian series have been combined by area and vessel type since last year (WD1). The data reflect the total trawl effort (Figure 3.4 and 3.5), both for Norway and Russia. Norwegian data for 2011–2024 are not compatible with data for 2007 and previous years. Norwegian CPUE (double trawl) has declined from 2020 to 2021 and has then stabilized (Figure 3.5). Russian CPUE has declined in a similar way as total stock biomass has decreased in recent years (Figure 3.4).
Survey results - abundance and size at age (Tables 3.5, A2-A14)
Joint Barents Sea winter survey (bottom trawl and acoustics) Acronyms: BS-NoRu-Q1 (BTr) and BS-NoRu-Q1 (Aco)
The survey was carried out as planned with relatively good spatial coverage, although bad weather and ice limited the coverage somewhat.
Before 2000 this survey was made without participation from Russian vessels, while in 2001—2005, 2008—2016 and 2018-2025, Russian vessels have covered important parts of the Russian zone. In 2006—2007 the survey was carried out only by Norwegian vessels. In 2007, 2016, and 2021-2025 the Norwegian vessels did not cover any part of the Russian EEZ. The methods for adjustment for incomplete area coverage are described in detail in Fall et al. (2024) and references therein. Table 3.5 shows areas covered in the time-series and the additional areas implied in the method used to adjust for missing coverage in the Russian Economic Zone.
Regarding the older part of this time-series it should be noted that the survey prior to 1993 covered a smaller area (Jakobsen et al . 1997), and the number of young cod (particularly 1- and 2-years old fish) was probably underestimated. Changes in the survey methodology through time are described in Appendix 2 in Fall et al. (2024). Note that the change from 35 to 22 mm mesh size in the codend in 1994 is not corrected for in the time-series. This mainly affects the age 1 indices.
It is likely that in recent years the coverage in the February survey (BS-NoRu-Q1 (BTr) and BS-NoRu-Q1 (Aco)) has been incomplete, in particular for the younger ages. This could cause a bias in the assessment, but the magnitude is unknown. The 2014–2025 surveys covered considerably larger areas than earlier winter surveys and showed that most age groups of cod (particularly ages 1 and 2) were distributed far outside the standard survey area. The bottom trawl survey estimates including the extended area for 2014-2025 were used in the tuning data separately from the same index before 2014, as decided at WKBarFar 2021 (ICES 2021a).
Lofoten acoustic survey on spawners Acronym: Lof-Aco-Q1
The estimated abundance indices from the Norwegian acoustic survey off Lofoten and Vesterålen (the main spawning area for this stock) in March/April are given in Table A4. A description of the survey, sampling effort and details of the estimation procedure can be found in Korsbrekke (1997). The 2025 survey result in biomass terms was 32 thousand tonnes, this is 30 % of the 2024 level and the lowest since 1988.
A pilot survey on spawning grounds north of the area covered by the Lofoten survey was carried out in 2023 (Korsbrekke 2024), at about the same time and in the same way as the Lofoten survey. The total abundance in that area was about 17% of that in the Lofoten area. The area covered by this pilot survey is mostly covered also by the winter survey, but with much larger distance between transects at that time. Such a survey was not carried out in 2024 or 2025. Extra coverage of this area in the winter survey should be considered as the fishery on spawning cod has shifted northwards in recent years.
Joint Ecosystem survey Acronym: Eco-NoRu-Q3 (Btr)
Swept area bottom trawl estimates from the joint Norwegian-Russian Ecosystem survey (BESS) in August-September for the period 2004–2024 are given in Table A14. This survey normally covers the entire distribution area of cod at that time of the year.
In 2014 this survey had an essential problem with area coverage in the north-west region because of difficult ice conditions. During the 2013 survey, a substantial part of population was distributed in the area covered by ice in 2014. Based on those observations AFWG decided in 2015 to exclude 2014 year from that tuning series in current assessment. In 2016 there was incomplete coverage in the international waters and close to the Murman coast. An adjustment for this incomplete coverage was made based on interpolation from adjacent areas (Kovalev et al 2017, WD 12). At this time of the year, usually a relatively small part of the cod stock is found in the area which was not covered in 2016. In 2017 and 2019 the coverage was close to complete, although the far northeastern part of the survey area (west of the north island of Novaya Zemlya) was not covered due to military restrictions. In 2018, a large area in the eastern part of the Barents Sea was not covered. Thus, it was decided not to include 2018 data from this survey in the assessment.
The coverage in 2020 was less synoptic than usual, but it was decided to keep the results in the assessment. The 2021 and 2023 coverages were adequate. In 2024 the coverage was somewhat incomplete west of Svalbard (van der Meeren and Prozorkevitch, 2025).
In 2022 the coverage of the Russian EEZ was done much later than the coverage of the Norwegian EEZ, with the entire survey period being from 15 August to 3 December (van der Meeren and Prozorkevitch, 2023). Also, some areas were not covered. Indices based on the combined data have been calculated (Table A14), but due to the poor synopticity and incomplete coverage it was decided not to use the index for that year in the assessment.
The survey indices are calculated both by the BioFox and StoX calculation methods, and as in earlier years, the Biofox series was used in the tuning. A research recommendation from WKBarFar was to unify these two methods for estimating indices from the Ecosystem survey. However, the benchmark decided to use weight at age from StoX in calculations of weight at age used in the assessment.
Russian autumn survey Acronym: RU-BTr-Q4
Abundance estimates from the Russian autumn survey (November-December) are given in Table A9 (acoustic estimates) and Table A10 (bottom trawl estimates). The entire bottom trawl time-series was in 2007 revised backwards to 1982 (Golovanov et al ., 2007, WD3), using the same method as in the revision presented in 2006, which went back to 1994. The new swept area indices reflect Northeast Arctic cod stock dynamics more precisely compared to the previous one - catch per hour trawling. The Russian autumn survey in 2006 was carried out with reduced area coverage. Divisions 2a and 2b were adequately investigated in the survey in contrast to Subarea 1, where the survey covered approximately 40% of the long-term average area coverage. The Subarea 1 survey indices were calculated based on actual covered area (40 541 sq. miles). The 2007 AFWG decided to use the “final" year class indices without any correction because of satisfactory internal correspondence between year class abundances at age 2—9 years according to the 2006 survey and ones due to the previous surveys.
This survey was not conducted in 2016, but was carried out in 2017, when 79% of the standard survey area was covered (Sokolov et al 2018, WD 11). The index shows a reliable internal consistency, and it was decided to use it in the assessment. This survey was not carried out in 2018-2024 and is discontinued.
Length-at-age is shown in Table A5 for the Joint Barents Sea winter survey, in Table A7 for the Lofoten survey and in Table A11 for the Russian survey in October-December. Weight-at-age is shown in Table A6 for the Joint Barents Sea winter survey, in Table A8 for the Lofoten survey, Table A12 for the Russian survey in October-December and Table A15 for the Ecosystem survey (calculated using StoX). Table A16 presents combined data on Weight-at-age from Joint Barents Sea winter survey and Lofoten survey.
Length and weight at age in the Joint Barents Sea winter survey was fairly stable from 2024 to 2025, with some decrease noted for ages 1-4. Weight at age in the Lofoten survey was similar to 2024. The size at age in the Ecosystem survey in 2024 decreased for ages 1-3 and increased for ages 4-7 compared to 2023.
Age reading
The joint Norwegian-Russian work on cod otolith reading has for many years included regular exchanges of otoliths and age readers (see ICES2021b chapter 0.7). The results of fifteen years of annual comparative age readings are described in Yaragina et al . (2009). Zuykova et al . (2009) re-read old otoliths and found no significant difference in contemporary and historical age determination and subsequent length at age. However, age at first maturation in the historical material as determined by contemporary readers is somewhat younger (from -0.6 years for the 1940-1950s to -0.28-0 years for the 1970-1980s) than that determined by historical readers. Taking this difference into account would thus affect the spawning stock-recruitment relationship and thus the biological reference points.
The overall percentage agreement for the 2017–2018 exchange was 87.7% (Zuykova et al. 2020). The main reason for cod ageing discrepancies between Russian and Norwegian specialists remains the same, representing the latest summer growth zone, and different interpretations of the false zones. The general trend is that the Russian readers assign slightly lower ages than the Norwegian readers compared to the modal age for age groups 7 years and older. This is opposite of what we have seen in previous readings, where the Russian readers have tended to be slightly overestimating the age compared to the Norwegian readers for younger fish (1-5 years), underestimating for older fish (>10 years) and reading without significant difference for ages 6-9 years.
The trend with bias in NEA cod age determination registered for some years of the period 1992–2018 between experts of both countries is a solid argument to continue comparative cod age reading between PINRO and IMR to monitor the situation. The German participant has expressed an intention to join the age reading cooperation in future.
Cod and haddock otoliths from 2019-2024 have not yet been exchanged between the parties. A system for transferring otoliths between IMR and the Polar Branch of VNIRO needs to be set up to resume regular calibration of age readings. At present, in the absence of a system for transferring otolith samples between IMR and the Polar Branch of VNIRO, the scientists have exchanged images of cod and haddock otoliths (100 and 110 specimens) for the first time. Images of otoliths will temporarily be used instead of a physical exchange of otoliths until a system for exchange is in place. Norwegian otoliths collected in 2024 have been embedded in epoxy, cut and photographed by Norwegian specialists, and images have been shared with the Polar Branch of VNÌRO according to the agreed plans of the long-term cooperation. Each reader estimated fish age and annotated the corresponding zones in a single-blind approach (without access to any other annotation). In addition to the dataset containing reader-specific ages, the exchange coordinator then also generated for each fish a single image representing all readers and their annotations, to facilitate discussion and comparison of age estimates.
Online workshops were conducted on May 19th and 26th 2025. The principal objectives were to assess the general results of the exchange (agreement, bias, etc.), but more importantly to go through the annotated materials for as many samples as possible, starting with the more difficult / least agreed upon otoliths. The cod exchange results were encouraging but the overall percentage agreement was initially somewhat low at around 67%, with most age classes showing agreement over 70% (Denechaud et al., WD7). Differences in age estimates were, however, mostly restrained to deviations of one year and rarely more than 2, indicating no strong bias among age reading practices. Initial results indicated a potential small “positive” bias from the Russian reader for most age classes, suggesting a tendency to estimate older ages than the Norwegian readers as in previous exchange. During discussion with the annotations of everyone available, the group reached consensus on a single age for most samples. The necessary use of images from sectioned otoliths means that the results were not directly comparable to previous exchanges nor to actual age estimates from broken otoliths. More data is needed to assess the statistical power of these biases given the wide age distribution of samples (age groups 2-14) and moderate amounts of otoliths for comparison of each separate age group. It was noted that due to the higher resolution and static nature of annotating images, readers found it easier to count more rings than while actively reading under a binocular.
Data available for use in assessment
Data for the period 1946–1983 are taken from the AFWG 2001 report (ICES 2001) and were not revised at the WKBarFar benchmark in 2021.
Catch-at-age (Table 3.6)
For 2024, age compositions from all areas were available from Norway, Russia and Spain. German age compositions were also available but were not used due to inadequate sampling.
There is a concern about the biological sampling from parts of both the Norwegian and Russian fishery that may be too low or missing. Also, the split between NEA cod and coastal cod may be affected by the sampling coverage. Data from Norwegian Coast Guard vessels’ length measurements onboard Russian vessels in some quarters of 2024 were used for calculation of age composition of Russian catches in Division 1, 2a and 2b.
Survey indices available for use in assessment (Table 3.13, A13)
The following survey data series were available:
Fleet code
Name
Place
Season
Age
Years
Fleet 15*
Joint bottom trawl survey
Barents Sea
Feb-Mar
3–12+
1981–2013, 2014-2025
Fleet 16
Joint acoustic survey
Barents Sea+Lofoten
Feb-Mar
3–12+
1985–2025
Fleet 18
Russian bottom trawl surv.
Barents Sea
Oct-Dec
3–12+
1982–2017
Fleet 007
Ecosystem surv.
Barents Sea
Aug-Sep
3–12+
2004–2024**
*Survey indices for Fleet 15 were divided by two series (before and after 2014) in model tuning as decided at WKBarFar 2021.
**2014, 2018 and 2022 data not used in the assessment
The tuning fleet file is shown in Table 3.13. Note that the joint acoustic survey (sum of Barents Sea and Lofoten acoustic survey indices) is given in Table A13.
Survey indices for Fleet 15 have been multiplied by a factor 100, while survey indices for Fleets 007, 16 and 18 have been multiplied by a factor 10. This is done to keep the dynamics of the surveys even for very low indices, because some models (e.g. XSA) add 1.0 to the indices before the logarithm is taken.
Weight-at-age (Tables 3.7-3.9, A6, A8, A12, A16).
Catch weights
For 2024, weight-at-age in the catch for areas 1, 2a and 2b was provided by Norway, Russia and Spain (Table 3.7). For ages up to and including 11, observations are used. Following the WKBarFar 2021 decision, weight at age in catch for the years 1983-present for ages 12-15+ are calculated by a cohort-based von Bertalanffy approach used to replace previous fixed values.
Stock weights
For ages 1—11 stock weights-at-age at the start of year y (Wa,y ) for 1983—2024 are calculated combining, when available, weight at age from the Winter, Lofoten, Russian autumn and Ecosystem surveys. The details are given in the Stock Annex. For ages 12-15+ a similar approach as for weight at age in the catch was used.
Natural mortality including cannibalism (Table 3.12, Table 3.17)
A natural mortality (M) of 0.2 + cannibalism was used. Cannibalism is assumed to only affect natural mortality of ages 3-6.
2024 data are available, and 2023 data have been updated.
The method used for calculation of prey consumption by cod described by Bogstad and Mehl (1997) is used to calculate the consumption of cod by cod for use in cod stock assessment. The consumption is calculated based on cod stomach content data taken from the joint PINRO-IMR stomach content database (methods described in Mehl and Yaragina 1992). On average about 9000 cod stomachs from the Barents Sea have been analyzed annually in the period 1984—2024.
These data are used to calculate the per capita consumption of cod by cod for each half-year (by prey age groups 0—6 and predator age groups 1–11+). It was assumed that the mature part of the cod stock is found outside the Barents Sea for three months during the first half of the year. Thus, consumption by cod in the spawning period was omitted from the calculations.
An iterative procedure was applied to include the per capita consumption data in the SAM run. It is described in detail in Stock Annex.
For the cod assessment data from annual sampling of cod stomachs has been used for estimating cannibalism, since the 1995 assessment. The argument has been raised that the uncertainties in such calculations are so large that they introduce too much noise in the assessment. A rather comprehensive analysis of the usefulness of this was presented in Appendix 1 in the 2004 AFWG report (ICES 2004). The conclusion was that it improves the assessment.
The data on cod cannibalism for the historical period (1946—1983) was included in assessment during the benchmark to make the time-series consistent (ICES 2015a, WKARCT 2015). These estimates were based on hindcasted values of NEA cod natural mortality at ages 3—5 using PINRO database on food composition from cod stomach for the historical period (Yaragina et al . 2018).
Maturity-at-age (Tables 3.10-3.11)
Historical (pre–1982) Norwegian and Russian time-series on maturity ogives were reconstructed by the 2001 AFWG meeting (ICES 2001). The Norwegian maturity ogives were constructed using the Gulland method for individual cohorts, based on information on age at first spawning from otoliths. For the time period 1946—1958 only the Norwegian data were available. The Russian proportions mature-at-age, based on visual examinations of gonads, were available from 1959.
Since 1982 Russian and Norwegian survey data have been used (Table 3.10). For the years 1985—2024, Norwegian maturity-at-age ogives have been obtained by combining the Barents Sea winter survey and the Lofoten survey. Russian maturity ogives from the autumn survey as well as from commercial fishery for November-February are available from 1984 until present. The Norwegian maturity ogives tend to give a higher percent mature-at-age compared to the Russian ogives, which is consistent with the generally higher growth rates observed in cod sampled by the Norwegian surveys. The percent mature-at-age for the Russian and Norwegian surveys have been arithmetically averaged for all years, except 1982—1983 when only Norwegian observations were used and 1984 when only Russian observations were used.
Russian data for the autumn survey for 2018 and later years were not available as the survey was not conducted. In WD15, 2019, updated correction factors to allow for this when calculating the combined maturity-at-age in 2019 were calculated, based on historical differences between Norwegian and Russian data. These correction factors were then applied to the Norwegian data for 2020-2025.
The approach used for calculating maturity at age is the same as previously used and consistent with the approach used to estimate the weight-at-age in the stock, except that no data from the Ecosystem survey are used. However, since survey data, both abundance indices and proportion mature, have been revised, the entire time series of ogives back to 1994 was revised at the benchmark. The proportions of mature cod for age 13–15 are set to 1 for the period 1984–present.
Maturity-at-age for cod has been variable the last years, particularly for ages 6–9. According to the combined data, maturity at age decreased from 2024 to 2025 for age groups 6-10 (Table 3.11).
Assessment using SAM
SAM settings (Table 3.14)
The SAM model settings optimized by WKBarFar are shown in Table 3.14.
SAM diagnostics (Figure 3.2 a-e)
Residuals for the SAM run are shown in Figure 3.2a, while model retrospective plots of F, SSB and recruitment are shown in Figure 3.2b. Historical retrospective pattern for final SAM run are shown in Figure 3.2c. Figure 3.2d compares observed and modelled catches in tonnes and Figure 3.2e shows the catchability by survey and age group.
The retrospective pattern is generally adequate (Figure 3.2b), with absolute values of Mohn’s rho < 18% for SSB, R and F.
Results of assessment (Tables 3.15-3.18, Figure 3.1)
Summaries of landings, fishing mortality, stock biomass, spawning stock biomass and recruitment since 1946 are given in Table 3.18 and Figure 3.1.
The fishing mortalities and population numbers are given in Tables 3.15 and 3.16.
The estimated F5-10 in 2024 is 0.627, which is above Fpa and also above the Fmsy range (Table 3.18). Fishing mortality has been increasing steadily from 2012-2022 but seems to have levelled off since 2022. The spawning stock biomass in 2025 is estimated to be 330 kt (Table 3.20), which is the lowest since 2000, and much lower than the peak in 2013 (2,186 kt). When comparing it farther back in time, one should bear in mind that in the early part of the time-series (before the 1980s) the fraction at age of mature fish was considerably lower.
Total stock biomass in 2025 is estimated to 1,133 kt, which is below the long-term mean and well below the highest level observed after 1955 (3,662 kt in 2013).
It is noted that the exploitation pattern is still dome-shaped with a marked decrease in selectivity above age 12, although the dome-shape is not as strong as in assessments made before the 2021 benchmark.
M values (M = 0.2+cannibalism mortality) are given in Table 3.17. For ages 3—5 the M matrix in 1946—1983 also includes cannibalism mortality since the benchmark meeting in 2015 (ICES 2015a).
Reference points and harvest control rules
The current reference points for Northeast Arctic cod were estimated by SGBRP (ICES 2003a) and adopted by ACFM at the May 2003 meeting.
At the 46th session of JNRFC a new version of the management rule was adopted (see section 3.5.3) . The TAC advice for 2026 is based on the agreed harvest control rule.
Biomass reference points
The values adopted by ACFM in 2003 are Blim = 220 000 t, Bpa = 460 000 t. (ICES 2003a).
Fishing mortality reference points
The values adopted by ACFM in 2003 are Flim = 0.74 and Fpa = 0.40 (ICES 2003a). The Fmsy for NEA cod was estimated by WKBarFar 2021 to be in the range 0.40 - 0.60.
Harvest control rule
The history of how the harvest control rule has developed is given in the 2017 AFWG report (ICES 2017). JNRFC in 2015 asked ICES to explore the consequences of 10 different harvest control rules. This was done by WKNEAMP (ICES 2015b, 2016). JNRFC in 2016 adopted one of the rules explored by WKNEAMP (Rule 6 in that report).
The current rule reads as follows:
The TAC is calculated as the average catch predicted for the coming 3 years using the target level of exploitation (Ftr).
The target level of exploitation is calculated according to the spawning stock biomass (SSB) in the first year of the forecast as follows:
If the spawning stock biomass in the present year, the previous year and each of the three years of prediction is above Bpa, the TAC should not be changed by more than +/- 20% compared with the previous year’s TAC. In this case, Ftr should however not be below 0.30.
Prediction
Prediction input (Tables 3.19a)
The input data to the short-term prediction with management option table (2025—2028) are given in Table 3.19a. For 2025 stock weights and maturity were calculated from surveys as described in Sections 3.3.2 and 3.3.4.
Catch weights in 2025 onwards and stock weights in 2026 and onwards for age 3–11 are predicted by the method described by Brander (2002), where the latest observation of weights by cohort are used together with average annual increments to predict the weight of the cohort the following year. The method is given by the equation
W(a+1,y+1)=W(a,y) + Incr(a), where Incr(a) is a “medium term” average of Incr(a,y)= W(a+1,y+1)-W(a,y)
This method was introduced in the cod prediction in the 2003 working group (ICES 2003b). Since the 2005 working group (ICES 2005) an average of the 3 most recent values of annual increments have been used for predicting stock weights. For catch weights the last 5-year period for averaging the increments is used (changed from 10-year period at the 2021 benchmark).
The maturity ogive for the years 2026—2028 was predicted by using the 2022-2024 average. The fishing pattern in 2025 and later years was set equal to the average of the previous 3 years. The stock annex prescribes average over 5 years, but as there has been a clear shift in the fishing pattern in recent years towards exploiting younger fish, a 3-year average was considered to be more appropriate. A 3-year average was also used in last year’s assessment.
The stock number-at-age in 2025 was taken from the final SAM run (Table 3.16) for ages 4 and older. Recruitment at age 3 in the years 2025—2028 was estimated as described in section 3.7.2. Figure 3.3 shows the development in natural mortality due to cannibalism for cod (prey) age groups 1-3 together with the abundance of capelin in the period 1984—2024. Although natural mortality increased from 2023 to 2024, there is no clear time trend in natural mortality. Thus, the average M values for the last 3 years are used to predict natural mortality of age groups 3—6 for years 2025—2028 (based on benchmark decision, WKARCT 2015 and unchanged at WKBarFar 2021).
The catch in 2025 is expected to be close to the TAC when taking into account transfers of quota between years and the expected level of the coastal cod catch. It was found to be more appropriate to use TAC constraint than Fsq (which is the usual choice) in the intermediate year, as Fsq would imply a catch in 2025 of 398 000 t, i. e. 58 000 t above the TAC.
Recruitment prediction (Table 3.19b-c)
At the 2008 AFWG meeting (ICES 2008) it was decided to use a hybrid model, which is a weighted arithmetic mean of different recruitment models. This model has not performed well in recent years (as shown e.g. in Fig. 3.2c for the prediction of age 3 abundance in the assessment (intermediate) year. A thorough analysis of existing recruitment models and five proposed new models, as well as using recent averages of recruitment values was carried out in 2024 (Kovalev and Chetyrkin, WD6, 2024) and updated this year. Based on the model performance, the RCT3 model was, as in 2024, chosen for predicting 1-3 years ahead.
This gave recruitment values of 537 million for 2025, 378 million for 2026, 322 million for 2027 and 356 million for 2028. For the age 3 recruitment in 2025, the results of running RCT3 with/without the Ecosystem survey and SAM (456 million) were all very similar. An average of the recent 4 years was chosen to predict 4 years ahead (i.e. the recruitment at age 3 for 2028 being calculated as the 2022-2025 average).
It is suggested to rerun an analysis of various recruitment models each year.
Issues to be considered for the future:
Including the Ecosystem survey in the RCT3 analysis.
Evaluate the performance of the SAM model for the 1-year-ahead prediction. The Mohn’s rho for recruitment in SAM is currently quite good (12% for the last 5 years), but the retrospective performance of SAM has not been compared to the models proposed in Kovalev and Chetyrkin (WD6, 2024).
Prediction results (Tables 3.20-3.21)
The resulting SSB in 2026 is 325 kt, which is 2 % lower than the SSB in 2025. Table 3.20 shows the short-term consequences over a range of F-values in 2026. The detailed outputs corresponding to a catch equal to the TAC in 2025 and the F corresponding to the HCR and Fpa in 2026 are given in Table 3.21. Summarized results are shown in the text table below.
Basis
Total catch (2026)
F (2026)
SSB (2027)
% SSB change *
% TAC change **
% Advice change ***
Management plan^
269 440
0.3 67
359 319
1 0
- 21
- 14
Other options
MSY approach: FMSY ****
289 647
0.40
347 646
7
- 15
- 7
F = 0
0
0
527 732
6 2
-100
-100
F = 0.283 ^^
214 765
0.283
391 622
20
-31
-37
F = F2025
354 709
0. 511
311 083
- 4
4
14
Fpa
289 647
0.40
347 646
7
- 15
- 7
Flim
472 332
0.74
249 215
-2 3
39
52
* SSB 2027 relative to SSB 2026.
** Advice for 2026 relative to TAC for 2025 (340 000 tonnes).
*** Advice for 2026 relative to advice for 2025 (311 587 tonnes)
**** F = 0.40 corresponds to the lower bound of the F MSY range (0.40-0.60), F not reduced for SSB being below B pa .
^ Since SSB in 2026 is below B pa = 460 000 t, F = 0.40*SSB 2026 /B pa = 0.283 is used in the 3-year prediction, giving catches of 214 765, 270 953 and 322 601 t in 2026, 2027 and 2028, respectively. The average of this is 269 440 tonnes. As SSB is below B pa in 2026, the 20% limit on annual change in TAC does not apply.
^^F=0.283 corresponds to applying the harvest control rule without a 3-year prediction.
The advice for 2026 is 14% lower than the advice for 2025. The downward adjustment of spawning stock size since last year’s assessment and the declining spawning stock trend both contribute to the reduction in advice.
This catch forecast covers all catches. It is then implied that all types of catches are to be counted against this TAC. It also means that if any overfishing is expected to take place, the above calculated TAC should be reduced by the expected amount of overfishing.
Exploratory analysis of one possible formulation of an HCR which is S-shaped when SSB is below Bpa (see formula below) was presented at JRN-AFWG. Using that particular formulation with a three-year prediction as in the existing HCR would give an Ftarget of 0.36, giving catches of 264 832, 317 555 and 362 712 tonnes in 2026, 2027 and 2028, respectively. The average of this is 315 033 tonnes. Note that this is not the agreed HCR and is not being presented as the basis for current management but is presented here to facilitate further exploration of such a rule. In particular, the precise formulation of such a rule (especially the degree to which it deviates from the current straight line) would need to be explored by JRN-AFWG before it could be recommended for use in management.
Formula for S-shaped reduction of Ftarget below Bpa : (in the example described above the exponent p=3 was used, but other exponents could be explored)
Ftarget=a*SSBp for SSB<=0.5*Bpa
Ftarget=Fpa-a*(Bpa-SSB)p for 0.5*Bpa < SSB < Bpa
where
a=0.5*Fpa/((0.5*Bpa)p )
Medium-term predictions (Figure 3.8)
The inputs for medium-term prediction are the same as for short-term ones. For years after terminal year in short-term prediction the same value as for this year are used for all parameters except target fishing mortality which is according to the HCR.
The stock size has been decreasing in recent years due to low incoming recruitment, downward adjustment of the stock size (due to model modifications at the benchmark in 2021) and high fishing mortality. The increase in fishing mortality was partly due to the 20% limit on annual reduction of TAC. Recruitment in coming years (2022-2025 year classes) is also estimated to be below average. The reasons for the low recent recruitment are not known, but investigation on this topic is ongoing. Previous periods of low recruitment have mainly occurred when temperature is below average, which is not the case at present.
The predictions for 2026 and following years indicate that catches, SSB and total stock biomass will increase after 2026, and that SSB will remain below Bpa until 2028 (Figure 3.8).
Comparison to 2024 assessment
The text table below compares this year’s estimates with the 2024 JRN-AFWG estimates for numbers at age (millions), total biomass, spawning biomass (thousand tonnes) in 2024, as well as reference F for the year 2023.
N (2024) by age
Assessment year
F (2023)
3
4
5
6
7
8
9
10
11
12+
TSB (2024)
SSB (2024)
F (2024)
2024
0.589
587.0*
167.2
101.6
91.9
80.1
55.6
29.3
12.9
2.6
1.9
1289
552
0.589**
2025
0.631
632.5
183.3
105.6
94.8
77.4
48.0
27.7
10.4
2.3
1.1
1244
490
0.627
Ratio 2025/2024
1.07
1.08
1.10
1.04
1.03
0.97
0.86
0.95
0.81
0.88
0.58
0.97
0.89
1.06
*estimated by recruitment models
**assuming Fsq
In the current assessment, the number of age 3-6 in 2024 was adjusted upwards compared to the 2024 JRN-AFWG assessment, while the older age groups were adjusted downwards.
Comparison to prediction
The change in the advice is large compared to last year. The advice for 2026 is 269 440 t, while the advice for 2025 given by JRN-AFWG was 311 587 t. The 2025 assessment adjusted the spawning stock size in recent years downwards. The main tendency for stock decrease in recent years was similar to last year’s assessment.
Concerns with the assessment and management advice
The WG realizes that imprecise input data, in particular the catch-at-age matrix, and discontinuation of some surveys as well as incomplete spatial coverage and reduced synopticity in surveys, could be a main obstacle to producing precise stock assessments, regardless of which model is used.
Given the decline of the stock in recent years, the 20% limit on annual TAC change led to fishing pressure well above the target in the HCR for several years. The SSB has now fallen below Bpa, and it is thus critical for future stock development to ensure that the TAC is set equal to the scientific advice. The allowed 10% quota transfer between years compounds the risk arising from the TAC being set above the advice in the current situation with the spawning stock being below Bpa .
Based on the predicted SSB in 2026, F= 0.283 is used for the advice. Applying F= 0.283 to the projected stock in 2026 would give a quota advice of 214 765 t . The three-year look ahead component in the HCR results in the actual advice being higher (at 269 440 t ) because the HCR accounts for signs that the stock is expected to increase in 2026-2028, assuming the catch advice is followed.
It is also a concern whether the current harvest control rule is precautionary in view of the recent below average recruitment (no strong year classes after 2005). Preliminary results (Kovalev et al., WD10) indicate that the current harvest control rule is precautionary also for a stock-recruitment relationship based on the year classes 2006-2019.
A separate document describing evaluation of the existing harvest control rules and some alternative rules will be presented to the JNRFC meeting in October 2025.
Additional assessment methods
All models use the same tuning data.
TISVPA (Tables 3.22-3.24, Figure 3.6a-c)
This year the TISVPA model was applied to NEA cod with the same settings as last year and using the same data as SAM except that natural mortality values from cannibalism were taken from the SAM runs. During WG the results of exploratory runs using the TISVPA model (Tables 3.22-3.24) were discussed. The residuals of the model approximation of catch-at-age and “fleets” data are presented in Figure 3.6a. Likelihood profiles for different data source are presented in Figure 3.6b. Retrospective run results are shown in Figure 3.6c.
Model comparisons (Figures 3.2a, 3.6c, 3.7)
Figure 3.7 compares the results of SAM and TISVPA, showing F, SSB, TSB and recruitment. Trends are similar in all models, but TISVPA gives a slightly lower F in 2024 and higher biomass in 2025 than SAM. Also, TISVPA gives a different trend in F in recent years with a peak in 2022, while SAM gives an almost constant F in 2022-2024. Recruitment in 2024 is higher in TISVPA than in SAM. Both models show a reasonable retrospective pattern (Figures 3.2a, 3.6c).
New and revised data sources
This section describes some data sources which could be revised or included in the assessment in the future.
Consistency between NEA cod and coastal cod catch data (Table 3.2)
Consistency between the catch data used for NEA cod and coastal cod should be ensured. The revised catch figures used in the coastal cod assessment do not correspond to the difference between the total cod catch and the catch used in the NEA cod assessment (Table 3.2). These discrepancies will be adjusted when the NEA cod catch series are revised (section 3.2.2).
Discard and bycatch data
Work on updating discard and bycatch data series is ongoing. Revised bycatch estimates in numbers for the period 2005-2024 are shown in Fig. 1.14. At WKARCT in 2015 it was, however, decided not to include those data in the catch-at-age matrix.
The bycatch mainly consists of age 1 and 2 fish, but the bycatch is generally small compared to other reported sources of mortality: catches, discards and the number of cod eaten by cod. From 1992 onwards, bycatches of age 3 and older fish are negligible, because use of sorting grids was made mandatory. However, in 1985, bycatches of age 5 and 6 cod were about one third of the reported catches for those age groups. The year class for which the bycatches were highest, was the 1983 year class (total bycatch of age 2 and older fish of about 60 million, compared to a stock estimate of about 1300 million at age 3.
Bogstad, B. and Mehl, S. 1997. Interactions Between Cod ( Gadus morhua ) and Its Prey Species in the Barents Sea. Forage Fishes in Marine Ecosystems. Proceedings of the International Symposium on the Role of Forage Fishes in Marine Ecosystems. Alaska Sea Grant College Program Report No. 97-01: 591-615. University of Alaska Fairbanks.
Brander, K. 2002. Predicting weight at age. Internal ICES note to assessment working groups. 2003. Software implementation of process models. Working Document No. 2 to the Arctic Fisheries Working Group, San Sebastian, Spain, 23 April- 2 May 2003.
Fall, J., Wenneck, T. de Lange, Bogstad, B., Eidset, E., Fuglebakk, E., Godiksen, J. A., Høines, Å., Johannesen, E., Midtun, H. Aa., Moksness, I., Skage, M. L., Skaret, G., Staby, A., Tranang, C. Aa., Windsland, K., Russkikh, A. A., and Kharlin, S. 2024. Fish investigations in the Barents Sea winter 2024. IMR-PINRO Joint Report Series 8-2024, 156 pp.
Golovanov S.E., Sokolov A.M., and Yaragina, N.A. 2007. Revised indices of the Northeast Arctic cod abundance according to the 1982-2006 data from Russian trawl-acoustic survey (TAS). Working Document #3 for AFWG 2007.
Gundersen, S., Otterå, H. and Nedreaas, K. 2025. Effort and catch-per-unit-effort (CPUE) for Norwegian trawlers fishing cod north of 67˚N in 2011-2024. WD2, JRN_AFWG 2025.
ICES 2001. Report of the Arctic Fisheries Working Group. Bergen, Norway, 24 April – 3 May 2001. ICES CM 2001/ACFM:19. 380 pp.
ICES 2003a. Study Group on Biological Reference Points for Northeast Arctic Cod. Svanhovd, Norway 13-17 January 2003. ICES CM 2003/ACFM:11.
ICES 2003b. Report of the Arctic Fisheries Working Group, San Sebastian, Spain 23 April – 2 May 2003. ICES C.M. 2003/ACFM:22, 448 pp.
ICES 2004. Report of the Arctic Fisheries Working Group, Copenhagen 4-13 May 2004. ICES C.M. 2004/ACFM:28, 475 pp.
ICES 2005. Report of the Arctic Fisheries Working Group, Murmansk, Russia 19-28 April 2005. ICES C.M. 2005/ACFM:20, 564 pp.
ICES 2008. Report of the Arctic Fisheries Working Group, Copenhagen, 21-29 April 2008. ICES C.M. 2008/ACOM:01, 531 pp.
ICES. 2015a. Report of the Benchmark Workshop on Arctic Stocks (WKARCT), 26-30 January 2015, ICES Headquarters, Denmark. ICES CM 2015\ACOM:31. 126 pp.
ICES 2015b. Report of the first Workshop on Management Plan Evaluation on Northeast Arctic cod and haddock and Barents Sea capelin ( WKNEAMP-1) , , . ICES CM 2015/ACOM:60, 27 pp.
ICES 2016. Report of the second Workshop on Management Plan Evaluation on Northeast Arctic cod and haddock and Barents Sea capelin (WKNEAMP-2) , 25-28 January 2016, Kirkenes, Norway. ICES CM 2016/ACOM:47, 76 pp.
ICES 2017. Report of the Arctic Fisheries Working Group, Copenhagen, 19-25 April 2017. ICES C.M. 2017/ACOM:06,486 pp.
ICES. 2021a. Benchmark Workshop for Barents Sea and Faroese Stocks (WKBARFAR 2021). ICES Scientific Reports. 3:21. 205 pp. https://doi.org/10.17895/ices.pub.7920
Jakobsen, T., Korsbrekke, K., Mehl, S., and Nakken, O. 1997. Norwegian combined acoustic and bottom trawl surveys for demersal fish in the Barents Sea during winter. ICES CM 1997/Y:17.
Korsbrekke, K. 1997. Norwegian acoustic survey of Northeast Arctic cod on the spawning grounds off Lofoten. ICES C.M 1997/Y:18.
Kovalev, Y., Prozorkevich, D., and Chetyrkin, A. 2017. Estimation of Ecosystem survey 2016 index in situation of not full area coverage. Working Document No. 12 to the Arctic Fisheries Working Group, Copenhagen, 18-25 April 2017.
Kovalev, Y., and Chetyrkin, A. 2019. What does NEA cod want for prediction - Fsq or TAC constraint? Working Document No. 11 to the Arctic Fisheries Working Group. ICES. 2019. Arctic Fisheries Working Group (AFWG). ICES Scientific Reports. 1:30. 934 pp.
Kovalev, Y., and Chetyrkin, A. 2024. Analysis of the NEA Cod recruitment prediction quality. WD6, AFWG 2024.
Kovalev, Y., Yaragina, N. A., and Vasilyev, D. 2025. Evaluation of the NEA cod HCRs. WD10, JRN-AFWG 2025.
Mehl, S., and Yaragina, N. A. 1992. Methods and results in the joint PINRO-IMR stomach sampling program. In: Bogstad, B. and Tjelmeland, S. (eds.), Interrelations between fish populations in the Barents Sea. Proceedings of the fifth PINRO-IMR Symposium. Murmansk, 12–16 August 1991. Institute of Marine Research, Bergen, Norway, 5–15.
Sokolov A., Russkikh A., Kharlin S., Kovalev Yu. A., and Yaragina N.A. 2018. Results of the Russian trawl-acoustic survey on cod and haddock in the Barents Sea and adjacent waters in October-December 2017. Working Document no. 11. ICES Arctic Fisheries Working Group, ICES CM 2018/ACOM:06.
Thygesen, U. H., Albertsen, C. M., Berg, C. W., Kristensen, K., and Nielsen, A. 2017. Validation of ecological state space models using the Laplace approximation Environmental and Ecological Statistics 24 (2): 317-339.
van der Meeren, G. and Prozorkevitch, D. (eds.) 2023. Survey report from the joint Norwegian/Russian Ecosystem Survey in the Barents Sea and the adjacent waters August-October 2024. IMR/PINRO-report series 10/2023.
van der Meeren, G. and Prozorkevitch, D. (eds.) 2025. Survey report from the joint Norwegian/Russian Ecosystem Survey in the Barents Sea and the adjacent waters August-October 2024. IMR/PINRO-report series 3/2025.
WD 15. 2019. Updated mean ratios between the combined and Norwegian data on weight at age and maturity at age in Northeast Arctic cod. Working document no 15, AFWG 2019.
Yaragina N.A. Nedreaas K.H., Koloskova V., Mjanger H., Senneset H., Zuykova N. and Ǻgotnes P. 2009. Fifteen years of annual Norwegian-Russian cod comparative age readings. Marine Biology Research 5(1): 54-65.
Yaragina N. A., Kovalev Yu. A., and Chetyrkin A. 2018. Extrapolating predation mortalities back in time: an example from North-east Arctic cod cannibalism, Marine Biology Research 14(2): 203-216. https://doi.org/10.1080/17451000.2017.1396342
Zuykova N.V., Koloskova V.P., Mjanger H., Nedreaas K.H., Senneset H., Yaragina N.A., Ågotnes P., and Aanes S. 2009. Age determination of Northeast Arctic cod otoliths through 50 years of history. Marine Biology Research 5(1): 66-74.
Zuykova N.V., et al. 2020. Report on the meeting between Norwegian and Russian age reading specialists at Polar Branch of FSBSI “VNIRO” Murmansk, 20-24 May 2019. Working document no 8 in: ICES. 2020c.Arctic Fisheries Working Group (AFWG). ICES Scientific Reports. 2:52. 577 pp. http://doi.org/10.17895/ices.pub.6050.
Year
Subarea 1
Division 2.a
Division 2.b
Unreported catches
Total catch
1961
409 694
153 019
220 508
783 221
1962
548 621
139 848
220 797
909 266
1963
547 469
117 100
111 768
776 337
1964
206 883
104 698
126 114
437 695
1965
241 489
100 011
103 430
444 983
1966
292 253
134 805
56 653
483 711
1967
322 798
128 747
121 060
572 605
1968
642 452
162 472
269 254
1 074 084
1969
679 373
255 599
262 254
1 197 226
1970
603 855
243 835
85 556
933 246
1971
312 505
319 623
56 920
689 048
1972
197 015
335 257
32 982
565 254
1973
492 716
211 762
88 207
792 685
1974
723 489
124 214
254 730
1 102 433
1975
561 701
120 276
147 400
829 377
1976
526 685
237 245
103 533
867 463
1977
538 231
257 073
109 997
905 301
1978
418 265
263 157
17 293
698 715
1979
195 166
235 449
9 923
440 538
1980
168 671
199 313
12 450
380 434
1981
137 033
245 167
16 837
399 037
1982
96 576
236 125
31 029
363 730
1983
64 803
200 279
24 910
289 992
1984
54 317
197 573
25 761
277 651
1985
112 605
173 559
21 756
307 920
1986
157 631
202 688
69 794
430 113
1987
146 106
245 387
131 578
523 071
1988
166 649
209 930
58 360
434 939
1989
164 512
149 360
18 609
332 481
1990
62 272
99 465
25 263
25 000
212 000
1991
70 970
156 966
41 222
50 000
319 158
1992
124 219
172 532
86 483
130 000
513 234
1993
195 771
269 383
66 457
50 000
581 611
1994
353 425
306 417
86 244
25 000
771 086
1995
251 448
317 585
170 966
739 999
1996
278 364
297 237
156 627
732 228
1997
273 376
326 689
162 338
762 403
1998
250 815
257 398
84 411
592 624
1999
159 021
216 898
108 991
484 910
2000
137 197
204 167
73 506
414 870
2001
142 628
185 890
97 953
426 471
2002
184 789
189 013
71 242
90 000
535 045
2003
163 109
222 052
51 829
115 000
551 990
2004
177 888
219 261
92 296
117 000
606 445
2005
159 573
194 644
121 059
166 000
641 276
2006
159 851
204 603
104 743
67 100
537 642
2007
152 522
195 383
97 891
41 087
486 883
2008
144 905
203 244
101 022
15 000
464 171
2009
161 602
207 205
154 623
523 431
2010
183 988
271 337
154 657
609 983
2011
198 333
328 598
192 898
719 829
2012
247 938
331087
148 638
727 663
2013
360 673
421678
183 858
966 209
2014
320 347
468 934
197 168
986 449
2015
272405
375328
216651
864384
2016
321347
351468
176607
849422
2017
309902
360477
197898
868276
2018
249397
321548
207681
778627
2019
234985
318539
139084
692609
2020
234029
298707
160166
692903
2021
281198
268942
217144
767284
2022
236173
256394
226644
719211
2023
260853
202358
119341
582552
20241
188045
183109
81886
453040
Table 3. 1 . Northeast Arctic cod. Total catch (t) by fishing areas and unreported catch .
Data provided by Working Group members
1 Provisional figure
Year
Advice
TAC
CATCH
2018
-
-
441
2019
-
800
628
2020
-
800
522
2021
600
600
146
2022
347
347
276
2023
315
315
181
2024
0
0
6
2025
0
0
Table 3.1.a. Advice, quota and official Norwegian catches (t) in the fishery zone around Jan Mayen (part of ICES area 2a).
Year
Norwegian catches of cod removed from the nea cod-assessment.
v1960–70
38.6
1971–79
no data
1980
40
1981
49
1982
42
1983
38
1984
33
1985
28
1986
26
1987
31
1988
22
1989
17
1990
24
1991
25
1992
35
1993
44
1994
48
1995
39
1996
32
1997
36
1998
29
1999
23
2000
19
2001
14
2002
20
2003
19
2004
14
2005
13
2006
15
2007
13
2008
13
2009
15
2010
13.5
2011
18.8
2012
35.5
2013
30.1
2014
33.6
2015
35.8
2016
54.9
2017
51.0
2018
36.3
2019
40.1
2020
45.3
2021
42.0
2022
40.3
2023
48.1
2024
30.8
Table 3. 2 . Catches of Norwegian Coastal Cod in subareas 1 and 2, 1000 t, which are removed from the NEA cod assessment.
subarea 1
division 2.a
division 2.b
year
trawl
others
trawl
others
trawl
others
1967
238
84.8
38.7
90
121.1
-
1968
588.1
54.4
44.2
118.3
269.2
-
1969
633.5
45.9
119.7
135.9
262.3
-
1970
524.5
79.4
90.5
153.3
85.6
-
1971
253.1
59.4
74.5
245.1
56.9
-
1972
158.1
38.9
49.9
285.4
33
-
1973
459
33.7
39.4
172.4
88.2
-
1974
677
46.5
41
83.2
254.7
-
1975
526.3
35.4
33.7
86.6
147.4
-
1976
466.5
60.2
112.3
124.9
103.5
-
1977
471.5
66.7
100.9
156.2
110
-
1978
360.4
57.9
117
146.2
17.3
-
1979
161.5
33.7
114.9
120.5
8.1
-
1980
133.3
35.4
83.7
115.6
12.5
-
1981
91.5
45.1
77.2
167.9
17.2
-
1982
44.8
51.8
65.1
171
21
-
1983
36.6
28.2
56.6
143.7
24.9
-
1984
24.5
29.8
46.9
150.7
25.6
-
1985
72.4
40.2
60.7
112.8
21.5
-
1986
109.5
48.1
116.3
86.4
69.8
-
1987
126.3
19.8
167.9
77.5
129.9
1.7
1988
149.1
17.6
122
88
58.2
0.2
1989
144.4
19.5
68.9
81.2
19.1
0.1
1990
51.4
10.9
47.4
52.1
24.5
0.8
1991
58.9
12.1
73
84
40
1.2
1992
103.7
20.5
79.7
92.8
85.6
0.9
1993
165.1
30.7
155.5
113.9
66.3
0.2
1994
312.1
41.3
165.8
140.6
84.3
1.9
1995
218.1
33.3
174.3
143.3
160.3
10.7
1996
248.9
32.7
137.1
159
147.7
6.8
1997
235.6
37.7
150.5
176.2
154.7
7.6
1998
219.8
31
127
130.4
82.7
1.7
1999
133.3
25.7
101.9
115
107.2
1.8
2000
111.7
25.5
105.4
98.8
72.2
1.3
2001
119.1
23.5
83.1
102.8
95.4
2.5
2002
147.4
37.4
83.4
105.6
69.9
1.3
2003
146
17.1
107.8
114.2
50.1
1.8
2004
154.4
23.5
100.3
118.9
88.8
3.5
2005
132.4
27.2
87
107.7
115.4
5.6
2006
141.8
18.1
91.2
113.4
100.1
4.6
2007
129.6
22.9
84.8
110.6
91.6
6.3
2008
123.8
21.1
94.8
108.4
95.3
5.7
2009
130.1
31.5
102
105.2
142.1
11.4
2010
151.1
32.9
130
141.4
149.2
5.4
2011
158.1
38.4
163.5
167
181
11.9
2012
212.1
35.9
172.7
158.4
133.8
14.9
2013
308.5
52.2
216.9
204.7
159.7
24.1
2014
268.8
51.5
246.8
222.1
177.9
19.3
2015
224.3
48.1
192.2
183.2
197.7
19.0
2016
285.5
35.8
181.7
169.8
156.3
20.3
2017
265.4
44.5
189.5
171.0
180.0
17.9
2018
204.7
44.7
156.7
164.9
192.0
15.6
2019
199.4
35.6
177.8
140.7
128.9
10.1
2020
199.4
34.6
157.2
141.5
153.5
6.7
2021
220.8
60.4
120.2
148.7
202.1
15.1
2022
192.9
43.3
108.9
147.4
212.9
13.7
2023
218.5
42.4
90.9
111.5
112.6
6.8
2024
1
166.2
21.8
88.2
94.9
75.1
6.8
Table 3. 3 . Northeast Arctic COD. Total nominal catch ('000 t) by trawl and other gear for each.
Data provided by Working Group members
1 Provisional figures
Year
Faroe Islands
France
German Dem.Rep.
Fed.Rep.Germany
Greenland
Iceland
Norway
Poland
United Kingdom
Russia**
Spain
Others
Total
1961
3934
13755
3921
8129
268377
-
158113
325780
1212
783221
1962
3109
20482
1532
6503
225615
-
175020
476760
245
909266
1963
-
18318
129
4223
205056
108
129779
417964
-
775577
1964
-
8634
297
3202
149878
-
94549
180550
585
437695
1965
-
526
91
3670
197085
-
89962
152780
816
444930
1966
-
2967
228
4284
203792
-
103012
169300
121
483704
1967
-
664
45
3632
218910
-
87008
262340
6
572605
1968
-
-
225
1073
255611
-
140387
676758
-
1074084
1969
29374
-
5907
5543
305241
7856
231066
612215
133
1197226
1970
26265
44245
12413
9451
377606
5153
181481
276632
-
933246
1971
5877
34772
4998
9726
407044
1512
80102
144802
215
689048
1972
1393
8915
1300
3405
394181
892
58382
96653
166
565287
1973
1916
17028
4684
16751
285184
843
78808
387196
276
792686
1974
5717
46028
4860
78507
287276
9898
90894
540801
38453
1102434
1975
11309
28734
9981
30037
277099
7435
101843
343580
19368
829377
1976
11511
20941
8946
24369
344502
6986
89061
343057
18090
867463
1977
9167
15414
3463
12763
388982
1084
86781
369876
17771
905301
1978
9092
9394
3029
5434
363088
566
35449
267138
5525
698715
1979
6320
3046
547
2513
294821
15
17991
105846
9439
440538
1980
9981
1705
233
1921
232242
3
10366
115194
8789
380434
1981
12825
3106
298
2228
277818
5262
83000
14500
-
399037
1982
11998
761
302
1717
287525
6601
40311
14515
-
363730
1983
11106
126
473
1243
234000
5840
22975
14229
-
289992
1984
10674
11
686
1010
230743
3663
22256
8608
-
277651
1985
13418
23
1019
4395
211065
3335
62489
7846
4330
307920
1986
18667
591
1543
10092
232096
7581
150541
5497
3505
430113
1987
15036
1
986
7035
268004
10957
202314
16223
2515
523071
1988
15329
2551
605
2803
223412
8107
169365
10905
1862
434939
1989
15625
3231
326
3291
158684
7056
134593
7802
1273
332481
1990
9584
592
169
1437
88737
3412
74609
7950
510
187000
1991
8981
975
2613
126226
3981
119427***
3677
3278
269158
1992
11663
2
3911
3337
168460
6120
182315
6217
1209
383234
1993
17435
3572
5887
5389
9374
221051
11336
244860
8800
3907
531611
1994
22826
1962
8283
6882
36737
318395
15579
291925
14929
28568
746086
1995
22262
4912
7428
7462
34214
319987
16329
296158
15505
15742
739999
1996
17758
5352
8326
6529
23005
319158
16061
305317
15871
14851
732228
1997
20076
5353
6680
6426
4200
357825
18066
313344
17130
13303
762403
1998
14290
1197
3841
6388
1423
284647
14294
244115
14212
8217
592624
1999
13700
2137
3019
4093
1985
223390
11315
210379
8994
5898
484910
2000
13350
2621
3513
5787
7562
192860
9165
166202
8695
5115
414870
2001
12500
2681
4524
5727
5917
188431
8698
183572
9196
5225
426471
2002
15693
2934
4517
6419
5975
202559
8977
184072
8414
5484
445045
2003
19427
2921
4732
7026
5963
191977
8711
182160
7924
6149
436990
2004
19226
3621
6187
8196
7201
212117
14004
201525
11285
6082
489445
2005
16273
3491
5848
8135
5874
207825
10744
200077
9349
7660
475276
2006
16327
4376
3837
8164
5972
201987
10594
203782
9219
6271
470527
2007
14788
3190
4619
5951
7316
199809
9298
186229
9496
5101
445796
2008
15812
3149
4955
5617
7535
196598
8287
190225
9658
7336
449171
2009
16905
3908
8585
4977
7380
224298
8632
229291
12013
7442
523431
2010
15977
4499
8442
6584
11299
264701
9091
267547
12657
9185
609983
2011
13429
1173
4621
7155
12734
331535
8210
310326
13291
17354^
719829
2012
17523
2841
8500
8520
9536
315739
11166
329943
12814
11081
727663
2013
13833
7858
8010
7885
14734
438734
12536
432314
15042
15263
966209
2014
33298
8149
6225
10864
18205
431846
14762
433479
16378
13243
986449
2015
26568
7480
6427
7055
16120
377983
11778
381778
19905
9880
864384
2016
24084
7946
6336
8607
16031
348949
13583
394107
14640
15139
849422
2017
28637
9554
5977
13638
11925
357419
16731
396180
14414
13802
868276
2018
26152
6605
9768
12743
10708
333539
11533
340364
13143
14071
778627
2019
22270
6371
8470
7553
12294
282120
11214
316813
13939
11565
692609
2020
21679
5796
9725
7391
9734
289472
12113
312683
11403
12908
692903
2021
21767
4459
6190
8246
8933
337931
5426
352064
11080
11188
767284^^
2022
21530
4988
7134
7688
6214
310145
7024
333697
12214
8577
719211^^
2023
17556
4632
5630
3994
5157
242117
5972
276923
8030
12539
582552^^
2024*
15938
4677
5632
4000
3756
171480
4832
222661
6417
13747
453040 ^^
Table 3. 4 . Northeast Arctic COD. Nominal catch(t) by countries. (Subarea 1 and divisions 2a and 2b combined, data provided by Working group members.
* Provisional figures
** USSR prior to 1991.
*** Includes Baltic countries.
^ Includes unspecified EU catches.
^^ In 2022-2025 assessment and advice was carried out by the Joint Russian-Norwegian working group on Arctic Fisheries (JRN-AFWG) which compiled catches for 2021-2024 and gave advice for 2023-2026.
Year
Area covered
Additional area implied in adjustment
Adjustment method
1981-92
88.1
1993
137.6
1994
161.1
1995
191.9
1996
166.1
1997
88.4
56.2
Index ratio by age
1998
100.4
51.1
Index ratio by age
1999
118.5
2000
163.2
2001
164.7
2002
157.4
2003
147.4
2004
164.4
2005
179.9
2006
170.1
18.1
Partly covered strata raised to full strata area
2007
123.9
56.7
Index ratio by age
2008
165.2
2009
171.8
2010
160.5
2011
174.3
2012
151.3
16.7
Index ratio by age
2013
203.6
2014
266.8
2015
243.3
2016
228.0
2017
184.4
37.5
Index ratio by age
2018
236.3
2019
241.2
2020
203.2
25.1
Index ratio by age
2021
232.0
10.9
Index ratio by age
2022
232.7
2023
253.3
2024
253.4
2025
232.1
Table 3. 5 . Barents Sea winter survey. Area covered (‘000 square nautical miles) and areas implied in the method used to adjust for missing coverage in Russian EEZ. “Index ratio by age” means that the index by age (for the area outside Russian EEZ) was scaled by the observed ratio between total index and the index outside Russian EEZ observed in the years prior to the survey.
Table 3. 7 . Northeast Arctic COD. Weights-at-age (kg) in landings from various countries.
Russia (trawl only)
Year
Age
2
3
4
5
6
7
8
9
10
11
12
13
14
15+
1983
0.65
1.05
1.58
2.31
3.39
4.87
6.86
8.72
10.40
12.07
14.43
1984
0.53
0.88
1.45
2.22
3.21
4.73
6.05
8.43
10.34
12.61
14.95
1985
0.33
0.77
1.31
1.84
2.96
4.17
5.94
6.38
8.58
10.28
1986
0.29
0.61
1.14
1.75
2.45
4.17
6.18
8.04
9.48
11.33
12.35
14.13
1987
0.24
0.52
0.88
1.42
2.07
2.96
5.07
7.56
8.93
10.80
13.05
18.16
1988
0.27
0.49
0.88
1.32
2.06
3.02
4.40
6.91
9.15
11.65
12.53
14.68
1989
0.50
0.73
1.00
1.39
1.88
2.67
4.06
6.09
7.76
9.88
1990
0.45
0.83
1.21
1.70
2.27
3.16
4.35
6.25
8.73
10.85
13.52
1991
0.36
0.64
1.05
2.03
2.85
3.77
4.92
6.13
8.36
10.44
15.84
19.33
1992
0.55
1.20
1.44
2.07
3.04
4.24
5.14
5.97
7.25
9.28
11.36
1993
0.48
0.78
1.39
2.06
2.62
4.07
5.72
6.79
7.59
11.26
14.79
17.71
1994
0.41
0.81
1.24
1.80
2.55
2.88
4.96
6.91
8.12
10.28
12.42
16.93
1995
0.37
0.77
1.21
1.74
2.37
3.40
4.71
6.73
8.47
9.58
12.03
16.99
1996
0.30
0.64
1.09
1.60
2.37
3.42
5.30
7.86
8.86
10.87
11.80
1997
0.30
0.57
1.00
1.52
2.18
3.30
4.94
7.15
10.08
11.87
13.54
1998
0.33
0.68
1.06
1.60
2.34
3.39
5.03
6.89
10.76
12.39
13.61
14.72
1999
0.24
0.58
0.98
1.41
2.17
3.26
4.42
5.70
7.27
10.24
14.12
2000
0.18
0.48
0.85
1.44
2.16
3.12
4.44
5.79
7.49
9.66
10.36
2001
0.12
0.31
0.62
1.00
1.53
2.30
3.31
4.57
6.55
8.11
9.52
11.99
2002
0.20
0.60
1.05
1.46
2.14
3.27
4.47
6.23
8.37
10.06
12.37
2003
0.23
0.63
1.06
1.78
2.40
3.41
4.86
6.28
7.55
11.10
13.41
12.12
14.51
2004
0.30
0.57
1.09
1.55
2.37
3.20
4.73
6.92
8.41
9.77
11.08
2005
0.33
0.65
0.98
1.50
2.10
3.08
4.31
5.81
8.42
10.37
13.56
14.13
2006
0.27
0.68
1.05
1.49
2.25
3.16
4.54
5.90
8.59
10.31
12.31
2007
0.23
0.67
1.12
1.66
2.25
3.31
4.57
6.27
8.20
10.02
12.36
12.42
2008
0.28
0.64
1.16
1.74
2.65
3.58
4.74
5.73
7.32
8.07
9.52
12.52
2009
0.31
0.64
1.09
1.58
2.11
3.19
4.80
6.58
7.97
9.84
11.51
2010
0.25
0.57
1.00
1.64
2.28
3.14
4.53
5.98
8.03
9.71
10.70
13.53
2011
0.25
0.62
1.05
1.56
2.18
2.95
4.33
6.21
8.04
10.13
12.25
15.18
2012
0.29
0.60
1.07
1.66
2.25
2.95
4.17
6.23
8.58
11.08
12.24
14.07
15.22
16.39
2013
0.33
0.63
1.05
1.54
2.26
3.09
4.08
5.47
7.37
9.59
12.57
15.54
17.05
2014
0.32
0.61
1.05
1.61
2.26
3.15
4.00
5.24
7.13
9.46
11.18
14.47
2015
0.30
0.60
0.97
1.49
2.11
3.13
4.64
5.78
7.13
9.53
12.12
16.71
17.37
2016
0.26
0.55
0.97
1.53
2.20
3.19
4.50
6.12
7.97
9.55
10.95
14.35
14.74
17.25
2017
0.33
0.63
1.03
1.56
2.24
3.24
4.67
6.34
7.74
9.40
11.12
14.43
16.67
11.91
2018
0.33
0.68
1.06
1.62
2.40
3.22
4.66
6.23
7.79
8.91
10.26
11.26
13.41
10.14
2019
0.29
0.62
1.10
1.60
2.33
3.22
4.44
6.45
8.10
9.60
11.02
13.83
10.65
10.65
2020
0.27
0.47
0.93
1.44
2.05
2.95
4.28
5.73
7.59
8.45
10.66
12.26
12.18
12.23
2021
0.19
0.44
0.76
1.35
2.02
2.81
4.25
6.26
7.81
9.59
10.67
10.86
13.62
12.31
2022
0.39
0.62
0.91
1.42
2.21
3.22
4.45
6.15
8.16
9.91
10.83
11.96
10.33
2023
0.36
0.63
1.03
1.55
2.29
3.27
4.49
5.81
7.05
8.92
9.99
10.77
2024
0.38
0.73
1.10
1.57
2.19
2.97
4.24
5.10
6.44
8.60
11.40
15.47
Table 3.7. Northeast Arctic COD. Weights-at-age (kg) in landings from various countries (continued)
Germany (Division IIa and IIb)
Year
Age
2
3
4
5
6
7
8
9
10
11
12
13
14
15+
1994
0.68
1.04
2.24
3.49
4.51
5.79
6.93
8.16
8.46
8.74
9.48
15.25
1995
0.44
0.84
1.5
2.72
3.81
4.46
4.81
7.37
7.69
8.25
9.47
1996
0.84
1.15
1.64
2.53
3.58
4.13
3.9
4.68
6.98
6.43
11.32
1997
0.43
0.92
1.42
2.01
3.15
4.04
5.16
4.82
3.96
7.04
8.8
1998
0.23
0.73
1.17
1.89
2.72
3.25
4.13
5.63
6.5
8.57
8.42
11.45
8.79
1999
1
0.853
1.448
1.998
2.65
3.473
4.156
5.447
6.82
5.902
8.01
2000
2
0.26
0.73
1.36
2.04
2.87
3.67
4.88
5.78
7.05
8.45
8.67
9.33
6.88
2001
0.38
0.80
1.21
1.90
2.74
3.90
4.99
5.69
7.15
7.32
11.72
9.11
6.60
2002
0.35
1.00
1.31
1.80
2.53
3.64
4.38
5.07
6.82
9.21
7.59
13.18
19.17
19.20
2003
0.22
0.44
1.04
1.71
2.31
3.27
4.93
6.17
7.77
9.61
9.99
12.29
13.59
2004
2
0.22
0.73
1.01
1.75
2.58
3.33
4.73
6.32
7.20
8.45
9.20
11.99
10.14
13.11
2005
3
0.57
0.77
1.13
1.66
2.33
3.36
4.38
5.92
6.65
7.26
10.01
11.14
2006
2
0.71
0.91
1.39
1.88
2.56
3.77
5.33
6.68
9.14
10.89
11.51
16.83
18.77
2007
3
0.59
1.35
1.79
2.51
3.53
4.00
4.95
6.55
7.54
9.71
11.40
11.57
23.34
15.61
2008
3
0.23
0.51
1.14
1.76
2.57
3.15
4.40
5.43
7.18
8.39
10.15
10.03
10.99
14.26
2009
3
0.35
0.60
1.19
1.83
2.96
4.08
5.61
6.97
8.55
9.13
10.54
13.34
10.30
17.06
2010
3
0.36
0.67
0.93
1.71
2.46
3.21
4.93
6.75
7.80
8.70
8.53
10.17
12.36
14.11
2011
1
1.75
3.09
3.30
3.28
4.13
4.99
6.61
7.91
9.38
10.79
14.67
14.91
2013
3
1.03
1.37
1.87
2.65
3.45
4.49
7.26
11.42
12.86
13.07
2014
4
0.68
0.96
1.39
1.69
3.06
4.07
5.65
8.15
10.36
13.07
13.52
2015
4
0.82
1.05
1.67
2.33
3.56
4.50
5.41
6.20
6.39
2016
1
1.38
2.60
3.55
4.81
6.33
7.61
8.90
9.26
10.83
13.41
16.84
17.03
17.76
2017
1
1.58
2.79
3.93
3.93
4.77
6.35
8.16
9.09
10.39
11.24
12.48
14.39
13.04
2018
3
0.58
1.16
1.76
2.45
3.34
4.13
5.81
7.16
8.99
9.96
10.85
11.73
14.01
17.79
2019
1
0.82
1.37
1.80
2.26
3.49
4.45
5.44
7.08
9.25
9.39
13.30
12.24
15.25
2020
5
1.6
1.63
2.48
3.13
5.01
5.93
8.36
9.31
12.16
12.96
12.77
14.08
2021
2
0.68
1.3
1.52
2.25
3.22
4.58
6.49
7.43
10.37
11.73
14.64
14.34
15.74
2022
1
0.59
0.82
1.40
2.20
3.04
4.13
5.54
7.36
8.56
10.79
13.12
14.96
15.18
2023
2
0.74
0.94
1.25
1.89
2.97
4.36
5.7
5.55
8.4
10.06
9.86
22.68
2024
1
2.05
2.43
2.46
2.66
3.24
3.89
3.87
Table 3.7. Northeast Arctic COD. Weights-at-age (kg) in landings from various countries (continued).
1 Division IIa only
2 IIa and IIb combined
3 I,IIa and IIb combined
4 Division IIb only
5 I and IIa combined
Spain (Division IIb)
Year
Age
2
3
4
5
6
7
8
9
10
11
12
13
14
15+
1994
0.43
1.08
1.38
2.32
2.47
2.68
3.46
5.20
7.04
6.79
7.20
8.04
10.46
15.35
1995
0.42
0.51
0.98
1.99
3.41
4.95
5.52
8.62
9.21
11.42
9.78
8.08
1996
0.66
1.12
1.57
2.43
3.17
3.59
4.44
5.48
6.79
8.10
1997
1
0.51
0.65
1.22
1.68
2.60
3.39
4.27
6.67
7.88
11.34
13.33
10.03
8.69
1998
0.47
0.74
1.15
1.82
2.44
3.32
3.71
5.00
7.26
1999
1
0.21
0.69
1.06
1.69
2.50
3.32
4.72
5.76
6.77
7.24
7.63
2000
1
0.23
0.61
1.24
1.75
2.47
3.12
4.65
6.06
7.66
10.94
11.40
7.20
2001
0.23
0.64
1.25
1.95
2.86
3.55
4.95
6.46
8.50
11.07
13.09
2002
0.16
0.55
1.00
1.48
2.17
3.29
4.47
5.35
8.29
12.23
9.01
12.16
15.2
2003
0.58
1.05
1.70
2.33
3.33
4.92
6.24
9.98
13.07
14.74
14.17
2004
1
0.31
0.56
0.80
1.28
1.96
2.59
3.72
5.36
5.28
7.41
11.43
2005
1
0.63
1.14
1.85
2.48
3.43
4.25
5.38
8.41
11.19
15.04
16.93
2006
0.30
0.61
0.99
1.46
2.04
2.55
3.39
3.50
4.70
6.36
2007
0.42
0.60
1.20
1.76
2.40
3.18
3.96
5.19
6.61
9.48
7.65
12.65
15.74
19.66
2009
1
0.12
0.45
0.95
1.60
2.18
3.36
4.52
6.04
7.30
9.42
10.35
11.47
12.54
2010
2
0.18
0.56
1.11
1.73
2.36
3.36
5.14
6.88
8.64
9.65
6.83
2011
1
0.45
0.90
1.26
1.84
2.55
4.08
5.61
8.17
8.14
7.31
8.91
2012
2
0.40
0.84
1.29
1.96
2.78
3.71
4.99
7.42
7.19
9.32
2013
0.17
0.72
1.06
1.63
2.36
3.14
3.90
4.36
6.55
2014
0.24
0.43
0.74
1.27
1.85
2.60
3.56
4.51
5.52
7.18
9.42
9.26
13.16
15.05
2015
2
0.40
0.80
1.19
1.79
2.45
3.38
4.41
5.85
6.64
7.48
6.77
2016
3
0.11
0.38
0.76
1.20
1.72
2.50
3.39
4.96
7.11
8.56
2017
2
0.12
0.42
0.75
1.17
1.69
2.50
3.39
4.47
5.69
5.93
6.00
10.91
13.57
10.52
2018
2
0.19
0.45
0.83
1.30
1.86
2.57
3.55
4.92
5.51
7.84
7.08
7.28
2019
2
0.19
0.39
0.90
1.30
1.85
2.65
3.48
4.83
5.96
5.67
7.04
8.36
2021
2
0.36
0.60
1.20
1.83
2.49
3.11
4.55
6.10
6.50
7.03
9.013
17.13
2022
2
0.49
0.80
1.25
1.83
2.77
4.06
5.52
7.71
8.87
12.18
2023
2
0.54
1.15
1.56
2.28
3.27
4.24
5.56
6.62
8.62
7.00
12.98
16.92
2024
2
0.15
0.44
0.71
1.41
1.98
2.69
3.74
5.24
5.93
8.41
10.28
9.99
12.26
20.16
1
IIa and IIb combined
2
I,IIa and IIb combined
3
I and IIb combined
Iceland (Sub-area I)
1994
0.42
0.85
1.44
2.77
3.54
4.08
5.84
6.37
7.02
7.48
7.37
1995
1.17
0.91
1.60
2.28
3.61
4.73
6.27
6.26
1996
0.36
0.99
1.55
2.83
3.79
4.81
5.34
7.25
7.68
9.08
8.98
10.52
1997
0.42
0.43
0.76
1.60
2.40
3.45
4.40
5.74
6.15
8.28
10.52
9.89
UK (England & Wales)
1995
1
1.47
2.11
3.47
5.57
6.43
7.17
8.12
8.05
10.2
10.1
1996
2
1.55
1.81
2.42
3.61
6.3
6.47
7.83
7.91
8.93
9.38
10.9
1997
2
1.93
2.17
3.07
4.17
4.89
6.46
12.3
8.44
1
Division IIa and IIb
2
Division IIa
Poland (Division IIb)
2006
0.18
0.51
0.89
1.55
2.23
3.6
5.28
6.95
8.478
11
10.8
15.6
18.9
2008
0.49
0.90
1.45
2.24
2.79
3.82
4.68
5.015
6.45
7.02
7.22
5.99
6.91
2009
1.02
1.72
2.65
3.81
5.23
6.91
8.862
11.1
13.6
16.5
2010
1.39
1.66
2.29
2.98
3.92
5.18
6.313
6.66
8.72
9.05
2011
0.99
1.50
2.17
3.15
4.43
7.45
7.28
2016
1
0.84
1.59
2.29
2.81
3.91
4.78
5.61
6.709
7.89
8.54
11.6
13.7
16.09
2017
2
0.71
1.23
1.52
2.47
3.52
4.78
6.97
9.193
9.95
10.9
14.1
2018
3
0.74
1.15
1.66
2.45
3.55
4.48
6.06
6.31
7.59
7.91
8.28
8.52
9.40
2019
1
1.57
2.00
2.69
4.04
5.61
7.23
9.13
11.62
12.41
13.46
11.47
1
Division IIa
2
Division IIa and IIb
3
I and IIb combined
Table 3.7. Northeast Arctic COD. Weights at age (kg) in landings from various countries (continued).
SAM Tue May 27 16:49:48 2025.
Year_age
3
4
5
6
7
8
9
10
11
12
13
14
+gp
1946
0.350
0.590
1.110
1.690
2.370
3.170
3.980
5.050
5.920
7.200
8.150
8.130
9.250
1947
0.320
0.560
0.950
1.500
2.140
2.920
3.650
4.560
5.840
7.420
8.850
8.790
10.000
1948
0.340
0.530
1.260
1.930
2.460
3.360
4.220
5.310
5.920
7.090
8.430
8.180
9.430
1949
0.370
0.670
1.110
1.660
2.500
3.230
4.070
5.270
5.990
7.080
8.220
8.260
8.700
1950
0.390
0.640
1.290
1.700
2.360
3.480
4.520
5.620
6.400
7.960
8.890
9.070
10.270
1951
0.400
0.830
1.390
1.880
2.540
3.460
4.880
5.200
7.140
8.220
9.390
9.500
9.520
1952
0.440
0.800
1.330
1.920
2.640
3.710
5.060
6.050
7.420
8.430
10.190
10.130
10.560
1953
0.400
0.760
1.280
1.930
2.810
3.720
5.060
6.340
7.400
8.670
10.240
11.410
11.930
1954
0.440
0.770
1.260
1.970
3.030
4.330
5.400
6.750
7.790
10.670
9.680
9.560
11.110
1955
0.320
0.570
1.130
1.730
2.750
3.940
4.900
7.040
7.200
8.780
10.080
11.020
12.110
1956
0.330
0.580
1.070
1.830
2.890
4.250
5.550
7.280
8.000
8.350
9.940
10.250
11.560
1957
0.330
0.590
1.020
1.820
2.890
4.280
5.490
7.510
8.240
9.250
10.610
10.820
12.070
1958
0.340
0.520
0.950
1.920
2.940
4.210
5.610
7.350
8.670
9.580
11.630
11.000
13.830
1959
0.350
0.720
1.470
2.680
3.590
4.320
5.450
6.440
7.170
8.630
11.620
11.950
13.000
1960
0.340
0.510
1.090
2.130
3.380
4.870
6.120
8.490
7.790
8.300
11.420
11.720
13.420
1961
0.310
0.550
1.050
2.200
3.230
5.110
6.150
8.150
8.680
9.600
11.950
13.180
13.420
1962
0.320
0.550
0.930
1.700
3.030
5.030
6.550
7.700
9.270
10.560
12.720
13.480
14.440
1963
0.320
0.610
0.960
1.730
3.040
4.960
6.440
7.910
9.620
11.310
12.740
13.190
14.290
1964
0.330
0.550
0.950
1.860
3.250
4.970
6.410
8.070
9.340
10.160
12.890
13.250
14.000
1965
0.380
0.680
1.030
1.490
2.410
3.520
5.730
7.540
8.470
11.170
13.720
13.460
14.120
1966
0.440
0.740
1.180
1.780
2.460
3.820
5.360
7.270
8.630
10.660
14.150
14.000
15.000
1967
0.290
0.810
1.350
2.040
2.810
3.480
4.890
7.110
9.030
10.590
13.830
14.150
16.760
1968
0.330
0.700
1.480
2.120
3.140
4.210
5.270
6.650
9.010
9.660
14.850
16.300
17.000
1969
0.440
0.790
1.230
2.030
2.900
3.810
5.020
6.430
8.330
10.710
14.210
15.000
17.000
1970
0.370
0.910
1.340
2.000
3.000
4.150
5.590
7.600
8.970
10.990
14.070
14.610
16.000
1971
0.450
0.880
1.380
2.160
3.070
4.220
5.810
7.130
8.620
10.830
12.950
14.250
15.970
1972
0.380
0.770
1.430
2.120
3.230
4.380
5.830
7.620
9.520
12.090
13.670
13.850
16.000
1973
0.380
0.910
1.540
2.260
3.290
4.610
6.570
8.370
10.540
11.620
13.900
14.000
15.840
1974
0.320
0.660
1.170
2.220
3.210
4.390
5.520
7.860
9.820
11.410
13.240
13.700
14.290
1975
0.410
0.640
1.110
1.900
2.950
4.370
5.740
8.770
9.920
11.810
13.110
14.000
14.290
1976
0.350
0.730
1.190
2.010
2.760
4.220
5.880
9.300
10.280
11.860
13.540
14.310
14.280
1977
0.490
0.900
1.430
2.050
3.300
4.560
6.460
8.630
9.930
10.900
13.670
14.260
14.910
1978
0.490
0.810
1.450
2.150
3.040
4.460
6.540
7.980
10.150
10.850
13.180
14.000
15.000
1979
0.350
0.700
1.240
2.140
3.150
4.290
6.580
8.610
9.220
10.890
14.340
14.500
15.310
1980
0.270
0.560
1.020
1.720
3.020
4.200
5.840
7.260
8.840
9.280
14.450
15.000
15.500
1981
0.490
0.980
1.440
2.090
2.980
4.850
6.570
9.160
10.820
10.770
13.930
15.000
16.000
1982
0.370
0.660
1.350
1.990
2.930
4.240
6.460
8.510
12.240
10.780
14.040
15.000
16.000
1983
0.840
1.370
2.090
2.860
3.990
5.580
7.770
9.290
11.550
11.420
12.800
14.180
15.550
1984
1.420
1.930
2.490
3.140
3.910
4.910
6.020
7.400
8.130
11.420
12.800
14.180
15.550
1985
0.940
1.370
2.020
3.220
4.630
6.040
7.660
9.810
11.800
11.420
12.800
14.180
15.550
1986
0.640
1.270
1.880
2.790
4.490
5.840
6.830
7.690
9.810
11.420
12.800
14.180
15.550
1987
0.490
0.880
1.550
2.330
3.440
5.920
8.600
9.600
12.170
11.420
12.800
14.180
15.550
1988
0.540
0.850
1.320
2.240
3.520
5.350
8.060
9.510
11.360
11.420
12.800
14.180
15.550
1989
0.740
0.960
1.310
1.920
2.930
4.640
7.520
9.120
11.080
11.420
12.800
14.180
15.550
1990
0.810
1.220
1.640
2.220
3.240
4.680
7.300
9.840
13.250
11.420
12.800
14.180
15.550
1991
1.050
1.450
2.150
2.890
3.750
4.710
6.080
8.820
11.800
11.420
12.800
14.180
15.550
1992
1.160
1.570
2.210
3.100
4.270
5.190
6.140
7.770
10.120
11.420
12.800
14.180
15.550
1993
0.810
1.520
2.160
2.790
4.070
5.530
6.470
7.190
7.980
11.457
12.800
14.180
15.550
1994
0.820
1.300
2.060
2.890
3.210
5.200
6.800
7.570
8.010
9.955
13.012
14.180
15.550
1995
0.770
1.200
1.780
2.590
3.810
4.990
6.230
8.050
8.740
9.774
11.388
14.546
15.550
1996
0.790
1.110
1.610
2.460
3.820
5.720
6.740
8.040
9.280
10.451
11.190
12.819
16.045
1997
0.670
1.040
1.530
2.220
3.420
5.200
7.190
7.730
8.610
11.145
11.926
12.608
14.234
1998
0.680
1.050
1.620
2.300
3.300
4.860
6.870
9.300
10.300
10.754
12.676
13.394
14.011
1999
0.630
1.010
1.540
2.340
3.210
4.290
6.000
6.730
10.080
11.151
12.255
14.191
14.839
2000
0.570
1.040
1.610
2.340
3.340
4.480
5.720
7.520
8.020
11.930
12.682
13.743
15.675
2001
0.660
1.050
1.620
2.510
3.510
4.780
6.040
7.540
9.000
10.230
13.519
14.197
15.206
2002
0.720
1.130
1.560
2.310
3.520
4.780
6.200
7.660
9.140
10.379
11.687
15.081
15.681
2003
0.670
1.120
1.830
2.500
3.580
5.040
6.360
8.200
10.710
10.167
11.848
13.138
16.602
2004
0.720
1.130
1.610
2.430
3.270
4.720
6.710
7.980
9.190
10.840
11.619
13.310
14.571
2005
0.690
1.080
1.570
2.210
3.260
4.440
6.230
8.190
9.720
10.626
12.347
13.066
14.752
2006
0.720
1.160
1.600
2.390
3.320
4.540
5.470
6.780
7.700
10.800
12.116
13.842
14.494
2007
0.740
1.210
1.830
2.510
3.820
5.040
6.580
8.080
8.940
10.349
12.304
13.596
15.309
2008
0.770
1.270
1.870
2.820
3.790
5.120
6.220
7.750
8.400
10.139
11.816
13.795
15.052
2009
0.750
1.170
1.740
2.420
3.860
5.350
6.430
8.010
8.670
10.055
11.588
13.276
15.261
2010
0.780
1.200
1.740
2.440
3.400
5.040
6.250
7.320
8.530
10.378
11.496
13.033
14.715
2011
0.780
1.310
1.720
2.370
3.200
4.620
6.180
7.470
8.570
10.387
11.847
12.935
14.459
2012
0.670
1.140
1.730
2.340
3.120
4.400
6.280
8.240
10.350
10.367
11.857
13.309
14.356
2013
0.710
1.170
1.670
2.360
3.190
4.220
5.580
7.310
9.080
11.029
11.835
13.320
14.750
2014
0.790
1.200
1.730
2.340
3.280
4.210
5.490
6.980
8.670
10.823
12.551
13.297
14.761
2015
0.780
1.090
1.550
2.180
3.140
4.460
5.610
6.620
7.340
10.215
12.328
14.058
14.737
2016
0.780
1.140
1.660
2.260
3.250
4.500
5.980
7.310
8.540
9.372
11.670
13.822
15.536
2017
0.710
1.150
1.660
2.320
3.320
4.670
6.130
7.150
8.140
9.597
10.752
13.121
15.288
2018
0.860
1.170
1.710
2.500
3.310
4.610
6.030
7.320
8.060
9.707
10.998
12.137
14.552
2019
0.680
1.150
1.660
2.390
3.330
4.450
6.110
7.290
8.410
9.806
11.117
12.401
13.513
2020
0.709
1.084
1.604
2.195
3.092
4.390
5.731
7.218
8.406
9.989
11.226
12.529
13.793
2021
0.527
0.896
1.487
2.159
2.982
4.364
6.048
7.348
8.796
9.991
11.424
12.645
13.928
2022
0.623
0.956
1.478
2.245
3.247
4.441
5.877
7.328
8.738
10.122
11.427
12.858
14.051
2023
0.638
1.056
1.617
2.346
3.310
4.470
5.794
7.141
8.777
9.988
11.519
12.792
14.184
2024
0.727
1.109
1.612
2.279
3.135
4.387
5.469
7.019
8.828
10.093
11.408
12.942
14.187
Table 3. 8 . Northeast Arctic COD. Catch weights at age (kg).
* values starting from 1993, ages 12-15, have been updated by the VB model using the most recent actual data for ages 3-11.
SAM Tue May 27 16:49:48 2025
Year_age
3
4
5
6
7
8
9
10
11
12
13
14
+gp
1946
0.35
0.59
1.11
1.69
2.37
3.17
3.98
5.05
5.92
7.2
8.146
8.133
9.253
1947
0.32
0.56
0.95
1.5
2.14
2.92
3.65
4.56
5.84
7.42
8.848
8.789
9.998
1948
0.34
0.53
1.26
1.93
2.46
3.36
4.22
5.31
5.92
7.09
8.43
8.181
9.433
1949
0.37
0.67
1.11
1.66
2.5
3.23
4.07
5.27
5.99
7.08
8.218
8.259
8.701
1950
0.39
0.64
1.29
1.7
2.36
3.48
4.52
5.62
6.4
7.96
8.891
9.07
10.271
1951
0.4
0.83
1.39
1.88
2.54
3.46
4.88
5.2
7.14
8.22
9.389
9.502
9.517
1952
0.44
0.8
1.33
1.92
2.64
3.71
5.06
6.05
7.42
8.43
10.185
10.134
10.563
1953
0.4
0.76
1.28
1.93
2.81
3.72
5.06
6.34
7.4
8.67
10.238
11.409
11.926
1954
0.44
0.77
1.26
1.97
3.03
4.33
5.4
6.75
7.79
10.67
9.68
9.557
11.106
1955
0.32
0.57
1.13
1.73
2.75
3.94
4.9
7.04
7.2
8.78
10.077
11.023
12.105
1956
0.33
0.58
1.07
1.83
2.89
4.25
5.55
7.28
8
8.35
9.944
10.248
11.564
1957
0.33
0.59
1.02
1.82
2.89
4.28
5.49
7.51
8.24
9.25
10.605
10.825
12.075
1958
0.34
0.52
0.95
1.92
2.94
4.21
5.61
7.35
8.67
9.58
11.631
11
13.832
1959
0.35
0.72
1.47
2.68
3.59
4.32
5.45
6.44
7.17
8.63
11.621
11.95
13
1960
0.34
0.51
1.09
2.13
3.38
4.87
6.12
8.49
7.79
8.3
11.422
11.719
13.424
1961
0.31
0.55
1.05
2.2
3.23
5.11
6.15
8.15
8.68
9.6
11.952
13.181
13.422
1962
0.32
0.55
0.93
1.7
3.03
5.03
6.55
7.7
9.27
10.56
12.717
13.482
14.44
1963
0.32
0.61
0.96
1.73
3.04
4.96
6.44
7.91
9.62
11.31
12.737
13.193
14.287
1964
0.33
0.55
0.95
1.86
3.25
4.97
6.41
8.07
9.34
10.16
12.886
13.251
14
1965
0.38
0.68
1.03
1.49
2.41
3.52
5.73
7.54
8.47
11.17
13.722
13.465
14.118
1966
0.44
0.74
1.18
1.78
2.46
3.82
5.36
7.27
8.63
10.66
14.148
14
15
1967
0.29
0.81
1.35
2.04
2.81
3.48
4.89
7.11
9.03
10.59
13.829
14.146
16.756
1968
0.33
0.7
1.48
2.12
3.14
4.21
5.27
6.65
9.01
9.66
14.848
16.3
17
1969
0.44
0.79
1.23
2.03
2.9
3.81
5.02
6.43
8.33
10.71
14.211
15
17
1970
0.37
0.91
1.34
2
3
4.15
5.59
7.6
8.97
10.99
14.074
14.611
16
1971
0.45
0.88
1.38
2.16
3.07
4.22
5.81
7.13
8.62
10.83
12.945
14.25
15.973
1972
0.38
0.77
1.43
2.12
3.23
4.38
5.83
7.62
9.52
12.09
13.673
13.852
16
1973
0.38
0.91
1.54
2.26
3.29
4.61
6.57
8.37
10.54
11.62
13.904
14
15.841
1974
0.32
0.66
1.17
2.22
3.21
4.39
5.52
7.86
9.82
11.41
13.242
13.704
14.291
1975
0.41
0.64
1.11
1.9
2.95
4.37
5.74
8.77
9.92
11.81
13.107
14
14.293
1976
0.35
0.73
1.19
2.01
2.76
4.22
5.88
9.3
10.28
11.86
13.544
14.311
14.284
1977
0.49
0.9
1.43
2.05
3.3
4.56
6.46
8.63
9.93
10.9
13.668
14.255
14.906
1978
0.49
0.81
1.45
2.15
3.04
4.46
6.54
7.98
10.15
10.85
13.177
14
15
1979
0.35
0.7
1.24
2.14
3.15
4.29
6.58
8.61
9.22
10.89
14.344
14.5
15.315
1980
0.27
0.56
1.02
1.72
3.02
4.2
5.84
7.26
8.84
9.28
14.448
15
15.5
1981
0.49
0.98
1.44
2.09
2.98
4.85
6.57
9.16
10.82
10.77
13.932
15
16
1982
0.37
0.66
1.35
1.99
2.93
4.24
6.46
8.51
12.24
10.78
14.041
15
16
1983
0.37
0.92
1.6
2.44
3.82
4.76
6.17
7.7
9.25
12.621
14.544
16.466
18.388
1984
0.42
1.16
1.81
2.79
3.78
4.57
6.17
7.7
9.25
12.621
14.544
16.466
18.388
1985
0.413
0.875
1.603
2.81
4.059
5.833
7.685
10.117
14.29
12.621
14.544
16.466
18.388
1986
0.311
0.88
1.47
2.467
3.915
5.81
6.58
6.833
11.004
12.621
14.544
16.466
18.388
1987
0.211
0.498
1.254
2.047
3.431
5.137
6.523
9.3
13.15
12.621
14.544
16.466
18.388
1988
0.212
0.404
0.79
1.903
2.977
4.392
7.812
12.112
13.107
12.621
14.544
16.466
18.388
1989
0.299
0.52
0.868
1.477
2.686
4.628
7.048
9.98
9.25
12.621
14.544
16.466
18.388
1990
0.398
0.705
1.182
1.719
2.458
3.565
4.71
7.801
8.956
12.621
14.544
16.466
18.388
1991
0.518
1.136
1.743
2.428
3.214
4.538
6.88
10.719
9.445
12.621
14.544
16.466
18.388
1992
0.44
0.931
1.812
2.716
3.895
5.176
6.774
9.598
12.427
12.621
14.544
16.466
18.388
1993
0.344
1.172
1.82
2.823
4.031
5.497
6.765
8.571
10.847
12.621
14.544
16.466
18.388
1994
0.237
0.757
1.419
2.458
3.845
5.374
6.648
7.653
8.136
12.916
16.114
16.466
18.388
1995
0.197
0.487
1.141
2.118
3.504
4.915
6.949
9.051
9.775
11.409
15.248
18.62
18.388
1996
0.206
0.482
0.98
2.041
3.52
5.507
7.74
9.922
10.63
12.093
13.533
17.659
21.171
1997
0.211
0.537
1.11
1.876
3.381
5.258
8.546
10.653
10.776
13.232
14.313
15.745
20.122
1998
0.242
0.561
1.179
1.936
2.944
4.583
7.092
10.7
12.042
13.771
15.607
16.617
18.021
1999
0.209
0.514
1.183
2.007
3.037
4.479
6.512
10.028
11.117
14.698
16.215
18.057
18.981
2000
0.194
0.465
1.218
1.963
3.064
4.12
5.746
7.157
9.961
14.589
17.26
18.733
20.557
2001
0.284
0.513
1.21
2.25
3.299
5.066
6.373
9.29
11.456
13.317
17.138
19.887
21.294
2002
0.23
0.603
1.184
2.138
3.336
4.81
6.912
8.809
10.475
12.534
15.703
19.752
22.549
2003
0.233
0.551
1.317
2.022
3.239
4.984
6.727
8.422
14.226
12.524
14.815
18.164
22.403
2004
0.24
0.55
1.074
2.038
2.911
4.402
6.263
8.535
10.197
12.371
14.803
17.176
20.674
2005
0.225
0.61
1.083
1.87
3.002
3.971
5.789
8.127
12.759
12.611
14.63
17.163
19.594
2006
0.252
0.591
1.219
2.014
3.028
4.434
5.999
7.774
9.954
13.679
14.902
16.971
19.58
2007
0.249
0.663
1.329
2.127
3.183
4.59
6.477
8.88
12.124
12.261
16.111
17.274
19.368
2008
0.286
0.726
1.418
2.41
3.331
4.914
6.747
8.851
10.393
12.776
14.504
18.617
19.701
2009
0.274
0.652
1.353
2.312
3.803
5.103
6.75
9.252
10.119
12.323
15.09
16.83
21.168
2010
0.258
0.608
1.208
2.01
3.088
4.903
6.498
7.992
9.689
12.467
14.574
17.483
19.214
2011
0.225
0.6
1.097
1.926
2.861
4.403
6.531
8.648
9.885
12.508
14.738
16.909
19.929
2012
0.227
0.555
1.182
1.834
2.831
4.124
6.056
8.584
11.498
12.249
14.785
17.092
19.3
2013
0.247
0.577
1.134
1.998
2.841
4.015
5.523
8.077
10.304
13.207
14.491
17.144
19.501
2014
0.216
0.577
1.137
1.791
2.781
3.85
5.245
6.992
9.378
12.746
15.578
16.816
19.558
2015
0.229
0.54
1.134
1.934
2.753
4.081
5.315
7.135
8.947
11.778
15.056
18.025
19.198
2016
0.21
0.536
1.001
1.812
2.72
3.958
5.64
7.064
8.569
10.885
13.954
17.445
20.522
2017
0.255
0.675
1.107
1.896
2.826
4.158
5.7
7.628
9.071
10.634
12.934
16.216
19.888
2018
0.286
0.62
1.188
1.949
2.768
4.059
5.749
7.38
9.097
10.8
12.646
15.073
18.54
2019
0.24
0.603
1.085
1.82
3.025
4.296
5.891
7.293
9.667
11.186
12.837
14.749
17.28
2020
0.148
0.503
1.055
1.692
2.59
4.064
5.617
7.673
9.313
11.306
13.278
14.964
16.922
2021
0.17
0.437
0.954
1.718
2.669
3.804
5.822
7.396
9.334
11.187
13.415
15.459
17.159
2022
0.293
0.48
0.929
1.616
2.741
3.933
5.744
8.012
9.648
11.361
13.279
15.613
17.706
2023
0.272
0.645
1.022
1.71
2.876
4.352
5.925
7.879
9.79
11.36
13.478
15.46
17.876
2024
0.246
0.706
1.075
1.803
2.667
3.995
5.95
7.011
9.436
11.714
13.477
15.683
17.707
2025
0.196
0.586
1.154
1.895
2.794
3.842
5.418
7.034
7.511
11.349
13.881
15.683
17.953
Table 3. 9 . Northeast Arctic COD. Stock weights at age (kg) .
values starting from 1993, ages 12-15, have been updated by the VB model using the most recent actual data for ages 3-11
Norway
Percentage mature
Age
Year
3
4
5
6
7
8
9
10
1982
0
5
10
34
65
82
92
100
1983
5
8
10
30
73
88
97
100
Russia
Percentage mature
Age
Year
3
4
5
6
7
8
9
10
1984
0
5
18
31
56
90
99
100
1985
0
1
10
33
59
85
92
100
1986
0
2
9
19
56
76
89
100
1987
0
1
9
23
27
61
81
80
1988
0
1
3
25
53
79
100
100
1989
0
0
2
15
39
59
83
100
1990
0
2
6
20
47
62
81
95
1991
0
3
1
23
66
82
96
100
1992
0
1
8
31
73
92
95
100
1993
0
3
7
21
56
89
95
99
1994
0
1
8
30
55
84
95
98
1995
0
0
4
23
61
75
94
97
1996
0
0
1
22
56
82
95
100
1997
0
0
1
10
48
73
90
100
1998
0
0
2
15
47
87
97
96
1999
0
0.2
1.3
9.9
38.4
74.9
94
100
2000
0
0
6
19.2
51.4
84
95.5
100
2001
0.1
0.1
3.9
27.9
62.3
89.4
96.3
100
2002
0.1
1.9
10.9
34.4
68.1
82.8
97.6
100
2003
0.2
0
11
29.2
65.9
89.6
95.1
100
2004
0
0.7
8
33.8
63.3
83.4
96.4
96.4
2005
0
0.6
4.6
24.2
61.5
84.9
95.3
98.1
2006
0
0
6.1
29.6
59.6
89.5
96.4
100
2007
0
0.4
5.7
20.8
60.4
83.5
96
100
2008
0
0.5
4
24.6
48.3
84.4
94.7
98.7
2009
0
0
6
28
66
85
97
100
2010
0
0.2
1.5
22.8
47
77.4
90.2
95.5
2011
0
0
2.2
20.7
50.4
73.7
90.6
95.6
2012
0.2
0
1.5
10.8
43.9
76.1
90.8
96.4
2013
0
0
0.6
10.6
41.8
70.6
89.8
96.9
2014
0
0
1.9
14.1
45.9
76
92
97.5
2015
0
0.2
0.2
7.9
27
60.8
83.4
93.7
2016
0
0
0.2
5.2
22.4
44.1
74.8
92.5
2017*
0
0
0.8
6.3
20.8
51.6
80.4
98.6
2018
0
0.5
2.5
23.6
53.9
79.4
92.5
96.0
2019**
0
0
4.5
11.9
56.4
91.8
95.1
100
2020**
0
0.4
1.7
15.8
43.8
71.2
74.9
84.9
2021**
0
0
2.7
16.1
44.1
72.2
87.1
88.1
2022**
0
0
0.8
11.6
59.7
72.6
80.4
96.2
2023**
0
0
0.3
12.3
50.9
84.3
92.6
97.5
2024**
0
0
1.4
10.2
32.5
74.8
97.4
100
2025**
0
0
1.6
8.7
26.6
57.6
80.3
91.2
*Not used in inputs (instead ratios presented in WD 10, 2017 used for further calculations)**Not used in inputs (instead ratios presented in WD 15, 2019 used for further calculations)
Table 3. 10 . Northeast Arctic COD. Basis for maturity ogives (percent) used in the assessment. Norwegian and Russian data.
Table 3. 12 . The Northeast Arctic cod stock's consumption of cod in million individuals.
104
FLT15_I: NorBarTrSur_I
1981 2025
1 1 0.085 0.189
3 12
1 1640 2330 4000 3840 480 100 30 NA NA NA
1 2830 2770 2360 1550 1600 140 20 NA NA NA
1 2495 5234 4333 1696 582 321 97 NA NA NA
1 9749 2828 2144 1174 407 40 8 NA NA NA
1 16679 12598 1992 767 334 21 7 NA NA NA
1 80500 14393 6414 830 191 34 4 NA NA NA
1 24038 39115 5435 1570 200 45 3 NA NA NA
1 14803 8049 17331 2048 358 53 3 NA NA NA
1 4636 7586 3779 9019 982 94 10 NA NA NA
1 2835 3487 3459 2056 2723 161 38 NA NA NA
1 4585 3367 2565 2149 1215 1267 61 NA NA NA
1 15826 5771 1782 1283 767 429 272 NA NA NA
1 27389 14013 7248 1583 624 389 223 NA NA NA
1 29392 30704 15333 4572 795 261 148 55 55 13
1 28284 24236 25101 7642 1798 242 107 50 61 19
1 16308 11743 13859 10888 2443 264 37 17 12 16
1 31799 6844 7426 5999 2667 485 64 91 8 NA
1 35510 16694 3167 2615 1752 816 79 52 4 4
1 18848 18075 6139 1271 681 514 101 26 2 6
1 24581 13003 11173 2675 456 184 121 33 10 5
1 18279 19511 8290 3796 945 117 44 19 4 1
1 11836 13756 10895 4579 1440 220 32 18 5 2
1 37670 12631 9393 6688 1750 467 102 17 4 4
1 6388 18462 5346 4324 3059 685 165 28 7 2
1 24888 5506 10297 2238 1636 381 92 30 4 10
1 11649 11538 2832 4342 1372 524 136 24 18 18
1 36113 12773 6851 1365 2360 682 230 41 11 10
1 19437 30059 11190 4024 1734 811 179 36 3 3
1 12628 19670 22023 6069 1790 902 524 51 17 7
1 3681 11425 15480 14450 3956 1124 367 160 58 12
1 8540 5037 12970 13866 10351 1637 436 120 82 39
1 7572 6459 3371 9069 13258 4861 902 226 88 111
1 6884 11409 6318 4043 6454 7638 3352 222 287 84
1 NA NA NA NA NA NA NA NA NA NA
1 NA NA NA NA NA NA NA NA NA NA
1 NA NA NA NA NA NA NA NA NA NA
1 NA NA NA NA NA NA NA NA NA NA
1 NA NA NA NA NA NA NA NA NA NA
1 NA NA NA NA NA NA NA NA NA NA
1 NA NA NA NA NA NA NA NA NA NA
1 NA NA NA NA NA NA NA NA NA NA
1 NA NA NA NA NA NA NA NA NA NA
1 NA NA NA NA NA NA NA NA NA NA
1 NA NA NA NA NA NA NA NA NA NA
FLT15_II: NorBarTrSur_II
2014 2025
1 1 0.085 0.189
3 12
1 22685 9379 8859 5639 3274 5305 3619 981 101 120
1 14407 22825 14729 11353 7443 2922 5351 1808 338 98
1 9937 13548 18831 11347 7233 2856 1317 1606 677 180
1 17925 6215 8454 9016 3782 2633 818 326 261 451
1 13941 18478 6181 6417 7388 2588 928 587 129 419
1 28157 17915 22190 7965 3296 3831 815 262 54 70
1 23773 16024 13156 11488 4983 2426 2044 453 166 243
1 11150 11935 11231 5428 3798 1357 727 353 125 103
1 5198 8868 8660 6651 4460 3042 570 229 208 255
1 4121 3982 4652 4317 3224 1426 749 158 34 35
1 19871 6331 3621 2996 2822 1615 890 268 37 20
1 15443 16818 5763 2976 2350 1897 953 355 85 49
FLT16: NorBarLofAcSur
1985 2025
1 1 0.085 0.26
3 12
1 1530 1416 204 151 157 33 13 10 5 NA
1 4996 1343 684 116 77 31 3 NA 4 NA
1 628 2049 502 174 14 30 7 NA NA NA
1 504 355 578 109 40 3 0 1 NA NA
1 170 344 214 670 166 32 5 2 NA NA
1 148 206 262 269 668 73 6 3 NA NA
1 502 346 293 339 367 500 37 2 2 NA
1 1765 658 215 184 284 254 824 43 17 NA
1 3572 1911 1131 354 255 252 277 442 49 NA
1 3239 3745 2293 961 234 118 103 42 187 29
1 1377 1395 2036 1016 281 47 45 29 26 81
1 994 896 1128 974 462 59 11 4 9 15
1 1586 442 503 459 510 215 23 7 1 8
1 3912 1898 449 415 349 271 51 10 2 1
1 1476 1303 523 139 118 187 99 10 2 1
1 2948 1673 1492 546 146 69 50 13 6 2
1 1774 1606 851 621 191 27 8 6 3 1
1 614 1062 1011 713 366 94 12 8 6 0
1 3067 1168 1271 1461 677 235 38 4 1 2
1 334 852 349 456 480 217 88 24 2 7
1 1250 333 693 341 438 180 75 18 1 3
1 648 538 186 420 176 159 87 23 3 10
1 585 304 308 129 466 151 80 33 9 4
1 1999 2887 1166 789 248 352 55 28 17 7
1 1078 1825 1415 560 415 128 266 36 17 4
1 228 880 1614 1750 618 314 108 125 40 29
1 404 283 674 1595 2727 645 233 68 75 9
1 828 494 344 895 2266 1335 257 104 38 28
1 606 845 724 541 1336 2338 1617 215 111 88
1 2869 1242 1115 777 553 1490 1739 980 146 105
1 1387 2356 1300 1442 964 498 969 686 325 127
1 563 769 1199 664 594 409 356 565 344 286
1 1115 424 444 742 486 484 268 167 146 230
1 1090 1499 540 584 775 456 193 141 61 137
1 2036 1254 1446 639 493 739 273 218 65 111
1 1173 1173 819 943 506 509 495 195 84 80
1 649 591 558 402 369 163 114 143 82 34
1 294 530 570 504 476 345 116 68 53 39
1 287 265 336 346 278 183 135 32 17 15
1 1507 510 299 286 304 265 185 59 11 2
1 1304 1533 549 275 241 213 109 39 15 6
FLT18: RusSweptArea
1982 2025
1 1 0.9 1
3 12
1 1413 1525 721 198 551 174 37 19 15.1 1.5
1 520 642 506 358 179 252 94 NA NA NA
1 1189 700 489 357 154 69 61 17 14.6 7.4
1 1188 1592 1068 365 165 37 8 16 1.5 20.9
1 1622 1532 1493 481 189 42 2 6 NA NA
1 557 3076 900 701 184 60 25 4 0.7 3.3
1 993 938 2879 583 260 47 24 NA NA NA
1 490 978 1062 1454 1167 299 112 47 18.5 11.7
1 167 487 627 972 1538 673 153 49 9.1 1.7
1 1077 484 532 583 685 747 98 14 2.6 NA
1 675 308 239 273 218 175 25 25 4.0 0.1
1 1604 1135 681 416 354 87 3 7 0.6 0.7
1 1363 1309 1019 354 128 49 21 11 5.7 2.2
1 589 1065 1395 849 251 83 19 18 9.5 5.8
1 733 784 1035 773 348 132 19 5 12.0 1.6
1 1342 835 613 602 348 116 32 30 NA NA
1 2028 1363 788 470 259 130 48 5 NA 0.9
1 1587 2072 980 301 123 94 42 4 NA NA
1 1839 1286 1786 773 114 52 23 9 3.9 0.4
1 1224 1557 1290 1061 304 50 14 5 25.4 13.1
1 980 1473 1473 896 600 182 29 8 0.8 0.5
1 1246 1057 1166 1203 535 241 40 9 3.1 1.1
1 329 1576 880 1111 776 279 93 23 3.6 2.5
1 1408 631 1832 744 605 244 88 28 6.4 1.1
1 927 1613 777 1801 662 342 161 43 17.5 7.4
1 2579 1617 1903 846 1525 553 226 86 49.0 18.5
1 2203 3088 1635 1472 830 863 291 115 33.0 19.0
1 974 2317 3687 2016 1175 620 413 205 65.0 41.0
1 334 1070 2505 3715 1817 789 395 299 155.9 75.2
1 882 508 1432 3065 3300 917 439 176 175.5 105.4
1 815 1114 839 2122 3358 1878 432 195 45.7 76.3
1 747 1174 1177 884 2349 3132 1367 306 92.4 98.5
1 1399 1368 1725 1483 1111 1929 1297 383 93.4 55.1
1 657 1583 1742 1932 1610 925 1158 761 241.6 113.6
1 NA NA NA NA NA NA NA NA NA NA
1 1456 884 1063 1952 1231 567 266 120 119.8 103.8
1 NA NA NA NA NA NA NA NA NA NA
1 NA NA NA NA NA NA NA NA NA NA
1 NA NA NA NA NA NA NA NA NA NA
1 NA NA NA NA NA NA NA NA NA NA
1 NA NA NA NA NA NA NA NA NA NA
1 NA NA NA NA NA NA NA NA NA NA
1 NA NA NA NA NA NA NA NA NA NA
FLT007: Ecosystem_2018corr
2004 2024
1 1 0.65 0.75
3 12
1 1477 4215 1502 798 402 101 22 5 1.3 2
1 2166 558 1009 280 156 57 12 5 1.2 0.5
1 1861 2056 599 698 176 81 26 6 2.5 0.4
1 5862 1592 791 246 269 60 22 9 1.5 2.4
1 6526 4834 1323 511 128 175 33 9 2.3 3.9
1 2023 2806 2896 1017 319 127 73 26 8.1 5.1
1 568 1770 3972 4249 1427 385 105 68 15.9 6.2
1 1236 1015 2402 3004 1784 323 77 18 13.4 8.7
1 2291 1464 700 1508 1652 845 127 44 15.5 20.8
1 2491 1836 1257 632 1182 1302 538 91 33.2 24.6
1 NA NA NA NA NA NA NA NA NA NA
1 1744 2252 1413 726 486 262 353 266 78.7 27
1 772 937 1216 701 444 272 138 132 54.2 30.2
1 3750 1415 1049 1209 626 280 112 64 44.5 71.7
1 NA NA NA NA NA NA NA NA NA NA
1 4166 2323 2151 766 422 444 161 49 21.9 29.5
1 1395 1356 934 829 308 142 107 31 10.3 14.8
1 847 998 811 457 336 124 47 50 23.8 16.8
1 NA NA NA NA NA NA NA NA NA NA
1 699 401 571 527 450 233 93 22 8.0 8.9
1 2344 682 468 410 290 145 77 25 6.3 3.5
Table 3. 13 . Northeast Arctic COD. Tuning data.
Where a matrix is specified rows corresponds to fleets and columns to ages.
# Same number indicates same parameter used
# Numbers (integers) starts from zero and must be consecutive
#
$minAge
# The minimium age class in the assessment
3
$maxAge
# The maximum age class in the assessment
15
$maxAgePlusGroup
# Is last age group considered a plus group (1 yes, or 0 no).
1 1 1 1 1 1
$obsCorStruct
# Covariance structure for each fleet ("ID" independent, "AR" AR(1), or "US" for unstructured). | Possible values are: "ID" "AR" "US"
"ID" "AR" "AR" "AR" "AR" "AR"
$keyCorObs
# Coupling of correlation parameters can only be specified if the AR(1) structure is chosen above.
# NA's indicate where correlation parameters can be specified (-1 where they cannot).
#3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15
NA NA NA NA NA NA NA NA NA NA NA NA
0 0 0 0 1 1 2 2 3 -1 -1 -1
0 0 0 0 1 1 2 2 3 -1 -1 -1
4 4 4 5 6 6 6 7 8 -1 -1 -1
9 9 9 9 9 10 10 10 11 -1 -1 -1
12 12 12 13 13 13 14 14 15 -1 -1 -1
$stockRecruitmentModelCode
# Stock recruitment code (0 for plain random walk, 1 for Ricker, and 2 for Beverton-Holt).
0
$noScaledYears
# Number of years where catch scaling is applied.
0
$keyScaledYears
# A vector of the years where catch scaling is applied.
$keyParScaledYA
# A matrix specifying the couplings of scale parameters (nrow = no scaled years, ncols = no ages).
$fbarRange
# lowest and higest age included in Fbar
5 10
$keyBiomassTreat
# To be defined only if a biomass survey is used (0 SSB index, 1 catch index, and 2 FSB index).
-1 -1 -1 -1 -1 -1
$obsLikelihoodFlag
# Option for observational likelihood | Possible values are: "LN" "ALN"
"LN" "LN" "LN" "LN" "LN" "LN"
$fixVarToWeight
# If weight attribute is supplied for observations this option sets the treatment (0 relative weight, 1 fix variance to weight).
0
Table 3. 14 . Parameters settings used in SAM run.
Table 3. 19 .a. Northeast Arctic COD. Input for the short term prediction.
Yearclass
recruitment
BST1
BST2
BST3
BSA1
BSA2
BSA3
1982
528
NA
NA
NA
NA
NA
NA
1983
1369
NA
NA
NA
NA
NA
NA
1984
356
NA
NA
NA
NA
NA
NA
1985
333
NA
NA
NA
NA
NA
NA
1986
158
NA
NA
NA
NA
NA
NA
1987
133
NA
NA
NA
NA
NA
NA
1988
300
NA
NA
NA
NA
NA
NA
1989
714
NA
NA
NA
NA
NA
NA
1990
989
NA
NA
NA
NA
NA
NA
1991
749
NA
NA
294
NA
NA
324
1992
537
NA
557
283
NA
624
138
1993
400
1044
541
163
903
212
99
1994
774
5356
792
318
2175
272
159
1995
1042
5899
1423
355
1826
565
391
1996
623
5044
496
188
1698
475
148
1997
746
2491
350
246
2524
232
295
1998
589
473
242
183
365
263
177
1999
374
129
78
118
153
51
61
2000
758
713
419
377
364
209
307
2001
243
34
66
64
19
53
33
2002
694
3022
243
249
1505
117
125
2003
539
323
217
116
161
139
65
2004
1254
853
289
361
500
158
58
2005
1016
674
370
194
411
47
200
2006
591
595
102
126
85
94
108
2007
206
69
36
37
51
25
23
2008
364
389
95
85
205
44
40
2009
509
1028
226
76
620
91
83
2010
468
617
100
69
266
40
61
2011
850
703
143
227
496
89
287
2012
448
436
191
144
313
211
139
2013
283
1246
343
99
1759
211
56
2014
757
1642
306
179
1904
202
112
2015
483
312
129
139
241
73
109
2016
617
645
501
282
439
280
204
2017
526
2714
559
238
2058
362
117
2018
367
1791
274
112
1437
158
65
2019
186
165
35
52
93
29
29
2020
241
81
66
41
46
43
29
2021
632
668
163
199
525
103
151
2022
NA
305
307
154
244
201
130
2023
NA
378
119
NA
328
106
NA
2024
NA
165
NA
NA
199
NA
NA
Table 3.19.b. Northeast Arctic COD. Input for the short term prediction using RCT3.
prediction
WAP
logWAP
int.se
yearclass:2017
873.1
6.77
0.24
yearclass:2018
505.8
6.23
0.24
yearclass:2019
242
5.49
0.25
yearclass:2020
197.6
5.29
0.24
yearclass:2021
585.4
6.37
0.20
yearclass:2022
536.6
6.29
0.18
yearclass:2023
377.6
5.93
0.31
yearclass:2024
321.8
5.77
0.39
Table 3.19.c. Results of RCT3 prediction of NEA cod recruitment (in million individuals of age 3).
Iner: averages over 4 years or all years. M2: A model based on Water temperature at stations 3-7 of the Kola section (0-200 m layer), length of thermal front zones and storm activity in the year the year class was spawned M4, M5, M6: models based on water temperature at stations 3-7 of the Kola section (0-200 m layer), length of thermal front zones and spawning stock biomass in the year the year class was spawned
NEA cod recruitment at age 3
Year
2025
2026
2027 2028+
2027+
Yearclass
2022
2023
2024
RCT3
537
378
322
M2
493
465
450
M4
498
M5
554
443
M6
551
498
524
340
SAM
456
717
Iner4 (2021-2024)
356
356
356
Table 3.19.d. Results of various recruitment models (million individuals age 3). Values used in the predictions are shown in green.
Figure 3.1. Standard plots for Northeast Arctic cod (ICES subareas 1 and 2).
Figure 3. 2 .a. Standardized one-observation-ahead residuals for log-catches and log-indices (Thygesen et al. 2017) in the final SAM run.
Figure 3.2.b. NEA cod SSB, R and Fbar model retrospective pattern for final SAM run.Figure 3. 2.c . NEA cod SSB, F bar and R historical retrospective pattern for final SAM run.
Figure 3.2.d. NEA cod final SAM run fit. Total catch in weight. Modelled catches from the final run and point wise 95% confidence intervals are shown by line and shaded area. The yearly observed total catch weight (crosses) are calculated as Catch(y)=sum(W(a,y)*C(a,y)).
Figure 3.2.e. NEA cod. Catchability of different fleets used for final SAM run fit.
Figure 3 .3. NEA cod cannibalism mortality vs. capelin abundance.
Figure 3. 4 . Northeast Arctic cod. Fishing mortality (F5-10) (top panel) and standardized CPUE on Russian trawl fishery for 9 main vessel types (bottom panel) (Kovalev, WD1).
Figure 3. 5 . od CPUE in Norwegian trawl catches where cod is the main species (double and single trawl, Nedreaas WD2). Connected line shows mean, line inside the box shows the median, and the box shows 25 and 75 percentiles.
Figure 3. 6 .a. Residuals of the TISVPA data approximation (yellow circles are positive residuals, white – negative).
Figure 3.6.b. Profiles of the components of the TISVPA objective function.
Figure 3.6.c. TISVPA retrospective runs.
Figure 3. 7 . Model comparison. TSB (total stock biomass, age 3+), SSB recruitment and F in SAM and TISVPA.
Figure 3. 8 . Medium term prediction of NEA cod stock dynamics and TAC according to HCR based on assessments of current year and previous year.
Year
NorwaySingle trawl
Norway double trawl
Russian2 trawl fishery for 9 main vessel types4
1980
0.68
1981
1.21
0.82
198 2
1.09
0.59
1983
1.11
0.51
1984
0.96
0.51
1985
1.29
1.28
1986
1.70
1.30
1987
1.77
1.17
1988
1.03
0.88
1989
0.76
0.86
1990
0.49
0.99
1991
0.44
1.22
1992
1.29
1.12
1993
1.87
1.40
1994
1.59
1.39
1995
1.92
1.20
1996
1.81
1.17
1997
1.36
0.87
1998
0.83
0.57
1999
0.74
0.50
2000
0.92
0.60
2001
1.21
0.72
2002
1.35
0.84
2003
1.67
0.98
2004
1.67
0.72
2005
1.23
0.58
2006
0.88
0.61
2007
1.16
0.73
200 8
1.00
2009
1.40
2010
1.75
2011
4.87 3
3.43
2.27
2012
6.97 3
4.21
2.16
201 3
4.96 3
4.21
1.96
201 4
5.75 3
4.47
2.20
2015
4.54 3
2.62
1.50
2016
3.64 3
2.90
1.35
201 7
3.01 3
2.53
1.31
2018
3.20 3
2.57
1.34
2019
3.02 3
2.44
1.33
2020
3.38 3
2.56
1.18
2021
2.51 3
1.93
1.04
2022
2.04 3
1.87
0.89
2023
1.66 3
1.78
0.74
2024 1
1.92 3
1.86
0.65
Table A1. North-East Arctic COD. Catch per unit effort.
1 Preliminary figures.
2 USSR prior to 1991.
3 2011-2024 Norwegian data on t per hour fishing are not comparable to data from previous year
4 standardized by GLM method (WD 1 )
Age
Year
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15+
10+
Total
12+
1981
8.00
82.00
40.00
63.00
106.00
103.00
16.00
3.00
1.00
1.00
423.0
1982
4.00
5.00
49.00
43.00
40.00
26.00
28.00
2.00
+
0.00
197.0
1983
60.49
2.78
5.34
14.27
17.37
11.13
5.58
2.98
0.45
0.06
120.5
1984
745.44
146.11
39.13
13.59
11.26
7.44
2.81
0.19
0.02
0.00
966.0
1985
69.06
446.29
153.04
141.59
19.66
7.58
3.32
0.22
0.09
0.04
840.9
1986
353.63
243.90
499.61
134.27
65.90
8.28
2.15
0.37
0.06
0.02
1308.2
1987
1.62
34.07
62.80
204.93
41.41
10.40
1.22
0.19
0.66
0.00
357.3
1988
1.98
26.25
50.42
35.53
56.20
6.48
1.35
0.15
0.01
0.00
178.4
1989
7.53
7.98
17.00
34.39
21.38
53.82
6.88
0.97
0.10
0.05
150.1
1990
81.13
24.92
14.82
20.63
26.08
24.30
39.78
2.37
0.06
0.03
234.1
1991
181.04
219.51
50.23
34.64
29.33
28.87
16.89
17.33
0.86
0.03
578.7
1992
241.38
562.13
176.48
65.79
18.84
13.23
7.58
4.50
2.78
0.21
1092.9
1993
1074.04
494.68
357.24
191.05
108.24
20.84
8.12
4.98
2.25
2.51
2264.0
1994
902.64
624.38
323.88
374.47
205.53
70.24
13
3.59
2.6
0.71
1.15
0.11
0.13
NA
0
2522.4
0.24
1995
2175.25
212.29
137.74
139.49
197.08
66.38
15.73
2.43
0.91
0.32
0.48
0.17
NA
NA
0
2948.3
0.17
1996
1826.33
271.71
99.4
89.62
111.34
82.96
22.17
2.22
0.3
0.1
0.07
0.05
0.1
0.01
0
2506.4
0.16
1997
1698.49
565.31
158.57
44.22
49.91
40.91
23.48
5.02
0.84
0.27
0.09
NA
NA
0.01
0
2587.1
0.01
1998
2523.56
475.15
391.16
189.79
44.87
41.22
27.85
16.06
1.81
0.5
0.04
NA
NA
NA
0.06
3712.1
0.06
1999
364.84
231.51
147.62
130.29
52.03
11.93
6.94
4.13
1.47
0.24
0.01
0.03
0.01
NA
0
951.1
0.04
2000
153.42
262.81
294.83
167.25
145.55
50.75
11.33
4.7
2.75
0.85
0.18
0.11
0.03
NA
0
1094.6
0.14
2001
363.55
51.45
177.44
160.63
80.8
44.47
11.1
1.73
0.46
0.19
0.08
NA
NA
NA
0.01
891.9
0.01
2002
19.22
209.1
61.37
106.23
98.78
52.18
20.07
2.9
0.32
0.52
0.09
NA
NA
NA
0.02
570.8
0.02
2003
1505
52.53
306.71
116.8
124.62
116.52
37.69
10.05
1.93
0.31
0.07
NA
0.08
0.07
0
2272.4
0.15
2004
161.2
117.19
33.41
85.21
32.96
28.03
18.14
5.33
1.16
0.31
0.08
0
0.01
NA
0
483.0
0.01
2005
499.71
138.66
125.03
33.28
65.94
21.21
15.02
4.95
1.01
0.25
0.05
0.07
0.05
0.03
0
905.3
0.15
2006
411.21
157.95
64.77
53.82
18.35
29.52
9.5
4.9
1.28
0.2
0.13
0.3
NA
NA
0
751.9
0.3
2007
85.13
47.09
58.49
30.4
29.35
9.04
18.07
6.41
2.67
0.53
0.24
0.07
NA
NA
0
287.5
0.07
2008
50.87
94.2
199.85
288.71
116.17
72.91
21.82
14.43
2.8
0.81
0.04
0.01
0.01
NA
0
862.6
0.02
2009
204.9
25.46
107.83
182.54
138.08
41.48
13.87
4.69
4.32
0.5
0.14
0.02
0.01
NA
0
723.8
0.03
2010
620.25
43.56
22.82
87.98
160.16
154.39
44.56
14.57
3.9
2.89
0.94
0.11
0.12
0.09
0.01
1156.4
0.33
2011
266
91
40.36
28.32
65.2
106.97
101.8
19.76
6.11
1.7
0.92
0.25
0.15
0.09
0.02
728.7
0.51
2012
496.49
40.23
82.79
49.38
33.77
72.53
132.31
65.59
8.37
4.39
1.21
0.66
0.47
0.04
0.1
988.3
1.27
2013
313.11
89.17
60.55
84.49
72.18
47.75
98.41
130.54
55.32
5.41
4.02
1.3
0.73
0.2
0.07
963.3
2.3
2014
1758.58
211.04
286.89
124.18
111.14
74.47
39.41
89.89
61.31
22.64
2.56
1.31
0.16
0.05
0.19
2783.8
1.71
2015
1903.54
211.41
138.71
235.58
128.8
140.36
80.55
35.07
53.8
24.38
7.91
0.8
0.13
0.05
0.01
2961.1
0.99
2016
240.8
201.89
56.29
76.91
119.38
64.84
50.17
25.8
13.49
17.83
7.35
2.15
0.72
0.22
0.1
877.9
3.19
2017
439.4
73.3
111.54
42.35
44.25
65.3
35.75
24.31
11.97
4
2.88
3.15
0.67
0.19
0.11
859.2
4.12
2018
2057.6
280.29
109.03
149.94
53.4
54.93
66.09
34.35
10.78
6.27
1.73
2.25
1.5
0.15
0.23
2828.5
4.13
2019
1437.21
362.38
203.63
125.42
144.06
60.98
34.99
37.86
9.64
3.47
0.55
0.32
0.18
0.28
0.24
2421.2
1.02
2020
92.68
157.92
117.32
117.32
81.36
90.6
42.35
26.57
21.41
6.23
1.75
0.67
0.66
0.51
0.89
758.2
2.73
2021
45.92
28.51
64.86
59.08
55.48
38.54
30.80
12.41
6.32
4.67
2.17
0.29
0.18
0
0.21
349.4
0.68
2022
524.71
43.42
29.42
52.98
56.69
47.05
42.94
27.77
7.85
2.44
1.51
0.94
0.18
0
0.28
838.2
1.40
2023
244.43
103.24
28.66
26.54
33.54
33.83
23.81
12.62
7.08
1.58
0.33
0.11
0.04
0.00
0.08
515.9
0.23
2024
328.44
200.98
150.72
50.97
29.34
27.31
28.25
18.83
11.29
3.82
0.43
0.12
0.02
0.05
0.01
850.6
0.20
2025
199.10
106.07
130.40
153.29
54.85
27.37
23.40
19.65
8.96
3.39
0.92
0.33
0.09
0.01
0.01
727.8
0.44
Table A2. Northeast Arctic COD. Abundance indices (millions) from the Norwegian acoustic survey in the Barents Sea in January-March. New TS and rock-hopper gear (1981-1988 back-calculated from bobbins gear). Corrected for length-dependent effective spread of trawl. Data from 1994 onwards corrected for three northern areas and the method of filling in gaps (WD 1, WKBarFar 2021).
Age
Year
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15+
10+
Total
12+
1981
4.60
34.30
16.40
23.30
40.00
38.40
4.80
1.00
0.30
0.00
163.1
1982
0.80
2.90
28.30
27.70
23.60
15.50
16.00
1.40
0.20
0.00
116.4
1983
152.90
13.40
24.95
52.34
43.33
16.96
5.82
3.21
0.97
0.05
313.9
1984
2755.04
379.11
97.49
28.28
21.44
11.74
4.07
0.40
0.08
0.08
3297.7
1985
49.49
660.04
166.79
125.98
19.92
7.67
3.34
0.21
0.07
0.05
1033.6
1986
665.79
399.61
805.00
143.93
64.14
8.30
1.91
0.34
0.04
0.03
2089.1
1987
30.72
444.98
240.38
391.15
54.35
15.70
2.00
0.45
0.03
0.00
1179.8
1988
3.21
72.83
148.03
80.49
173.31
20.48
3.58
0.53
0.03
0.00
502.5
1989
8.24
15.62
46.36
75.86
37.79
90.19
9.82
0.94
0.10
0.07
285.0
1990
207.17
56.72
28.35
34.87
34.59
20.56
27.23
1.61
0.38
0.03
411.5
1991
460.45
220.14
45.85
33.67
25.65
21.49
12.15
12.67
0.61
0.02
832.7
1992
126.56
570.92
158.26
57.71
17.82
12.83
7.67
4.29
2.72
0.22
959.0
1993
534.48
420.40
273.89
140.13
72.48
15.83
6.24
3.89
2.23
2.36
1471.9
1994
1043.78
556.68
293.92
307.04
153.33
45.72
7.95
2.61
1.48
0.55
0.55
0.08
0.05
NA
0
2413.7
0.13
1995
5356.43
541.25
282.84
242.36
251.01
76.42
17.98
2.42
1.07
0.5
0.61
0.19
NA
NA
0
6773.1
0.19
1996
5899.23
791.62
163.08
117.43
138.59
108.88
24.43
2.64
0.37
0.17
0.12
0.07
0.07
0.02
0
7246.7
0.16
1997
5044.09
1422.92
317.99
68.44
74.26
59.99
26.67
4.85
0.64
0.91
0.08
NA
NA
NA
0
7020.8
0.00
1998
2490.54
496.48
355.1
166.94
31.67
26.15
17.52
8.16
0.79
0.52
0.04
NA
NA
NA
0.04
3594.0
0.04
1999
473.04
350.21
188.48
180.75
61.39
12.71
6.81
5.14
1.01
0.26
0.02
0.04
0.02
NA
0
1279.9
0.06
2000
128.57
242.33
245.81
130.03
111.73
26.75
4.56
1.84
1.21
0.33
0.1
0.03
0.02
NA
0
893.3
0.05
2001
712.77
78.03
182.79
195.11
82.9
37.96
9.45
1.17
0.44
0.19
0.04
NA
NA
NA
0.01
1300.9
0.01
2002
34.11
418.73
118.36
137.56
108.95
45.79
14.4
2.2
0.32
0.18
0.05
NA
NA
NA
0.02
880.7
0.02
2003
3022.23
65.78
376.7
126.31
93.93
66.88
17.5
4.67
1.02
0.17
0.04
NA
0.02
0.02
0
3775.3
0.04
2004
322.87
242.94
63.88
184.62
53.46
43.24
30.59
6.85
1.65
0.28
0.07
0.01
0.01
NA
0
950.5
0.02
2005
853.43
216.67
248.88
55.06
102.97
22.38
16.36
3.81
0.92
0.3
0.04
0.02
0.04
0.04
0
1520.9
0.10
2006
674.21
289.39
116.49
115.38
28.32
43.42
13.72
5.24
1.36
0.24
0.18
0.18
NA
NA
0
1288.1
0.18
2007
594.69
369.74
361.13
127.73
68.51
13.65
23.6
6.82
2.3
0.41
0.11
0.1
NA
NA
0
1568.8
0.10
2008
68.83
101.96
194.37
300.59
111.9
40.24
17.34
8.11
1.79
0.36
0.03
0.02
0.01
NA
0
845.6
0.03
2009
389.48
35.59
126.28
196.7
220.23
60.69
17.9
9.02
5.24
0.51
0.17
0.03
0.04
NA
0
1061.9
0.07
2010
1027.59
95.14
36.81
114.25
154.80
144.50
39.56
11.24
3.67
1.60
0.58
0.04
0.02
0.04
0.02
1629.9
0.12
2011
617.18
225.81
85.40
50.37
129.70
138.66
103.51
16.37
4.36
1.20
0.82
0.19
0.14
0.04
0.02
1373.8
0.39
2012
702.97
100.30
75.72
64.59
33.71
90.69
132.58
48.61
9.02
2.26
0.88
0.55
0.44
0.07
0.05
1262.4
1.11
2013
435.72
142.96
68.84
114.09
63.18
40.43
64.54
76.38
33.52
2.22
2.87
0.40
0.35
0.06
0.03
1045.6
0.84
2014
1245.71
191.48
226.85
93.79
88.59
56.39
32.74
53.05
36.19
9.81
1.01
0.95
0.15
0.02
0.08
2036.8
1.20
2015
1642.00
342.76
144.07
228.25
147.29
113.53
74.43
29.22
53.51
18.08
3.38
0.75
0.12
0.07
0.04
2797.5
0.98
2016
312.16
305.57
99.37
135.48
188.31
113.47
72.33
28.56
13.17
16.06
6.77
0.97
0.52
0.17
0.14
1293.1
1.80
2017
644.51
128.92
179.25
62.15
84.54
90.16
37.82
26.33
8.18
3.26
2.61
3.70
0.58
0.17
0.06
1272.2
4.51
2018
2714.35
500.69
139.41
184.78
61.81
64.17
73.88
25.88
9.28
5.87
1.29
2.46
1.23
0.13
0.37
3785.6
4.19
2019
1790.57
559.44
281.57
179.15
221.90
79.65
32.96
38.31
8.15
2.62
0.54
0.24
0.16
0.18
0.12
3195.6
0.70
2020
164.75
273.82
237.73
160.24
131.56
114.88
49.83
24.26
20.44
4.53
1.66
0.93
0.51
0.26
0.73
1186.1
2.43
2021
80.88
34.87
111.50
119.35
112.31
54.28
37.98
13.57
7.27
3.53
1.25
0.42
0.25
0.04
0.32
577.8
1.03
2022
667.82
65.64
51.98
88.68
86.60
66.51
44.60
30.42
5.70
2.29
2.08
1.49
0.16
0.00
0.90
1114.9
2.55
2023
305.40
163.06
41.21
39.82
46.52
43.17
32.24
14.26
7.49
1.58
0.34
0.14
0.06
0.00
0.14
695.4
0.35
2024
377.90
307.04
198.71
63.31
36.21
29.96
28.22
16.15
8.90
2.68
0.37
0.10
0.02
0.01
0.07
1069.65
0.20
2025
165.47
119.23
154.43
168.18
57.63
29.76
23.50
18.97
9.53
3.55
0.85
0.33
0.08
0.01
0.07
751.59
0.49
Table A3. North-East Arctic COD. Abundance indices (millions) from the Norwegian bottom trawl survey in the Barents Sea in January-March. Rock-hopper gear (1981-1988 back-calculated from bobbins gear). Corrected for length-dependent effective spread of trawl. Data from 1994 and onwards corrected - WD 1, WKBarFar 2021.
Year
5
6
7
8
9
10
11
12+
Sum
1985
0.68
7.45
12.36
3.11
1.15
1.01
0.45
26.21
1986
2.49
3.30
5.54
2.71
0.16
0.40
0.08
14.68
1987
8.77
7.04
0.23
2.83
0.04
0.03
0.03
18.97
1988
1.57
4.43
2.56
0.05
0.01
0.05
8.67
1989
0.04
13.20
9.73
2.20
0.38
0.12
0.06
25.73
1990
0.13
2.60
27.02
4.85
0.49
0.32
35.41
1991
0.00
5.00
19.83
32.67
2.75
0.19
0.17
60.61
1992
2.74
5.23
20.80
20.87
79.60
4.17
1.61
0.22
135.24
1993
4.87
14.58
17.35
20.22
25.44
41.95
4.74
0.71
129.86
1994
23.78
25.85
10.36
8.21
7.68
3.49
17.53
2.61
99.51
1995
6.49
35.24
12.34
2.27
3.60
2.56
2.15
7.96
72.61
1996
1.41
14.43
24.00
3.65
0.79
0.25
0.80
1.30
46.63
1997
0.40
4.95
27.56
16.50
1.50
0.42
0.75
52.08
1998
0.05
0.30
7.06
11.05
3.24
0.51
0.18
0.02
22.41
1999
0.25
1.92
4.84
14.58
8.42
0.75
0.19
0.10
31.05
2000
3.61
3.85
3.25
2.15
2.23
0.45
0.39
0.05
15.98
2001
4.33
17.61
8.03
0.96
0.33
0.36
0.26
0.09
31.97
2002
2.30
19.11
16.50
6.49
0.83
0.31
0.47
0.01
46.02
2003
2.49
29.56
30.01
13.46
1.90
0.11
0.04
0.02
77.59
2004
1.96
17.52
29.82
16.34
7.67
2.04
0.15
0.68
76.18
2005
3.33
12.93
28.75
13.06
6.51
1.55
0.06
0.16
66.35
2006
0.20
12.50
8.11
10.98
7.42
2.12
0.16
0.66
42.14
2007
1.46
3.88
28.52
8.69
5.35
2.80
0.68
0.36
51.72
2008
0.45
5.96
2.95
20.72
2.70
2.02
1.66
0.71
37.17
2009
3.42
14.48
27.64
8.10
22.31
3.07
1.56
0.37
80.95
2010
0.96
20.06
16.98
16.84
6.89
9.61
3.05
2.60
76.96
2011
2.01
51.73
170.09
44.72
17.16
5.12
6.54
0.40
297.76
2012
0.46
12.56
91.58
67.75
17.30
5.98
2.59
1.53
199.76
2013
0.22
5.89
33.69
101.76
106.39
16.08
7.05
6.48
277.56
2014
0.25
2.82
15.49
58.75
112.10
75.33
12.07
8.82
285.62
2015
0.87
1.40
15.42
14.73
42.98
44.20
24.62
11.75
155.97
2016
0.24
1.46
9.05
14.53
22.06
38.65
27.06
25.45
138.51
2017
0.17
7.51
12.84
21.94
14.79
12.70
11.67
18.84
100.46
2018
0.61
3.28
11.11
11.21
8.44
7.82
4.42
9.60
56.50
2019
0.25
2.35
13.34
36.00
17.68
18.35
5.96
9.93
103.87
2020
0.58
3.17
7.75
24.37
28.05
13.28
6.66
5.29
89.15
2021
0.34
1.68
6.13
3.90
5.04
9.68
5.99
2.77
35.53
2022
0.31
3.34
4.58
6.70
3.77
4.39
3.75
2.53
29.37
2023
0.08
0.72
4.01
5.73
6.45
1.66
1.40
1.28
21.34
2024
0.55
1.31
2.10
7.63
7.23
2.12
0.68
0.00
21.62
2025
0.00
0.13
0.68
1.64
1.98
0.53
0.57
0.19
5.73
Table A4. North East Arctic COD. Abundance at age (millions) from the Norwegian acoustic survey on the spawning grounds off Lofoten in March-April.
Year
1
2
3
4
5
6
7
8
9
10
11
12
13
14
1981
17.0
26.1
35.5
44.7
52.0
61.3
69.6
77.9
1982
14.8
25.8
37.6
46.3
54.7
63.1
70.8
82.9
1983
12.8
27.6
34.8
45.9
54.5
62.7
73.1
78.6
1984
14.2
28.4
35.8
48.6
56.6
66.2
74.1
79.7
1985
16.5
23.7
40.3
48.7
61.3
71.1
81.2
85.7
1986
11.9
21.6
34.4
49.9
59.8
69.4
80.3
93.8
1987
13.9
21.0
31.8
41.3
56.3
66.3
77.6
87.9
1988
15.3
23.3
29.7
38.7
47.6
56.8
71.7
79.4
1989
12.5
25.4
34.7
39.9
46.8
56.2
67.0
83.3
1990
14.4
27.9
39.4
47.1
53.8
60.6
68.2
79.2
1991
13.6
27.2
41.6
51.7
59.5
67.1
72.3
77.6
1992
13.2
23.9
41.3
49.9
60.2
68.4
76.1
82.8
1993
11.3
20.3
35.9
50.8
59.0
68.2
76.8
85.8
1994
11.3
17.9
30.2
44.6
55.2
65.7
73.9
78.9
87.4
97.2
97.6
104.7
122.4
1995
12.2
18.1
29.0
42.2
53.9
63.9
75.4
80.4
85.9
99.1
90.1
109.0
1996
12.1
18.8
28.8
40.5
49.4
60.9
71.8
85.1
92.4
94.9
96.1
104.2
103.9
121.0
1997
10.8
16.9
29.7
41.0
50.6
59.4
69.6
81.2
92.3
80.4
103.2
1998
10.5
17.8
30.8
40.9
50.9
58.5
67.7
76.7
87.2
103.0
111.4
105.9
1999
12.0
18.4
29.0
40.0
50.4
59.4
70.4
78.4
88.5
87.6
117.0
62.0
108.0
2000
12.8
20.7
28.4
39.7
51.5
61.4
70.4
76.3
84.9
84.3
100.0
116.2
90.0
2001
11.6
22.6
33.0
41.2
52.2
63.3
70.4
78.3
86.0
95.7
104.7
2002
12.0
19.6
28.9
43.6
52.1
61.9
71.4
79.5
91.2
89.7
103.7
2003
11.4
18.1
29.1
39.7
53.4
61.7
70.6
80.8
89.1
90.1
105.4
104.3
110.5
2004
10.6
18.4
31.7
40.6
51.7
61.6
68.6
79.7
90.9
90.4
92.2
116.0
112.0
2005
11.2
18.3
29.5
43.4
51.1
60.4
71.0
79.6
89.0
96.4
109.3
113.7
129.6
107.0
2006
12.0
19.4
30.9
42.1
53.8
60.3
66.7
76.7
84.9
98.9
95.4
84.9
2007
13.2
20.7
29.6
41.1
52.8
62.5
70.4
78.2
87.5
92.7
101.8
121.6
110.0
2008
12.1
22.3
33.0
43.2
51.8
64.0
69.9
81.3
88.7
95.3
108.9
103.0
102.0
2009
11.2
21.1
32.1
42.6
53.2
61.9
76.6
81.8
89.5
97.8
99.5
94.2
110.0
2010
11.2
18.4
31.4
42.7
52.4
60.7
70.5
80.4
88.8
96.3
102.2
99.8
100.8
126.0
2011
11.9
19.5
29.4
41.9
51.0
60.7
68.1
78.3
86.1
95.4
102.2
110.4
114.3
116.9
2012
10.6
18.4
29.7
41.0
52.4
58.1
66.5
75.6
86.0
91.8
105.9
114.0
119.0
115.5
2013
11.2
19.3
31.1
41.1
51.7
62.0
69.7
76.5
81.2
95.3
93.7
110.7
110.8
145.0
2014
9.7
17.1
29.5
40.5
52.0
59.6
70.2
76.8
81.8
87.1
97.4
98.9
107.8
91.1
2015
10.5
15.9
30.0
40.3
51.1
60.2
68.8
77.5
81.2
88.7
94.0
101.9
127.5
121.1
2016
12.2
18.3
27.7
40.6
49.8
60.5
68.3
76.6
85.5
86.5
90.5
94.1
112.0
122.5
2017
12.3
22.2
31.2
42.5
51.2
60.5
69.6
75.5
85.2
90.9
96.0
92.6
108.6
108.7
2018
11.2
19.1
32.7
42.4
51.2
61.6
69.0
77.5
83.4
87.6
97.0
99.3
101.8
106.8
2019
11.7
17.5
31.2
42.4
51.0
59.6
69.7
77.0
84.1
87.1
99.3
103.4
104.6
109.8
2020
12.0
17.5
25.5
39.5
50.2
58.6
66.7
74.8
83.0
90.0
93.9
92.4
111.2
113.9
2021
11.6
19.9
26.5
37.4
48.0
58.5
66.7
74.9
84.0
91.7
97.7
102.1
105.8
115.0
2022
10.8
20.4
32.4
39.1
49.3
58.4
68.7
75.3
84.1
92.5
98.2
102.6
113.2
2023
11.4
19.7
32.3
42.2
50.0
59.1
67.6
75.9
81.7
86.8
104.2
104.1
115.6
2024
11.3
18.1
30.9
42.2
50.7
59.6
66.7
76.0
80.4
85.9
96.6
99.5
117.0
117.0
2025
11.6
17.3
27.8
41.0
50.4
58.3
67.9
73.7
81.6
86.2
91.8
101.0
108.2
119.0
Table A5. North East Arctic COD. Length (cm) at-age in the Barents Sea from the investigations winter survey in February. Data for ages 1-11 from 1994 and onwards - WD 1, WKBarFar 2021.
Year \ Age
1
2
3
4
5
6
7
8
9
10
11
12
13
14
1983
20
190
372
923
1597
2442
3821
4758
1984
23
219
421
1155
1806
2793
3777
4566
1985
20
171
576
1003
2019
3353
5015
6154
1986
20
119
377
997
1623
2926
3838
7385
1987
21
65
230
490
1380
2300
3970
6000
1988
24
114
241
492
892
1635
3040
4373
1989
16
158
374
604
947
1535
2582
4906
10943
5226
1990
26
217
580
1009
1435
1977
2829
4435
10772
11045
9615
1991
18
196
805
1364
2067
2806
3557
4502
7404
13447
1992
20
136
619
1118
1912
2792
3933
5127
6420
8103
17705
22060
1993
9
71
415
1179
1743
2742
3977
5758
7068
7515
7521
10744
1994
13
56
262
796
1470
2386
3481
4603
6777
8195
8516
13972
1995
15
54
240
658
1336
2207
3570
4715
5712
8816
6817
12331
1996
15
62
232
627
1084
1980
3343
5514
7722
8873
9613
12865
12556
1997
13
52
230
638
1175
1797
2931
4875
7529
5739
10194
1998
11
52
280
635
1182
1728
2588
4026
6076
11257
14391
1999
14
59
231
592
1178
1829
2991
4128
6321
7342
2000
16
74
210
558
1210
1963
3036
3867
5401
6154
10023
2001
14
106
336
646
1288
2233
3088
4439
5732
8442
11429
2002
14
67
238
747
1229
2063
3199
4578
7525
6598
12292
2003
13
61
234
597
1316
2014
2989
4715
6517
7500
12812
2004
11
59
275
608
1143
1947
2623
4137
6673
7368
8109
2005
13
61
246
723
1146
1866
2949
4226
6436
8646
12537
24221
11640
2006
13
69
280
669
1420
1970
2641
4260
5914
10179
9439
8328
2007
19
73
235
639
1302
2190
3039
4411
6394
8056
10826
20104
2008
15
90
335
798
1399
2442
3235
5210
6981
9641
2009
13
83
294
704
1302
2065
4067
5087
6874
9460
9511
2010
12
64
304
700
1296
2033
3162
4743
6562
8984
10315
22766
2011
15
66
246
668
1131
1940
2726
4013
5969
8275
10309
13159
14868
2012
13
62
252
609
1276
1681
2489
3764
5920
7809
12199
15006
17582
2013
11
65
269
602
1208
2055
2809
3843
4822
8447
9101
15108
14743
2014
8
50
246
603
1226
1780
2866
3930
4927
6203
8570
9566
12239
2015
10
44
242
602
1221
1929
2741
4043
4804
6817
7759
11544
21652
2016
13
53
200
593
1049
1928
2674
3830
5540
6129
7110
8272
15256
21945
2017
15
102
292
720
1178
1972
3056
3962
5901
7429
9301
8599
12958
14894
2018
12
69
320
688
1228
2062
2803
4154
5409
6632
9156
10510
11810
12443
2019
12
48
273
685
1164
1870
2916
3974
5394
6068
9637
11507
12371
13993
2020
14
44
153
548
1077
1692
2476
3625
5074
6758
8040
8107
14892
15793
2021
14
68
164
462
910
1682
2484
3620
5379
7160
9313
10923
12410
2022
11
77
311
535
1052
1716
2885
3855
5321
7751
9538
11432
14940
2023
12
71
316
694
1111
1757
2802
4097
5119
6443
10937
10668
14732
2024
12
57
289
701
1133
1855
2571
3834
4994
5931
8809
10805
17000
2025
13
51
217
648
1176
1778
2678
3516
5033
6267
7722
10640
13730
Table A6. North East Arctic COD. Weight (g) at-age in the Joint Barents Sea winter survey in February. Data for ages 1-11 from 1994 and onwards - WD 1, WKBarFar 2021.
Year/age
5
6
7
8
9
10
11
12
13
14
12+
1985
59.6
71.1
79.0
88.2
97.3
105.2
114.0
1986
62.7
70.0
80.0
89.4
86.6
105.8
115.0
1987
58.2
64.5
76.7
86.2
88.0
118.5
116.0
1988
53.1
67.1
71.6
94.0
97.0
119.6
1989
54.0
59.0
69.8
80.8
96.6
103.0
125.0
1990
56.9
65.1
69.2
79.5
83.7
100.1
1991
59.0
67.3
74.4
81.0
91.3
99.8
85.0
1992
66.3
68.7
78.3
83.9
89.2
92.2
101.9
127.0
1993
58.3
66.1
72.8
83.6
87.4
92.7
95.4
111.2
1994
64.3
70.6
82.0
87.3
90.0
95.3
92.4
101.4
1995
61.5
69.7
77.8
84.4
92.6
96.7
100.3
99.5
1996
62.2
67.1
75.9
81.0
93.6
100.9
97.4
104.1
1997
63.7
68.6
74.2
83.8
99.9
108.4
109.0
1998
55.0
62.6
70.2
80.0
92.0
98.0
96.7
115.0
1999
52.7
67.0
69.4
78.6
85.8
100.3
102.0
125.0
2000
58.4
66.5
72.6
77.0
83.9
90.6
93.7
112.4
2001
59.3
66.9
73.2
87.1
88.7
102.8
98.5
128.2
2002
58.6
66.0
73.2
80.8
88.2
101.8
91.0
101.4
2003
62.3
65.0
73.2
80.9
88.9
86.4
120.0
122.0
2004
58.8
64.7
71.2
80.1
85.6
97.0
102.6
115.8
2005
56.3
65.4
72.3
76.0
85.3
95.5
110.5
117.8
2006
56.2
63.7
72.6
77.5
82.9
88.3
89.2
116.3
2007
63.0
66.4
72.4
82.5
88.2
99.8
103.7
115.0
2008
63.8
69.1
73.6
80.9
90.0
94.9
94.9
96.5
2009
60.5
69.3
76.5
82.7
88.7
98.8
92.9
111.6
2010
59.9
64.9
73.6
83.3
89.2
96.3
100.8
103.1
118.2
123.0
2011
57.1
64.3
70.0
79.9
91.2
98.3
101.6
103.6
110.0
102.0
2012
65.3
65.1
69.9
76.6
85.3
98.7
104.6
103.9
116.2
89.0
2013
63.6
68.7
73.0
78.4
83.5
90.9
99.1
96.6
103.0
116.8
2014
55.9
66.0
74.5
77.9
82.8
86.8
93.4
99.1
109.2
116.0
2015
61.0
66.5
72.9
78.6
83.4
89.0
95.4
99.5
106.1
114.5
2016
64.0
63.0
74.3
81.1
88.8
93.2
95.5
97.1
103.2
117.1
2017
58.0
64.8
70.7
81.6
87.3
94.8
98.7
99.4
102.7
106.1
2018
67.9
67.3
72.9
79.5
89.4
93.6
99.3
104.9
104.3
107.9
2019
59.9
69.4
74.7
81.4
87.9
93.9
98.1
106.2
111.1
109.8
2020
66.1
68.3
75.1
81.8
88.9
95.1
96.3
106.0
109.5
109.1
2021
63.3
66.3
74.3
78.6
89.4
93.3
96.9
103.7
103.1
108.4
2022
61.4
67.9
72.9
81.0
88.4
96.5
100.1
98.3
99.3
104.0
2023
60.0
69.1
76.7
80.5
87.1
93.1
99.3
107.2
114.0
120.6
2024
52.2
64.7
73.5
77.9
81.7
91.3
96.4
2025
59.0
65.0
73.5
80.6
86.8
91.2
97.2
99.8
97.7
Table A7. Northeast Arctic COD. Length at age in cm in the Lofoten survey.
Year
5
6
7
8
9
10
11
12
13
14+
12+
1985
2.00
3.42
4.61
6.67
8.89
10.73
14.29
1986
2.22
3.22
4.74
6.40
5.80
10.84
13.48
1987
1.44
1.94
3.61
5.40
5.64
13.15
12.55
1988
1.46
2.82
3.39
6.63
7.27
13.64
1989
1.30
1.77
2.89
4.74
8.28
9.98
26.00
1990
1.54
2.32
2.55
3.78
4.77
8.80
1991
2.21
2.52
3.51
5.18
7.40
11.36
5.35
1992
2.56
2.85
3.99
5.43
6.35
8.03
9.50
17.80
1993
1.79
2.58
3.55
5.31
6.21
7.69
9.28
14.71
1994
2.31
3.27
5.06
6.39
6.64
7.92
7.73
10.10
1995
2.20
3.24
4.83
5.98
7.80
10.03
10.39
10.68
1996
2.22
2.75
4.11
5.63
7.92
10.53
10.58
12.08
1997
2.42
2.92
3.86
5.71
9.65
13.41
12.67
1998
1.88
2.09
2.98
4.85
7.92
9.91
11.05
18.34
1999
1.51
2.80
2.96
4.22
5.92
9.33
9.17
16.00
2000
1.71
2.50
3.16
3.85
5.32
7.07
7.62
12.84
2001
1.90
2.72
3.49
6.23
6.82
10.95
10.29
28.58
2002
1.87
2.57
3.52
4.71
6.18
10.56
8.70
10.48
2003
2.30
2.34
3.48
4.59
5.89
8.07
24.50
27.70
2004
1.74
2.30
3.02
4.50
5.77
7.81
9.95
13.25
2005
1.56
2.40
3.20
3.71
5.79
8.52
16.27
18.63
2006
1.54
2.35
3.44
4.19
5.43
6.57
6.19
18.15
2007
2.34
2.67
3.53
5.30
6.70
9.95
11.24
16.62
2008
2.21
2.97
3.63
4.88
6.74
8.18
7.70
9.07
2009
2.04
2.98
4.10
5.19
6.56
9.38
8.58
15.67
2010
1.90
2.46
3.47
5.13
6.26
7.83
9.59
10.77
18.31
20.84
2011
1.66
2.28
2.89
4.52
6.82
8.82
9.55
9.08
13.38
10.70
2012
3.07
2.47
2.93
3.89
5.37
8.79
11.53
12.28
15.04
5.41
2013
2.49
3.05
3.52
4.46
5.54
7.56
10.26
10.23
11.49
16.61
2014
1.90
2.52
3.80
4.04
5.06
5.96
7.36
9.01
12.20
16.95
2015
2.16
2.62
3.42
3.95
5.21
6.53
8.32
9.95
12.45
14.21
2016
2.53
2.31
3.72
5.05
6.79
8.03
8.93
9.02
12.12
18.46
2017
2.01
2.52
2.94
4.91
5.75
7.16
8.18
9.10
10.49
11.59
2018
3.25
2.77
3.41
4.53
6.51
7.94
9.65
12.05
12.04
12.85
2019
2.12
3.02
3.76
4.81
6.07
7.44
8.71
11.06
13.86
13.40
2020
2.75
2.79
3.64
4.69
6.06
7.78
8.70
10.86
12.93
13.95
2021
2.30
2.62
3.76
4.40
6.59
7.39
8.56
10.15
11.821
14.79
2022
2.61
3.00
3.59
5.01
7.15
8.34
9.34
9.35
9.41
11.63
2023
1.86
2.94
4.16
4.84
6.00
7.19
9.36
11.88
15.31
17.69
2024
1.13
2.32
3.95
4.38
5.68
7.16
9.72
2025
1.44
2.50
3.46
4.59
5.87
7.02
8.41
9.44
8.17
Table A8. Northeast Arctic COD. Mean weight-at-age (kg) in the Lofoten survey.
Year
Age
1
2
3
4
5
6
7
8
9
10+
Total
1985
1
77
569
400
568
244
51
20
8
1
3
1941
1986
1
25
129
899
612
238
69
20
3
2
1
1998
1987
2
2
58
103
855
198
82
19
4
1
1
1323
1988
2
3
23
96
100
305
54
16
3
1
1
602
1989
1
1
3
17
45
57
91
75
25
13
5
332
1990
1
36
27
8
27
62
74
91
39
10
3
377
1991
1
63
65
96
45
50
54
66
49
5
1
494
1992
1
133
399
380
121
56
58
33
29
11
2
1222
1993
1
20
44
220
234
164
51
19
13
8
10
783
1994
1
105
38
147
275
303
314
100
35
10
8
1335
1995
1
242
42
111
219
229
97
21
6
2
2
971
1996
1,3,5
424
275
189
316
449
314
126
27
3
4
2127
1997
4,5
72
160
263
198
112
57
27
9
1
1
900
1998
1
26
86
279
186
57
23
10
4
1
0
672
1999
1
19
79
166
260
98
20
8
5
2
1
658
2000
1,rev
24
82
191
159
127
48
6
3
1
1
642
2001
1
38
59
148
204
120
70
14
2
1
656
2002
1,5,6
83
2
106
85
140
151
67
30
7
1
672
2003
69
36
25
218
142
167
163
60
23
4
908
2004
375
35
170
85
345
194
229
167
49
19
1669
2005
112
48
65
154
70
214
68
47
17
8
803
2006
7
12
20
39
49
78
32
64
23
13
8
341
2007
13
35
165
372
208
189
74
113
32
20
1221
1
October-December
2
September-October
3
Area IIb not covered
4
Areas IIa, IIb covered in October-December, part of Area I covered in February-March 1998
5
Adjusted for incomplete area coverage
6
Area IIa not covered
7
Area I not fully covered
Table A9. Northeast Arctic COD. Results from the Russian trawl-acoustic survey in the Barents Sea and adjacent waters in the autumn. Stock number in millions.
Year
Age
0
1
2
3
4
5
6
7
8
9
10
11
12
13+
Sum
1982
849.3
1905.3
33.2
141.3
152.5
72.1
19.8
55.1
17.4
3.7
1.9
1.5
0.1
0.0
3253.3
1983
1872.2
2003.4
73.2
52.0
64.2
50.6
35.8
17.9
25.2
9.4
0
0
0
0
4203.9
1984
363.3
180.5
104.4
118.9
70.0
48.9
35.7
15.4
6.9
6.1
1.7
1.5
0.6
0.2
954.0
1985
284.6
15.6
129.0
118.8
159.2
106.8
36.5
16.5
3.7
0.8
1.6
0.1
2.1
0.0
875.3
1986
329.9
7.6
31.7
162.2
153.2
149.3
48.1
18.9
4.2
0.2
0.6
0.0
0.0
0.0
905.9
1987
7.7
1.3
46.9
55.7
307.6
90.0
70.1
18.4
6.0
2.5
0.4
0.1
0.3
0.0
607.0
1988
92.5
2.9
31.3
99.3
93.8
287.9
58.3
26.0
4.7
2.4
0.1
0.0
0.0
0.0
699.2
1989
355.8
3.0
14.7
49.0
97.8
106.2
145.4
116.7
29.9
11.2
4.7
1.8
0.7
0.5
937.4
1990
1248.4
31.1
51.0
16.7
48.7
62.7
97.2
153.8
67.3
15.3
4.9
0.9
0.2
0.0
1798.2
1991
974.0
64.0
91.1
107.7
48.4
53.2
58.3
68.5
74.7
9.8
1.4
0.3
0.0
0.0
1551.4
1992
1204.8
157.7
151.1
67.5
30.8
23.9
27.3
21.8
17.5
2.5
2.5
0.4
0.0
0.0
1707.8
1993
484.8
38.0
158.6
160.4
113.5
68.1
41.6
35.4
8.7
0.3
0.7
0.1
0.1
0.0
1110.3
1994
1606.6
833.2
69.9
136.3
130.9
101.9
35.4
12.8
4.9
2.1
1.1
0.6
0.2
0.0
2935.9
1995
5703.5
471.9
36.9
58.9
106.5
139.5
84.9
25.1
8.3
1.9
1.8
0.9
0.6
0.0
6640.8
1996
2660.3
396.5
128.5
73.3
78.4
103.5
77.3
34.8
13.2
1.9
0.5
1.2
0.2
0.0
3569.6
1997
1371.4
353.9
135.3
134.2
83.5
61.3
60.2
34.8
11.6
3.2
3.0
0.0
0.0
0.0
2252.4
1998
304.8
276.8
89.6
202.8
136.3
78.8
47.0
25.9
13.0
4.8
0.5
0.0
0.1
0.0
1180.4
1999
266.9
40.1
118.4
158.7
207.2
98.0
30.1
12.3
9.4
4.2
0.4
0.0
0.0
0.0
945.7
2000
1436.5
37.7
103.6
183.9
128.6
178.6
77.3
11.4
5.2
2.3
0.9
0.4
0.0
0.0
2166.4
2001
321.6
233.8
77.3
122.4
155.7
129.0
106.1
30.4
5.0
1.4
0.5
2.5
1.3
0.0
1187.1
2002
1797.9
26.7
135.6
98.0
147.3
147.3
89.6
60.0
18.2
2.9
0.8
0.1
0.1
0.0
2524.4
2003
489.5
517.5
26.8
124.6
105.7
116.6
120.3
53.5
24.1
4.0
0.9
0.3
0.0
0.1
1583.9
2004
1770.4
158.4
87.5
32.9
157.6
88.0
111.1
77.6
27.9
9.3
2.3
0.4
0.2
0.0
2523.6
2005
2298.0
323.9
61.7
140.8
63.1
183.2
74.4
60.5
24.4
8.8
2.8
0.6
0.1
0.0
3242.4
2006
427.4
52.4
63.2
92.7
161.3
77.7
180.1
66.2
34.2
16.1
4.3
1.7
0.7
0.0
1178.1
2007
177.5
37.0
148.6
257.9
161.7
190.3
84.6
152.5
55.3
22.6
8.6
4.9
1.1
0.7
1303.3
2008
1468.6
45.2
86.3
220.3
308.8
163.5
147.2
83.0
86.3
29.1
11.5
3.3
1.7
0.2
2654.9
2009
1877.7
287.8
21.9
97.4
231.7
368.7
201.6
117.5
62.0
41.3
20.5
6.5
3.2
0.9
3338.7
2010
2210.4
214.9
47.0
33.4
107.0
250.5
371.5
181.7
78.9
39.5
29.9
15.6
5.5
2.0
3587.7
2011
2296.1
125.9
80.0
88.2
50.8
143.2
306.5
330.0
91.7
43.9
17.6
17.5
7.0
3.5
3602.1
2012
1096.0
196.2
45.1
81.5
111.4
83.9
212.2
335.8
187.8
43.2
19.5
4.6
5.7
1.9
2424.8
2013
297.1
654.0
107.6
74.7
117.4
117.7
88.4
234.9
313.2
136.7
30.6
9.2
5.4
4.5
2191.5
2014
909.7
211.0
72.1
139.9
136.8
172.5
148.3
111.1
192.9
129.7
38.3
9.3
3.5
2.0
2277.1
2015
572.9
465.4
51.5
65.7
158.3
174.2
193.2
161.0
92.5
115.8
76.1
24.2
6.5
4.9
2162.0
2016
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
2017
4325.9
5257.4
94.5
145.6
88.4
106.3
195.2
123.1
56.7
26.6
12.0
12.0
7.5
2.8
10454.0
2018
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
2019
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Table A10. Northeast Arctic COD. Abundance indices (millions) from the Russian bottom trawl survey in the Barents Sea. Total (Sub-area I and Division IIa and IIb).
Year
Age
0
1
2
3
4
5
6
7
8
9
10
11
12
1984
15.7
22.3
30.7
44.3
51.7
63.6
73.4
82.5
88.4
97.0
-
-
-
1985
15.0
21.1
30.6
43.2
53.7
61.2
72.8
83.0
92.8
101.3
-
-
-
1986
15.2
19.7
28.3
39.0
51.8
62.2
70.9
83.0
91.3
104.0
-
-
-
1987
-
19.2
27.9
33.4
41.4
59.1
69.2
80.1
95.7
102.6
-
-
-
1988
11.3
21.3
28.7
36.2
43.9
53.3
65.3
79.5
85.0
-
-
-
-
1989
-
20.8
28.8
34.8
46.0
53.9
61.8
69.8
78.7
88.6
-
-
-
1990
16.0
24.0
30.4
46.5
54.9
62.5
69.7
77.6
87.8
102.0
-
-
-
1991
11.5
22.4
30.6
43.0
55.9
64.6
72.8
78.5
87.9
101.8
-
-
-
1992
11.3
21.3
31.9
50.1
59.8
69.1
78.6
84.0
90.8
97.5
-
-
-
1993
12.1
17.4
29.1
43.4
52.7
64.3
73.9
81.2
89.1
91.8
-
-
-
1994
12.2
20.3
26.3
33.7
47.4
58.7
70.6
80.8
90.1
96.1
-
-
-
1995
11.6
19.8
27.6
33.8
45.2
60.5
71.1
83.5
92.9
99.1
-
-
-
1996
10.2
20.0
28.1
36.7
48.7
58.9
70.5
80.0
93.6
102.7
-
-
-
1997
9.6
18.5
28.8
38.2
50.8
62.0
70.5
80.1
88.9
103.5
-
-
-
1998
11.4
19.0
28.0
36.4
50.5
61.0
70.7
80.3
91.1
102.5
-
-
-
1999
11.7
19.7
27.9
35.3
51.6
60.6
70.6
78.9
86.8
94.3
-
-
-
2000
10.7
20.8
30.1
34.7
49.8
61.1
71.6
82.0
88.3
85.7
104.2
-
-
2001
10.6
19.4
29.8
37.3
50.4
61.9
71.9
81.4
91.0
98.7
103.8
-
-
2002
10.7
19.2
29.9
38.2
52.5
60.4
70.6
82.2
91.3
97.2
104.1
-
-
2003
9.8
18.9
28.3
34.9
49.2
62.2
71.0
81.5
92.3
100.9
104.3
-
-
2004
9.8
19.6
29.3
38.4
49.1
60.0
70.5
80.0
91.0
98.0
106.0
-
-
2005
11.2
19.4
29.7
38.5
48.7
59.3
69.3
79.2
87.7
96.1
104.4
-
-
2006
13.0
21.9
31.6
42.7
53.2
60.1
70.2
79.1
88.3
95.2
107.7
-
-
2007
10.7
21.5
30.8
42.2
53.6
63.7
71.0
79.6
87.3
95.9
-
-
-
2008
10.2
20.0
30.3
40.2
53.7
64.5
74.6
82.7
89.5
98.2
102.3
110.2
111.9
2009
12.9
19.3
29.5
38.4
50.7
61.5
70.7
81.7
89.9
94.7
101.8
105.9
109.4
2010
11.1
19.3
28.7
38.5
48.9
59.1
68.0
78.4
88.2
97.3
102.5
108.4
117.7
2011
11.2
20.3
29.2
38.5
49.5
58.6
68.7
78.2
90.0
97.9
106.9
109.3
116.0
2012
11.0
20.3
31.1
40.8
50.8
60.7
68.4
77.6
87.4
97.7
105.2
111.7
116.6
2013
9.5
19.5
29.0
40.3
50.4
59.3
67.3
75.3
84.4
95.3
104.5
111.9
119.4
2014
10.1
20.1
29.8
39.2
50.7
60.9
69.4
77.9
85.1
93.6
102.7
113.3
122.8
2015
11.5
19.0
28.5
37.5
48.0
58.4
67.4
76.3
83.5
91.0
98.8
107.1
117.9
2016
-
-
-
-
-
-
-
-
-
-
-
-
-
2017
15
21
31
40
52
59
67
76
85
92.6
97.9
104
110.1
2018
-
-
-
-
-
-
-
-
-
-
-
-
-
2019
-
-
-
-
-
-
-
-
-
-
-
-
-
Table A11. Northeast Arctic COD. Length-at-age (cm) from Russian surveys in November-December.
Age
Year
0
1
2
3
4
5
6
7
8
9
10
11
12
1984
26
90
250
746
1187
2234
3422
5027
6479
9503
-
-
-
1985
26
80
245
762
1296
1924
3346
5094
7360
6833
11167
-
-
1986
25
63
191
506
1117
1940
2949
4942
7406
9300
-
-
-
1987
-
54
182
316
672
1691
2688
3959
8353
10583
13107
-
-
1988
15
78
223
435
789
1373
2609
4465
5816
-
-
-
-
1989
-
73
216
401
928
1427
2200
3133
4649
6801
8956
-
-
1990
28
106
230
908
1418
2092
2897
4131
6359
10078
13540
-
-
1991
26
93
260
743
1629
2623
3816
4975
7198
11165
15353
-
-
1992
10
76
273
1165
1895
2971
4377
5596
7319
9452
12414
-
-
1993
11
46
211
717
1280
2293
3509
4902
6621
7339
8494
-
-
1994
12
69
153
316
919
1670
2884
4505
6520
8207
9812
-
-
1995
11
61
180
337
861
1987
3298
5427
7614
9787
10757
-
-
1996
7
64
191
436
1035
1834
3329
5001
8203
10898
11358
-
-
1997
6
48
203
487
1176
2142
3220
4805
6925
10823
12426
-
-
1998
11
55
187
435
1186
2050
3096
4759
7044
11207
12593
-
-
1999
10
58
177
371
1214
1925
3064
4378
6128
7843
11543
-
-
2000
8
74
232
379
1101
2128
3341
5054
6560
8497
12353
-
-
2001
9
58
221
459
1125
2078
3329
4950
7270
9541
11672
-
-
2002
8
65
232
505
1299
1964
3271
5325
7249
9195
11389
-
-
2003
6
49
205
492
972
1993
2953
4393
6638
9319
11085
-
-
2004
6
55
231
543
1079
1798
2977
4110
5822
8061
12442
-
-
2005
10
59
223
521
1034
1910
3036
4619
6580
9106
12006
-
-
2006
13
72
270
707
1332
1953
2969
4340
6410
8622
12436
-
-
2007
10
96
252
669
1344
2277
3140
4691
6178
8567
10014
-
-
2008
7
58
228
558
1332
2305
3527
5001
6519
8848
10339
13276
15196
2009
15
54
214
495
1116
2024
3090
4876
6592
8087
10262
11472
13268
2010
9
54
191
794
989
1784
2719
4246
6384
8747
10499
12117
14199
2011
10
63
206
486
1037
1691
2827
4312
6698
8979
11557
12915
15694
2012
9
62
237
561
1087
1877
2688
3974
5930
8495
11000
13377
14826
2013
5
55
202
546
1062
1718
2541
3667
5258
7821
10509
13161
16581
2014
7
64
221
508
1079
1849
2734
3994
5418
7480
10100
14163
18404
2015
11
55
198
452
947
1735
2588
3728
5081
6827
8877
11623
15626
2016
-
-
-
-
-
-
-
-
-
-
-
-
-
2017
22
69
248
571
1150
1771
2539
3819
5426
7554
9236
11220
13536
2018
-
-
-
-
-
-
-
-
-
-
-
-
-
2019
-
-
-
-
-
-
-
-
-
-
-
-
-
Table A12. Northeast Arctic COD. Weight (g) at age from Russian surveys in November-December.
Age
Year
1
2
3
4
5
6
7
8
9
10
11
12
13+
12+
1985
69.1
446.3
153.0
141.6
20.4
15.1
15.7
3.3
1.3
1.0
0.5
na
na
0.0
1986
353.6
243.9
499.6
134.3
68.4
11.6
7.7
3.1
0.3
0.0
0.4
na
na
0.1
1987
1.6
34.1
62.8
204.9
50.2
17.4
1.4
3.0
0.7
0.0
0.0
na
na
0.0
1988
2.0
26.3
50.4
35.5
57.8
10.9
4.0
0.3
0.0
0.1
0.0
na
na
0.0
1989
7.5
8.0
17.0
34.4
21.4
67.0
16.6
3.2
0.5
0.2
0.0
na
na
0.1
1990
81.1
24.9
14.8
20.6
26.2
26.9
66.8
7.3
0.6
0.3
0.0
na
na
0.0
1991
181.0
219.5
50.2
34.6
29.3
33.9
36.7
50.0
3.7
0.2
0.2
na
na
0.0
1992
241.4
562.1
176.5
65.8
21.5
18.4
28.4
25.4
82.4
4.3
1.7
na
na
0.2
1993
1074.0
494.7
357.2
191.1
113.1
35.4
25.5
25.2
27.7
44.2
4.9
na
na
0.8
1994
902.6
624.4
323.9
374.5
229.3
96.1
23.4
11.8
10.3
4.2
18.7
na
na
2.9
1995
2175.3
212.3
137.7
139.5
203.6
101.6
28.1
4.7
4.5
2.9
2.6
na
na
8.1
1996
1826.3
271.7
99.4
89.6
112.8
97.4
46.2
5.9
1.1
0.4
0.9
na
na
1.5
1997
1698.5
565.3
158.6
44.2
50.3
45.9
51.0
21.5
2.3
0.7
0.1
na
na
0.8
1998
2523.6
475.2
391.2
189.8
44.9
41.5
34.9
27.1
5.1
1.0
0.2
na
na
0.1
1999
364.8
231.5
147.6
130.3
52.3
13.9
11.8
18.7
9.9
1.0
0.2
na
na
0.1
2000
153.4
262.8
294.8
167.3
149.2
54.6
14.6
6.9
5.0
1.3
0.6
na
na
0.2
2001
363.6
51.5
177.4
160.6
85.1
62.1
19.1
2.7
0.8
0.6
0.3
na
na
0.1
2002
19.2
209.1
61.4
106.2
101.1
71.3
36.6
9.4
1.2
0.8
0.6
na
na
0.0
2003
1505.0
52.5
306.7
116.8
127.1
146.1
67.7
23.5
3.8
0.4
0.1
na
na
0.2
2004
161.2
117.2
33.4
85.2
34.9
45.6
48.0
21.7
8.8
2.4
0.2
na
na
0.7
2005
499.7
138.7
125.0
33.3
69.3
34.1
43.8
18.0
7.5
1.8
0.1
na
na
0.3
2006
411.2
158.0
64.8
53.8
18.6
42.0
17.6
15.9
8.7
2.3
0.3
na
na
1.0
2007
85.1
47.1
58.5
30.4
30.8
12.9
46.6
15.1
8.0
3.3
0.9
na
na
0.4
2008
50.9
94.2
199.9
288.7
116.6
78.9
24.8
35.2
5.5
2.8
1.7
na
na
0.7
2009
204.9
25.5
107.8
182.5
141.5
56.0
41.5
12.8
26.6
3.6
1.7
na
na
0.4
2010
620.3
43.6
22.8
88.0
161.4
175.0
61.8
31.4
10.8
12.5
4.0
2.0
0.9
2.9
2011
266.0
91.0
40.4
28.3
67.4
159.5
272.7
64.5
23.3
6.8
7.5
0.4
0.5
0.9
2012
496.5
40.2
82.8
49.4
34.4
89.5
226.6
133.5
25.7
10.4
3.8
1.8
1.0
2.8
2013
313.1
89.2
60.6
84.5
72.4
54.1
133.6
233.8
161.7
21.5
11.1
5.5
3.2
8.8
2014
1758.6
211.0
286.9
124.2
111.5
77.7
55.3
149.0
173.9
98.0
14.6
6.8
3.8
10.5
2015
1903.5
211.4
138.7
235.6
130.0
144.2
96.4
49.8
96.9
68.6
32.5
6.6
6.1
12.7
2016
240.8
201.9
56.3
76.9
119.9
66.4
59.4
40.9
35.6
56.5
34.4
17.6
11.0
28.6
2017
439.4
73.3
111.5
42.4
44.4
74.2
48.6
48.4
26.8
16.7
14.6
15.1
7.8
23.0
2018
2057.6
280.3
109.0
149.9
54.0
58.4
77.5
45.6
19.3
14.1
6.1
6.0
7.8
13.7
2019
1437.2
362.4
203.6
125.4
144.6
63.9
49.3
73.9
27.3
21.8
6.5
2.9
8.1
11.1
2020
92.7
157.9
117.3
117.3
81.9
94.3
50.6
50.9
49.5
19.5
8.4
2.6
5.4
8.0
2021
45.9
28.5
64.9
59.1
55.8
40.2
36.9
16.3
11.4
14.3
8.2
1.9
1.6
3.4
2022
524.7
43.4
29.4
53.0
57.0
50.4
47.5
34.5
11.6
6.8
5.3
2.2
1.8
3.9
2023
244.4
103.2
28.7
26.5
33.6
34.6
27.8
18.3
13.5
3.2
1.7
0.8
0.7
1.5
2024
328.4
201.0
150.7
51.0
29.9
28.6
30.4
26.5
18.5
5.9
1.1
0.1
0.1
0.2
2025
199.0
106.1
130.4
153.3
54.9
27.5
24.1
21.3
10.9
3.9
1.5
0.5
0.2
0.7
Table A13. Northeast Arctic COD. Sum of acoustic abundance estimates (millions) in the Joint winter Barents Sea survey (Table A2) and the Norwegian Lofoten acoustic survey (Table A4).
Year
0
1
2
3
4
5
6
7
8
9
10
11
12
13+
2004
543.0
330.6
329.7
147.7
421.5
150.2
79.8
40.2
10.1
2.2
0.5
0.1
0.1
0.1
2005
180.2
440.7
146.6
216.6
55.8
100.9
28.0
15.6
5.7
1.2
0.5
0.1
0.0
0.1
2006
276.0
479.0
509.7
186.1
205.6
59.9
69.8
17.6
8.1
2.6
0.6
0.2
0.0
0.0
2007
101.0
333.3
505.4
586.2
159.2
79.1
24.6
26.9
6.0
2.2
0.9
0.1
0.2
0.0
2008
483.4
130.9
372.6
652.6
483.4
132.3
51.1
12.8
17.5
3.3
0.9
0.2
0.2
0.2
2009
903.3
569.7
93.5
202.3
280.6
289.6
101.7
31.9
12.7
7.3
2.6
0.8
0.3
0.2
2010
652.6
310.3
84.2
56.8
177.0
397.2
424.9
142.7
38.5
10.5
6.8
1.6
0.3
0.3
2011
2083.0
509.8
160.0
123.6
101.5
240.2
300.4
178.4
32.3
7.7
1.8
1.3
0.6
0.3
2012
1412.7
1454.3
255.9
229.1
146.4
70.0
150.8
165.2
84.5
12.7
4.4
1.6
1.4
0.6
2013
2281.8
914.2
659.0
249.1
183.6
125.7
63.2
118.2
130.2
53.8
9.1
3.3
1.5
0.9
2014
2445.2
308.2
155.1
190.0
108.6
93.9
52.8
30.4
50.2
36.3
12.1
3.4
1.0
1.4
2014 *
2445.2
339.0
184.0
226.3
122.2
103.4
67.7
42.1
81.3
78.9
28.1
4.7
1.3
1.5
2015
350.9
725.3
154.0
174.4
225.2
141.3
72.6
48.6
26.2
35.3
26.6
7.9
1.7
1.0
2016
1164.8
350.8
341.3
77.2
93.7
121.6
70.1
44.4
27.2
13.8
13.2
5.4
1.7
1.4
2017
2316.3
757.5
260.6
375.0
141.5
104.9
120.9
62.6
28.0
11.2
6.4
4.4
4.5
2.7
2018*
1841.2
2100.3
413.8
183.6
148.9
60.0
37.6
57.1
20.2
14.4
5.8
3.6
3.5
2.8
2019
313.4
560.2
475.2
416.6
232.3
215.1
76.6
42.2
44.4
16.1
4.9
2.2
1.1
1.8
2020**
115.6
63.5
106.3
139.5
135.6
93.4
82.9
30.8
14.2
10.7
3.1
1.0
0.5
1.0
2021
749.1
62.1
51.2
84.7
99.8
81.1
45.7
33.6
12.4
4.7
5.0
2.4
1.0
0.7
2022***
399.2
218.2
39.6
25.6
32.8
34.4
33.8
18.6
9.8
2.5
0.8
0.5
0.1
0.2
2023
359.7
322.1
275.2
69.9
40.1
57.1
52.7
45.0
23.3
9.3
2.2
0.8
0.6
0.3
2024
300.9
226.0
237.0
234.4
68.2
46.8
41.0
29.0
14.5
7.7
2.5
0.6
0.2
0.1
Table A14. Swept area estimates (millions) of Northeast Arctic Cod from the Joint Norwegian- Russian ecosystem survey in August-September (2020 data are taken from WD 01 AFWG 2021).
*data adjusted taking into account not complete area coverage
** revised
*** incomplete and unsynoptic coverage
Year
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
2004
30
127
415
823
1464
2448
3266
4608
6323
9444
18331
13830
-
15924
2005
37
162
428
985
1723
2553
3697
4808
5958
8583
7662
-
8799
-
2006
39
155
473
1068
1759
2723
3725
5220
6798
10769
8904
9520
-
-
2007
52
173
523
1237
2078
3004
4163
5860
7638
11251
-
12683
-
15529
2008
39
193
511
1154
1958
3187
4262
5793
7741
9563
12039
11149
16320
-
2009
29
164
462
989
1614
2453
4034
5313
6334
7595
8221
12001
12040
-
2010
37
152
470
946
1634
2551
3801
5381
6921
7986
9063
8868
13406
19217
2011
35
143
419
991
1672
2523
3500
4812
6826
9403
12623
10379
10945
-
2012
34
149
418
904
1634
2388
3276
4344
6466
8459
9798
11181
14621
10895
2013
28
129
429
918
1553
2249
3230
4443
5805
8454
9817
12531
14308
17723
2014
28
148
374
897
1684
2244
3501
4511
5933
7183
7894
11979
7602
13250
2015
28
149
414
823
1483
2297
3219
4490
5635
6962
8478
12148
10385
15370
2016
45
162
527
914
1563
2308
3324
4492
6472
7476
8689
10939
7485
16645
2017
37
185
441
953
1660
2414
3398
4821
5876
7173
8345
9968
12765
12445
2018
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2019
28
103
386
899
1458
2208
3369
4508
6355
7734
9351
9147
11394
11403
2020
38
125
343
864
1514
2311
3204
4609
6020
7589
8685
10474
12242
13537
10724
14504
19800
2021
41
200
359
714
1278
2224
3196
4482
6355
7527
9165
10910
12089
15930
17193
2022*
33
171
499
828
1451
2415
3688
5088
7208
7524
12754
9535
17880
2023
37
152
584
899
1533
2331
3371
5354
6170
7201
9392
9284
8430
15030
2024
32
129
443
996
1763
2518
3436
4553
6207
6454
Table A15. Mean weight at age of cod (g), data from bottom trawls Joint Ecosystem survey. StoX calculations.
*revised
** Biofox value
Year/age
1
2
3
4
5
6
7
8
9
10
11
1985
0.02
0.171
0.576
1.003
2.018
3.386
4.696
6.636
8.245
10.321
14.290
1986
0.02
0.119
0.377
0.997
1.645
3.010
4.488
6.518
4.218
0.000
13.480
1987
0.021
0.065
0.23
0.49
1.390
2.155
3.913
5.438
0.322
12.550
1988
0.024
0.114
0.241
0.492
0.907
2.116
3.269
4.937
3.635
13.640
1989
0.016
0.158
0.374
0.604
0.948
1.581
2.762
4.791
8.835
8.582
1990
0.026
0.217
0.58
1.009
1.436
2.010
2.716
3.995
5.425
8.992
1991
0.018
0.196
0.805
1.364
2.067
2.764
3.532
4.945
7.401
11.645
5.350
1992
0.02
0.136
0.619
1.118
1.994
2.808
3.975
5.376
6.352
8.034
9.500
1993
0.009
0.071
0.415
1.179
1.745
2.675
3.686
5.399
6.280
7.680
9.280
1994
0.013
0.056
0.262
0.796
1.557
2.624
4.181
5.846
6.675
7.966
7.778
1995
0.015
0.054
0.24
0.658
1.364
2.565
4.124
5.326
7.379
9.895
9.738
1996
0.015
0.062
0.232
0.627
1.098
2.094
3.742
5.586
7.866
10.057
10.502
1997
0.013
0.052
0.23
0.638
1.185
1.918
3.433
5.515
8.889
10.408
12.405
1998
0.011
0.052
0.28
0.635
1.183
1.731
2.667
4.362
7.259
10.577
11.657
1999
0.014
0.059
0.231
0.592
1.180
1.964
2.978
4.200
5.980
8.848
9.642
2000
0.016
0.074
0.21
0.558
1.222
2.001
3.064
3.862
5.365
6.471
8.379
2001
0.014
0.106
0.336
0.646
1.319
2.371
3.257
5.078
6.186
10.084
10.558
2002
0.014
0.067
0.238
0.747
1.244
2.199
3.344
4.669
6.554
8.078
9.277
2003
0.013
0.061
0.234
0.597
1.335
2.080
3.207
4.643
6.206
7.649
17.062
2004
0.011
0.059
0.275
0.608
1.177
2.083
2.870
4.411
5.889
7.752
9.310
2005
0.013
0.061
0.246
0.723
1.166
2.068
3.114
3.852
5.877
8.538
14.573
2006
0.013
0.069
0.28
0.669
1.421
2.083
3.009
4.212
5.501
6.881
7.646
2007
0.019
0.073
0.235
0.639
1.351
2.334
3.340
4.923
6.598
9.649
11.132
2008
0.015
0.09
0.335
0.798
1.402
2.482
3.282
5.015
6.863
8.598
7.822
2009
0.013
0.083
0.294
0.704
1.320
2.302
4.089
5.152
6.611
9.391
8.657
2010
0.012
0.064
0.304
0.7
1.300
2.082
3.251
4.951
6.366
8.095
9.757
2011
0.015
0.066
0.246
0.668
1.146
2.050
2.830
4.367
6.592
8.681
9.647
2012
0.013
0.062
0.252
0.609
1.295
1.792
2.664
3.827
5.551
8.373
11.741
2013
0.011
0.065
0.269
0.602
1.212
2.163
2.988
4.103
5.292
7.782
9.842
2014
0.008
0.05
0.246
0.603
1.228
1.804
3.121
3.975
5.015
6.018
7.575
2015
0.01
0.044
0.242
0.602
1.227
1.936
2.849
4.015
4.981
6.630
8.187
2016
0.013
0.053
0.2
0.593
1.051
1.936
2.835
4.240
6.315
7.431
8.541
2017
0.015
0.102
0.292
0.72
1.181
2.024
3.026
4.363
5.817
7.223
8.405
2018
0.012
0.069
0.32
0.688
1.251
2.099
2.890
4.246
5.893
7.356
9.512
2019
0.012
0.048
0.273
0.685
1.165
1.908
3.139
4.384
5.833
7.221
8.788
2020
0.014
0.044
0.153
0.548
1.089
1.729
2.650
4.133
5.633
7.455
8.566
2021
0.014
0.068
0.164
0.462
0.918
1.721
2.696
3.807
5.916
7.314
8.762
2022
0.011
0.077
0.311
0.535
1.061
1.801
2.953
4.079
5.915
8.126
9.399
2023
0.012
0.071
0.316
0.694
1.113
1.782
2.997
4.330
5.537
6.824
9.661
2024
0.012
0.057
0.289
0.701
1.133
1.876
2.666
3.991
5.262
6.370
9.367
2025
0.013
0.051
0.217
0.648
1.176
1.781
2.700
3.598
5.184
6.370
7.983
Table A16. Mean weight at age of cod (kg), combined data from Joint Barents Sea winter survey and Lofoten survey.
Chapter 4. Haddock in subareas 1 and 2 (Northeast Arctic)
Introductory note
On 30th March 2022 all Russian participation in ICES was suspended. The AFWG report 2025 chapter on haddock was therefore not updated.
In the present report, we have kept the main structure of the NEA haddock chapters in AFWG reports from the last years.
Status of the fisheries
Historical development of the fisheries
Haddock is mainly fished by trawl as bycatch in the fishery for cod. Also, a directed trawl fishery for haddock is conducted. The proportion of the total catches taken by direct fishery varies between years. On average approximately 70% of the catches are taken by trawl. Norway takes about half of the quota with other gear, in particular long line and Danish seine. Danish seine has become more important in the Norwegian fisheries the last 10 years. Some of the longline catches are from a directed fishery, which is restricted by national quotas. In the Norwegian management, the quotas are set separately for trawl and other gears. The fishery is also regulated by a minimum landing size (40 cm), a minimum mesh size in trawls and Danish seine, a maximum bycatch of undersized fish, closure of areas with high density/catches of juveniles and other seasonal and area restrictions.
The exploitation rate of haddock has been variable. The highest fishing mortalities for haddock have occurred at low to intermediate stock levels and historically show little relationship with the exploitation rate of cod, despite haddock being primarily caught as bycatch in the cod fishery. However, the more restrictive quota regulations introduced around 1990 have resulted in a more stable pattern in the exploitation rate.
The exceptionally strong year classes 2005–2006 contributed to the strong increase to all-time high stock levels and high catch levels in the last decade. Their importance in the catches is currently minimal. Currently, the 2017 year-class dominated the catches, with 30% of the total catch in t. The strong 2016 constituted 14% of the catches, the contribution of fish older than eight years of age was negligible.
Catches prior to 2025 (Table 4.1–Table 4.3, Figure 4.1)
The highest landings of haddock historically were 322 kt in 1973. Since 1973 the highest catches observed was 316 kt in 2012. The landings in 2018-2024 were below 200 kt (Figure 4.1).
Provisional official landings for 2024 are about 140 kt, which below the agreed TAC (141 kt) but 11 % above the advice (128 kt).
In 2006 it was decided to include reported Norwegian landings of haddock from the Norwegian statistical areas 06 and 07 (i.e. between 62°N and Lofoten Islands). These areas were not previously included in the total landings of NEA haddock as input for this stock assessment (ICES CM 2006/ACFM:19; ICES CM 2006/ACFM:25).
Estimates of unreported catches (IUU catches) of haddock have been added to reported landings for the years from 2002 to 2008. Two estimates of IUU catches were available, one Norwegian and one Russian. At the benchmark in 2011 it was decided to base the final assessment on the Norwegian IUU estimates (ICES CM 2011/ACOM:38; Table 4.1).
We continue to include the estimates of IUU catches 2002–2008. The IUU catches are assumed to be negligible for the period 2009–2024 and therefore set to zero.
Catch advice and TAC for 2025
The catch advice for 2025 was 107 k t – a 24% reduction from the year before, following the Harvest Control Rule, and a F of 0.35. The Joint Norwegian-Russian Fisheries Commission set the TAC to 130 kt, which is 22% higher than the advice and not in accordance with the HCR. Russia and Norway can transfer the unused part of their own quota, restricted to a maximum of 10% of own quotas from 2024 to 2025. The catch in 2024 was close to the agreed TAC.
Status of research
Survey results
Russia provided indices for 1982–2015 and 2017 for the Barents Sea trawl and acoustic survey (TAS) which was carried out in October–December (FLT01, RU-BTr-Q4). The survey was discontinued in 2018.
The Joint Barents Sea winter survey provides two index series used for tuning and recruitment forecast (bottom trawl: FLT02, NoRu-BTr-Q1 and acoustics: FLT04, NoRu-Aco-Q1). The survey area has been extended from 2014 with additional northern areas (N) covered. The extended area is now included in total and standard survey index calculations for haddock (WKDEM 2020) and is done using the StoX software (Johnsen et al. 2019). Overall, this survey tracks both strong and poor year classes well. The indices from the Joint winter survey of cod and haddock in the Barents Sea are provided in the annual survey reports from this survey (e.g., Godiksen et al. 2025). Due to challenging weather conditions, the coverage in parts of the survey area was lacking. In 2025, the survey did parts of strata 13 and 14 which was strata with the highest densities of haddock, leading to increased unquantifiable uncertainty in the abundance estimates from this survey.
The Joint Barents Sea ecosystem survey provides indices by age from bottom trawl data (FLT007, Eco-NoRu-Q3 Btr) used for tuning and recruitment forecast. At the benchmark in 2011 it was decided to include this survey as tuning series. Tuning indices by age from the Joint ecosystem survey is calculated using the BIOFOX programme (Prozorkevich and Gjøsæter 2014). The survey covered the distribution of haddock well in 2024. The estimates for cod and haddock are provided to the group as an excel file.
The survey indices for ages used in tuning can be found in Table 4.9, and the survey indices used in recruitment forecast can be found in Table 4.16.
Data used in the assessment
Catch-at-age (Table 4.4)
Relevant data of estimated catch-at-age was obtained from InterCatch for the period 2008–2020 and is presented together with historical values from 1950–2007 in Table 4.4. Catch at age from 2021 to 2024, instead of using InterCatch, the same algorithm was realized in Excel. Excel was used for comparison with InterCatch for data 2008-202 0 , and no differences between InterCatch and Excel allocations were detected.
Age and length composition of the landings in 2024 were available from Norway and Russia in Subarea 1, Division 2.a and 2b. Norwegian catch at age data was calculated using StoX-R Eca. International landings data were downloaded from https://data.ices.dk/ except for Belarus that reports directly to Russian authorities. Data was combined in excel as for 2021-2024. The biological sampling of NEA haddock catches is considered good for the most important ages in the fisheries.
Catch-weight-at-age (Table 4.5)
The mean weight-at-age in the catch was obtained as a weighted average of the weight-at-age in the catch from Norway and Russia.
Stock-weight-at-age (Table 4.6)
Since 1983 the stock weights-at-age (Table 4.6) are calculated using the average of the weight-at-age estimate from the Joint Barents Sea winter survey and the Russian bottom trawl survey. These averages are assumed to give representative values for the beginning of the year (see stock annex for details). However, the Russian bottom trawl survey has been discontinued and therefor stock weights-at-age were calculated using a correction factor (WKDEM 2020). Since the benchmark in 2006 stock weight at age has been smoothed (ICES 2006, see stock annex for details).
Maturity-at-age (Table 4.7)
Since the benchmark 2006, smoothed estimates were produced separately for the Russian autumn survey and the Joint winter survey and then combined using arithmetic average. These averages are assumed to give representative values for the beginning of the year. However, the Russian bottom trawl survey has been discontinued and therefore stock weights-at-age were calculated using a correction factor (see WKDEM 2020, see stock annex for details).
Natural mortality (Table 4.8)
Natural mortality used in the assessment was 0.2. For ages 3–6 mortality predation by cod is added (see stock annex). For the period from 1984 and onwards actual estimates of predation by cod was used. For the years 1950–1983 the average natural mortality for 1984–202 4 was used (age groups 3–6). Estimated mortality from predation by cod in this year’s assessment is based on the ‘final run’ cod assessment. The proportion of F and M before spawning was set to zero.
Data for tuning (Table 4.9)
The following survey series are included in the data for tuning, the last age for all surveys is the plus group. Data are lacking (no survey) for FLT01 in 2016, and for FLT007 in 2018 and 2022 (not included due to poor/not synoptic coverage).
Name
Acronym
Place
Season
Age
Year
prior weight
FLT01: Russian bottom trawl
RU-BTr-Q4
Barents Sea
October–December
3–8+
1991–2017
1
FLT02: Joint Barents Sea survey–acoustic
BS-NoRU-Q1(Aco)
Barents Sea
February– March
3–9+
1993–2025
1
FLT04: Joint Barents Sea survey–bottom trawl
BS-NoRu-Q1 (BTr)
Barents Sea
February– March
3–10+
1994–2025
1
FLT007: Joint Russian-Norwegian ecosystem autumn survey in the Barents Sea–bottom trawl
Eco-NoRu-Q3 (Btr)
Barents Sea
August–September
3–9+
2004–2024
1
Changes in data from last year (Table 4.6–Table 4.7, Table 4.9)
At the benchmark (WKDEM 2020) it was decided that historic values (1950–1993) of stock weight and maturity should not be updated in the following years. Due to the smoothing procedure (see stock annex) the stock weight and maturity at age back to 1994 are updated every year.
Natural mortality includes cod predation for the ages 3–6. The data from 1984 and onwards are updated every year after the update of the cod assessment. The averages from 1994-2024 are used for the historic period (1950–1983) and were updated and used in the assessment.
Assessment models and settings (Table 4.10)
At the benchmark in 2020 it was decided to continue using the SAM model as the main model.
The SAM configuration was revised during the benchmark in 2020. The main changes to the configuration were to include:
1) age group 3 in the winter survey indices (Fleet 02 and 04),
2) plus group in all survey series (new option in SAM),
3) prediction variance link for the observation variances (new option in SAM, Breivik et al., 2021) 4) correlation structure in observation variance for the surveys (Berg and Nielsen, 2016).
The configuration, settings and tuning of SAM that were decided on during the benchmark (WKDEM 2020) were used in the current assessment. The configuration file is given in Table 4.10 and in the stock annex.
XSA, with revised settings, and TISVPA are both used as additional models for comparison.
Results of the assessment (Table 4.11–Table 4.14 and Figure 4.1–Figure 4.3)
The dominating feature of the assessment is that the stock reached an all-time high level around 2011 due to the strong 2004–2006 year-classes combined with reduced fishing pressure. Since then, the stock has declined (Table 4.11; Figure 4.1).
The estimated SSB for 2025 is at the lowest levels since 2003. The estimate of SSB for 2025 is 149 kt which is above MSY Btrigger = 80kt (Figure 4.1). The residuals and retrospective patterns are shown in Figure 4.2 and 4.3.
Fbar has increased since 2013 and has been over Fmsy from 2017.
Comparison with last year’s assessment (Figure 4.4)
The text table below compares this year’s estimates with last year’s estimates. Compared to last year, the current estimates of the total stock (TSB) in 2024 is 2 % higher whereas the spawning stock (SSB) estimate is 9% higher. Fbar in 2023 was the same as last year’s assessment. Current estimates for 2025 for ages 3- 4 and 8-9 were lower compared to last year’s assessment. The estimates of 5-7 and 10-13+ were higher or identical, contributing the higher 2024 SSB estimates compared to last year’s assessment. Ratios are calculated on original numbers (not rounded as shown in table).
The Extended Survivors Analysis (XSA) was used to tune the VPA by available index series. As last years, FLR was used for the assessment of haddock (see stock annex), and thus all results concerning XSA are obtained using FLR. The settings used were the same as set in the benchmark in 2015 (WKARCT 2015). At this meeting the comparison confirmed that usage XSA with survivor estimate shrinkage 0.5 gave similar result to the estimates from SAM.
The estimated consumption of NEA haddock by NEA cod is incorporated into the XSA analysis by first constructing a catch number-at-age matrix, adding the numbers of haddock eaten by cod to the catches for the years where such data are available (1984–2024). The summary of XSA stock estimates with shrinkage value 0.5 are presented in Table 4.15. A retrospective estimate for XSA gave same signals as for the main model SAM (Figure 4.5).
TISVPA (Figure 4.5)
The TISVPA (Triple Instantaneous Separable VPA) model (Vasilyev 2005, 2006) represents fishing mortality coefficients (more precisely – exploitation rates) as a product of three parameters: f(year)*s(age)*g(cohort). The generation‐dependent parameters, which are estimated within the model, are intended to adapt traditional separable representation of fishing mortality to situations when several year classes may have peculiarities in their interaction with fishing fleets caused by different spatial distribution, higher attractiveness of more abundant schools to fishers, or by some other reasons. The TISVPA model was presented at benchmark groups for haddock stock (WKARCT 2015, WKDEM, 2020) and it was decided to apply to NEA haddock using the same data as SAM except that natural mortality values from cannibalism were taken from the SAM runs. All the input data, including catch-at-age, weight-at-age in stock and in catches, maturity-at-age were the same as used in SAM. All results of model run presented in WD #5. Generally, the biomass estimates of this model were higher than SAM estimates, which can be explained by different assumptions about catchability of indices. The retrospective pattern for TISVPA shows the same trends as both the SAM and XSA models (Figure 4.5).
Model comparisons (Figure 4.6)
Results from SAM, XSA and TISVPA are compared in Figure 4.6. Comparison of results of SAM, TISVPA and XSA with previous year settings shows that the models estimate similar trends. The TISVPA model is more flexible for settings than the others and taking into account a possible decrease in survey data consistency, it was attempted to do tuning of surveys not at abundance but to age proportions because of the probable change in effective survey catchability.
Predictions, reference points and harvest control rules (Table 4.16–Table 4.21)
Recruitment (Table 4.16–Table 4.17)
SAM was used to estimate the recruitment at age 3 of the 2022 year-class in 2025. The RCT3 program (R version) was used to estimate the recruiting year classes 2023–2024 in 2026 and 2027 with survey data from the ecosystem survey and winter survey (acoustics and bottom trawl). Input data and results are shown in Tables 4.16 and 4.17, respectively.
The text table below shows the recruitment estimates for the year classes 2008–2024 from assessments and RCT3 forecasts (shaded cells). In the most recent years, it is noticeable that the 2018 year-class was less than 50% of the initial RCT3 estimate: The SAM estimates for the following year classes were higher than the RCT3 estimates, the 2020 year class were estimated by SAM to be 75% than the initial RCT3 estimate, respectively.
Year Class
Year of assessment, base model
2011 XSA
2012 XSA
2013 XSA
2014 XSA
2015 XSA
2015 SAM
2016 SAM
2017 SAM
2018 SAM
2019 SAM
2020 SAM
2021 SAM
2022 SAM
202 3 SAM
202 4 SAM
2025 SAM
2008
120
151
155
169
178
89
157
107
109
110
122
117
119
118
117
117
2009
315
320
345
357
363
230
351
294
291
293
356
340
344
335
331
333
2010
188
146
137
146
150
100
133
105
105
106
124
119
120
118
117
117
2011
483
513
482
398
298
397
340
329
332
425
411
415
407
400
402
2012
124
145
104
78
73
79
70
68
75
72
73
73
72
72
2013
394
290
197
235
184
174
177
219
213
215
212
206
207
2014
279
198
247
189
146
148
202
194
198
195
191
193
2015
422
398
333
336
384
368
370
363
353
354
2016
1067
933
930
875
822
831
808
775
776
2017
577
629
497
442
449
432
414
415
2018
344
294
154
164
161
154
156
2019
39
31
38
47
45
45
2020
95
89
158
164
166
2021
303
372
514
428
2022
231
360
532
2023
387
433
2024
649
Prediction data (Table 4.18, Figure 4.7)
The input data for the prediction are presented in Table 4.18.
Stock numbers for 2026–2027 at age 3 are taken from RCT3, and abundance-at-ages 3–13+ in 2025 from the SAM assessment.
The average fishing pattern observed in 2022–2024 scaled to F in 2024 was used for distribution of fishing mortality-at-age for 2025–2027 (Figure 4.7). The proportion of M and F before spawning was set to 0.
Input data to projection of weight at age in the stock, weight at age in the catch, maturity and mortality followed the stock annex (WKDEM, 2020).
Biomass reference points (Figure 4.1)
Biological and fisheries reference points for NEA haddock were last set following a thorough analysis as part of the WKNEAMP-2 (ICES, 2016) Harvest Control Rule evaluation in 2016. The revised model developed during the 2020 benchmark produced better fits to the data but only a small change in the reconstructed stock (WKDEM, 2020). A brief analysis at WKDEM 2020 indicated that the reference points from the current model are very similar to the previously estimated values. Given the more thorough analysis at WKNEAMP-2 (ICES, 2016), this is taken as indicating that there was no evidence to deviate from the reference points set in 2016.
At the last benchmark (WKDEM 2020) it was proposed to keep Blim = 50 000 t and Bpa = 80 000 t with the rationale that Blim is equal to Bloss, and Bpa = Blim*exp (1.645*σ), where σ = 0.3. This gives a 95% probability of maintaining SSB above Blim taking into account the uncertainty in the assessments and stock dynamics. BMSY trigger was proposed equal Bpa, Btrigger was then selected as a biomass that is encountered with low probability if FMSY is implemented, as recommended by WKFRAME2 (ICES CM 2011/ACOM:33). Values of reference points compared with current stock values are reflected in Figure 4.1.
Fishing mortality reference points (Figure 4.1)
Biological and fisheries reference points for NEA haddock were last set following a thorough analysis as part of the WKNEAMP-2 (ICES, 2016) Harvest Control Rule evaluation in 2016. The revised model developed during the 2020 benchmark produced better fits to the data but only a small change in the reconstructed stock (ICES WKDEM 2020). A brief analysis at WKDEM 2020 indicated that the reference points from the current model are very similar to the previously estimated values. Given the more thorough analysis at WKNEAMP-2 (ICES, 2016), this is taken as indicating that there was no evidence to deviate from the reference points set in 2016.
There is no standard method of estimating Flim nor Fpa, and ACOM accepted to use geometric mean recruitment (146 million) and Blim as basis for the Flim estimate. Flim is then based on the slope of line from origin at SSB = 0 to the geometric mean recruitment (146 million) and SSB = Blim. The SPR value of this slope give Flim value on SPR curve; Flim = 0.77 (found using Pasoft). Using the same approach as for Bpa; Fpa = Flim*exp(-1.645*σ) = 0.47.
FMSY = 0.35 has been estimated by long-term stochastic simulations. Values of reference points compared with current stock values are reflected in Figure 4.1.
The estimates of cod’s consumption of haddock were revised following the cod benchmark in early 2021. At the AFWG 2021 meeting, the haddock FMSY was checked with the new updated mortality estimates and found to still be valid and precautionary.
Harvest control rule
The harvest control rule (HCR) was evaluated by ICES in 2007 (ICES CM 2007/ACFM:16) and found to be in agreement with the precautionary approach. The agreed HCR for haddock with last modifications is as follows (Protocol of the 40th Session of The Joint Norwegian Russian Fisheries Commission (JNRFC), 14 October 2011):
TAC for the next year will be set at level corresponding to FMSY.
The TAC should not be changed by more than +/- 25% compared with the previous year TAC.
If the spawning stock falls below Bpa, the procedure for establishing TAC should be based on a fishing mortality that is linearly reduced from FMSY at Bpa to F = 0 at SSB equal to zero. At SSB-levels below Bpa in any of the operational years (current year and a year ahead) there should be no limitations on the year-to-year variations in TAC.
As mentioned above Flim and Fpa were revised in 2011. The new values of Flim = 0.77 and Fpa = 0.47 are higher than the previous values (0.49 and 0.35, respectively). In the 2012 meeting of the JNRFC the proposals of ICES were accepted, and the current HCR management is based on FMSY instead of Fpa. This corresponds to the goal of the management strategy for this stock and should provide maximum sustainable yield.
In 2014, JNRFC decided that from 2015 onwards, Norway and Russia can transfer to next year or borrow from last year maximum 10% of the country’s quota. At its 45th session in October 2015, the Joint Norwegian-Russian Fisheries Commission (JNRFC) decided that a number of alternative harvest control rules (HCRs) for Northeast Arctic haddock should be evaluated by ICES. This was done by WKNEAMP (ICES 2015/ACOM:60, ICES C. M. 2016/ACOM:47). Six HCRs for NEA haddock including the existing one were tested. At its 46th session in October 2016, the JNRFC decided not to change the HCR.
Prediction results and catch options for 2026 (Table 4.19–Table 4.20)
The projection shows an increase in SSB from 128 kt in 2025 to 158 kt in 2026 (Table 4.19). TAC constraint F is used for 2025. The TAC set by the Joint Norwegian-Russian Fisheries Commission was 130 kt, which is 22% higher than the advice and not in accordance with the HCR.
Catch options for 2026 are shown in the text table below (weights in tonnes).
Basis
Total catch (2026)
F ages 4−7 (2026)
SSB (2027)
% SSB change *
% TAC change **
% Advice change ***
Advice basis
Management plan
153 293
0.35
195 888
24
18
43
Other scenarios
MSY approach: FMSY
153 293
0.35
195 888
24
18
43
F = 0
0
0.00
265 334
6 8
-100
-100
F = F2025
172 237
0.4 0
1 87 7 14
19
32
61
Fpa
197 014
0.47
177178
12
52
8 4
Flim
290 750
0.77
139 065
-1 2
124
172
* SSB 2027 relative to SSB 2026.
** Catch in 2026 relative to TAC in 2025 ( 130000 t)
*** Catch value for 2026 relative to advice value for 2025 ( 106912 t ) )
Detailed information about expected catches by following the HCR in 2026 and 2027 is given in Table 4.20. The forecast covers all catches. It is then implied that all types of catches are to be counted against this TAC.
Comments to the assessment and predictions (Figure 4.2-4.4 and Figure 4.7- 4.8)
The one step ahead residuals did not show strong patterns (Figure 4.2). The leave one out analysis did not result in any large changes to the results (maximum change: 11% larger R3 2025 leave out BS-NoRu-Q1 (Btr)).
The retrospective bias was reduced after the revision at the 2020 benchmark (WKDEM 2020). Mohn’s Rho has increased compared to the years following the benchmark, especially for SSB, but was slightly lower from the assessment of this year, compared to that of last year (Figure 4.3). This year’s assessment, like the assessment of last year, showed a downwards revision for the SSB and TSB and an upwards revision for Fbar4-7 with changes most apparent for the estimates back to 2018/2019 (Figure 4.4).
Retrospective bias (Mohn’s Rho), 5-year peel
R
SSB
F
TSB
AFWG 2018
−3%
24%
−7%
14%
AFWG 2019
−5%
18%
−7%
7%
WKDEM 2020 (Benchmark)
−2%
3%
−3%
1%
AFWG 2020
−4%
−3%
0%
−5%
AFWG 2021
1%
6%
−7%
3%
JRN_AFWG 2022
-2%
5%
-6%
1%
JRN_AFWG 2023
0%
7%
-6%
3%
JRN_AFWG 2024
4%
17%
-13%
12%
JRN_AFWG 2025
2%
16%
-12%
11%
The 2015-2017 year-classes that have dominated the catches are now being fished out and the following 2018-2020 year-classes are weak, so there are few older fish in the stock (Figure 4.8). The 2021 - 2023 year-classes are estimated to be above average, although the precise level of these estimates for the youngest fish are uncertain.
In the forecast, 31% and 37% of the catches in 2025 and 2026 respectively are expected to come from the 2021 year-class. The 2022 year-class is expected to contribute 11% of the catches as 3-year-olds 2025, but a large proportion 3-year-olds are expected to be below minimum catching size. The population average of the 2022 year-class is expected to become larger than 40 cm (minimum catching size) during 2026 and is forecasted to contribute 29% of the catches in that year. However, the prediction is highly dependent on the selectivity (when and where the fishing takes place) and growth of the year-class. In the recent years, the Russian fishery has moved further east, where the growth of the haddock tends to be slower.
A high proportion of the catches in 2025 and 2026 is predicted to be made up by immature fish, implying growth overfishing, this implies that a large proportion of the fish are caught before they reach the optimum catching size. This will result in a significant loss in overall yield.
Also, typically, haddock grows above the minimum catching size during the year they are 4 years old. The selectivity pattern used in the forecast does not currently depend on the expected growth of a cohort and the proportion of fish by age above minimum catching size. The effect on the selectivity pattern of large incoming year-classes should be further explored in future method revision, like what has been implemented for Icelandic haddock (ICES 2025).
References
Berg CW and Nielsen A. 2016. Accounting for correlated observations in an age-based state-space stock assessment model. ICES Journal of Marine Science, 73: 1788–1797.
Breivik ON, Nielsen A and Berg CW 2021. Prediction–variance relation in a state-space fish stock assessment model. ICES Journal of Marine Science, 78, 3650–3657
Fall, J., Wenneck, T. de Lange, Bogstad, B., Fuglebakk, E., Godiksen, J., Høines, E. Johannesen, Å., Korsbrekke, K., Skage, M. L., Staby, A., Tranang, C. Aa., Windsland, K., Russkikh, A. A., and Kharlin, S. 2023. Fish investigations in the Barents Sea winter 2023. IMR-PINRO Joint Report Series 1-2023, 100 pp.
ICES 2006a. ICES Workshop on Biological Reference Points for North East Arctic Haddock (WKHAD). Svanhovd, Norway, 6-10 March 2006. ICES C.M. 2006/ACFM:19, 102 pp.
ICES 2006b. Report of the Arctic Fisheries Working Group, 19-28 April. 2006. ICES C.M. 2006/ACFM:25, 594 pp.
ICES 2011. Report of the Benchmark Workshop on Roundfish and Pelagic Stocks, Lisbon 24-31 January 2011. ICES C.M. 2011/ACOM:38, 418 pp.
ICES 2015. Report of the first Workshop on Management Plan Evaluation on Northeast Arctic cod and haddock and Barents Sea capelin ( WKNEAMP-1) , , . ICES CM 2015/ACOM:60, 27 pp.
ICES 2016. Report of the second Workshop on Management Plan Evaluation on Northeast Arctic cod and haddock and Barents Sea capelin (WKNEAMP-2) , 25-28 January 2016, Kirkenes, Norway. ICES CM 2016/ACOM:47, 76 pp.
ICES. 2015. Report of the Benchmark Workshop on Arctic Stocks (WKARCT), 26-30 January 2015, ICES Headquarters, Denmark. ICES CM 2015\ACOM:31. 126 pp.
ICES 2020. Report of the Arctic Fisheries Working Group (AFWG). ICES Scientific Reports. 2:52. 577 pp.
ICES 2025. Workshop on the assessment and Management Plan Evaluation for Icelandic haddock and saithe (WKICEGAD). ICES Scientific Reports. 7:26. 161 pp. https://doi.org/10.17895/ices.pub.28444499
Johnsen E, Totland A , Skålevik Å , et al. 2019. StoX: An open source software for marine survey analyses. Methods in Ecology and Evolution 2019; 10: 1523 – 1528.https://doi.org/10.1111/2041-210X.13250
Prozorkevich D and Gjøsæter H 2014. WD_02 cod BESS_assessment. AFWG 2014.
Vasilyev D. 2005 Key aspects of robust fish stock assessment. M: VNIRO Publishing, 2005. 105 p.
Vasilyev D. 2006. Change in catchability caused by year class peculiarities: how stock assessment based on separable cohort models is able to take it into account? (Some illustrations for triple‐separable case of the ISVPA model ‐ TISVPA). ICES CM 2006/O:18. 35 pp
Table 4. 1 . Northeast Arctic haddock. Total nominal catch (t) by fishing areas.
1) Provisional figures, preliminary catches estimated by JRN AFWG in May 2025
2) Figures based on Norwegian/Russian IUU estimates. From 2009, IUU estimates are made by a Joint Russian-Norwegian analysis group under the Russian-Norwegian Fisheries Commission.
3) In 2002–2008, the Norwegian IUU estimates were used in final assessment.
4) Included in total landings and in landings in region 2.a.
Subarea 1
Division 2.a
Division 2.b
Unreported2
Year
Trawl
Others
Trawl
Others
Trawl
Others
1967
73.7
34.3
20.5
7.5
0.4
-
-
1968
98.1
42.9
31.4
8.6
0.7
-
-
1969
41.4
47.8
33.2
7.1
1.3
-
-
1970
37.4
23.2
20.6
6.5
0.5
-
-
1971
27.5
29.2
15.1
6.7
0.4
-
-
1972
193.9
27.9
34.5
7.6
2.2
-
-
1973
242.9
42.8
14
9.5
13.1
-
-
1974
133.1
25.9
39.9
7.1
15.1
-
-
1975
103.5
18.2
34.6
9.7
9.7
-
-
1976
77.7
16.4
28.1
9.5
5.6
-
-
1977
57.6
14.6
19.9
8.6
9.5
-
-
1978
53.9
10.1
15.7
14.8
1
-
-
1979
47.8
16
20.3
18.9
0.6
-
-
1980
30.5
23.7
14.8
18.9
0.1
-
-
1981
18.8
17.7
21.6
18.5
0.5
-
-
1982
11.6
11.5
23.9
13.5
-
-
-
1983
3.6
2.2
8.7
8.2
0.2
1.7
-
1984
1.6
1.3
7.6
9.1
0.1
1.2
-
1985
24.4
3.5
6.2
8.1
0.1
2.6
-
1986
51.7
10.1
14
15.8
0.8
8.3
-
1987
79
18.1
23
18.1
3
13.8
-
1988
28.7
16.4
34.3
15.3
0.6
0
-
1989
20
9.7
13.5
15
0.3
0
-
1990
4.4
8.9
5.1
8.2
0.6
0
-
1991
9
8.9
8.9
8.9
0.2
0.2
-
1992
21.3
9.6
11.9
16.1
1
0
-
1993
35.3
11.6
14.5
17.9
3
0
-
1994
58.6
18.2
26.1
24.3
7.9
0.2
-
1995
63.9
12
29.6
23.8
12.1
1
-
1996
98.3
14.4
36.5
25.2
3.4
0.3
-
1997
57.4
20.7
44.9
28.6
2.5
0.3
-
1998
26
19.6
27.1
26.9
0.7
0.3
-
1999
29.4
8.9
19.1
21.8
4
0.1
-
2000
20.1
5.9
18.8
20.4
3.7
0.1
-
2001
28.4
6.7
23.4
23.8
7
0.3
-
2002
30.5
10.2
19.5
23.3
12.5
0.1
18.7/5.3
2003
42.7
10.9
21.9
21.7
8.1
0.4
33.2/9.4
2004
52.4
12.5
27
20.5
11.5
0.6
33.8/8.7
2005
38.5
15
24.9
20.9
13
1.6
40.3/9.9
2006
40.1
11
22
25.3
30.1
3.2
21.5/8.9
2007
51.8
11.1
30.5
27.7
20.4
5.5
14.6/3.1
2008
46.8
11.6
30.9
29.3
24.9
6.3
5.8/-
2009
49
8.8
40.1
25.3
67.1
7.8
0
2010
43.6
19
50
35.7
87
10.4
0
2011
55.8
31.1
61.1
38.9
107.7
14.3
0
2012
58.8
31.3
57.5
39.2
103.2
24.8
0
2013
40.1
28.3
37.7
26.9
52.1
8.1
0
2014
35.2
26.3
32.5
25.8
49
8.6
0
2015
49.1
26.1
34.6
27
48.5
9.4
0
2016
56.4
22.3
62.5
32.5
45.4
14.1
0
2017
65
29.8
50.7
24.7
47.1
10.3
0
2018
51.7
29.2
36.9
21.6
43.2
8.6
0
2019
53.9
33.5
30.4
20.4
31.0
5.9
0
2020
66.7
31.6
35.1
22.3
23.2
3.5
0
2021
81.4
28.5
41.0
17.0
31.0
5.8
0
2022
63.4
22.5
44.7
18.7
22.1
5.5
0
2023 (1
69.6
23.2
51.7
19.2
11.1
4.1
0
2024(1
52.7
17.7
35.9
23.8
4.9
5.0
0
Table 4. 2 . Northeast Arctic haddock. Total nominal catch (‘000 t) by trawl and other gear for each area.
1) Provisional
2) Figures based on Norwegian/Russian IUU estimates.
Year
Faroe Islands
France
GDR (–1990) & Greenland (1992–)
Germany
Norway4
Poland
UK
Russia2
Others
T ot al3
1960
172
-
-
5597
46263
-
45469
57025
125
154651
1961
285
220
-
6304
60862
-
39650
85345
558
193224
1962
83
409
-
2895
54567
-
37486
91910
58
187408
1963
17
363
-
2554
59955
-
19809
63526
-
146224
1964
-
208
-
1482
38695
-
14653
43870
250
99158
1965
-
226
-
1568
60447
-
14345
41750
242
118578
1966
-
1072
11
2098
82090
-
27723
48710
74
161778
1967
-
1208
3
1705
51954
-
24158
57346
23
136397
1968
-
-
-
1867
64076
-
40129
75654
-
181726
1969
2
-
309
1490
67549
-
37234
24211
25
130820
1970
541
-
656
2119
37716
-
20423
26802
-
88257
1971
81
-
16
896
45715
43
16373
15778
3
78905
1972
137
-
829
1433
46700
1433
17166
196224
2231
266153
1973
1212
3214
22
9534
86767
34
32408
186534
2501
322226
1974
925
3601
454
23409
66164
3045
37663
78548
7348
221157
1975
299
5191
437
15930
55966
1080
28677
65015
3163
175758
1976
536
4459
348
16660
49492
986
16940
42485
5358
137264
1977
213
1510
144
4798
40118
-
10878
52210
287
110158
1978
466
1411
369
1521
39955
1
5766
45895
38
95422
1979
343
1198
10
1948
66849
2
6454
26365
454
103623
1980
497
226
15
1365
66501
-
2948
20706
246
92504
1981
381
414
22
2402
63435
Spain
1682
13400
-
81736
1982
496
53
-
1258
43702
-
827
2900
-
49236
1983
428
-
1
729
22364
139
259
680
-
24600
1984
297
15
4
400
18813
37
276
1103
-
20945
1985
424
21
20
395
21272
77
153
22690
-
45052
1986
893
12
75
1079
52313
22
431
45738
-
100563
1987
464
7
83
3105
72419
59
563
78211
5
154916
1988
1113
116
78
1323
60823
72
435
31293
2
95255
1989
1217
-
26
171
36451
1
590
20062
-
58518
1990
705
-
5
167
20621
-
494
5190
-
27182
1991
1117
-
Greenland
213
22178
-
514
12177
17
36216
1992
1093
151
1719
387
36238
38
596
19699
1
59922
1993
546
1215
880
1165
40978
76
1802
35071
646
82379
1994
2761
678
770
2412
71171
22
4673
51822
877
135186
1995
2833
598
1097
2675
76886
14
3111
54516
718
142448
1996
3743
6
1510
942
94527
669
2275
74239
217
178128
1997
3327
540
1877
972
103407
364
2340
41228
304
154359
1998
1903
241
854
385
75108
257
1229
20559
94
100630
1999
1913
64
437
641
48182
652
694
30520
92
83195
2000
631
178
432
880
42009
502
747
22738
827
68944
2001
1210
324
553
554
49067
1497
1068
34307
1060
89640
2002
1564
297
858
627
52247
1505
1125
37157
682
114798
2003
1959
382
1363
918
56485
1330
1018
41142
1103
138926
2004
2484
103
1680
823
62192
54
1250
54347
1569
158279
2005
2138
333
15
996
60850
963
1899
50012
1262
158751
2006
2390
883
1830
989
69272
703
1164
53313
1162
153157
2007
2307
277
1464
1123
71244
125
1351
66569
2511
161525
2008
2687
311
1659
535
72779
283
971
68792
1759
155604
2009
2820
529
1410
1957
104354
317
1315
85514
1845
200061
2010
3173
764
1970
3539
123384
379
1758
111372
2862
249200
2011
1759
268
2110
1724
158202
502
1379
139912
4763
309785
2012
2055
322
3984
1111
159602
441
833
143886
3393
315627
2013
1886
342
1795
500
99215
439
639
85668
3260
193744
2014
1470
198
1150
340
91306
187
355
78725
3791
177522
2015
2459
145
1047
124
95094
246
450
91864
3327
194756
2016
2460
340
1401
170
108718
200
575
115710
3838
233416
2017
2776
108
1810
170
113132
228
372
106714
2279
227588
2018
2333
183
1317
385
93839
169
453
90486
2173
191276
2019
1515
143
1208
204
93860
280
456
76125
1611
175402
2020
1392
96
910
282
88108
45
320
89030
2286
182468
2021
1722
105
1101
365
100673
131
78
98296
2390
204743
2022
1831
164
1101
268
89044
99
138
82364
1897
176906
2023 (1
1993
235
672
296
91325
139
112
81751
2376
178899
2024 (1
1637
188
645
180
71226
0
152
64423
1541
139992
Table 4. 3 . Northeast Arctic haddock. Nominal catch (t) by countries. Subarea 1 and divisions 2.a and 2.b combined. (Data provided by Working Group members).
1) Provisional figures, preliminary catches estimated by JRN AFWG in May 2024., 2) USSR prior to 1991, 3) Figures based on Norwegian IUU estimates in 2002–2008 (see table 4.1), 4) Included landings in Norwegian statistical areas 06 and 07 (from 1983)
Table 4. 6 a. Northeast Arctic haddock. Smoothed stock weights-at-age (kg). The data from 1950–1993 is unchanged since AFWG 2019, the data from 1994 and onward have been updated this year.
Year
3
4
5
6
7
8
9
10
11
12
13
1994
0.252
0.505
0.94
1.652
2.166
2.708
2.86
2.826
2.973
3.618
4.157
1995
0.263
0.472
0.798
1.316
2.121
2.643
3.161
3.29
3.222
3.173
3.932
1996
0.28
0.488
0.747
1.137
1.721
2.577
3.088
3.604
3.697
3.398
3.476
1997
0.345
0.518
0.77
1.072
1.496
2.13
3.03
3.524
4.02
3.864
3.715
1998
0.345
0.625
0.816
1.101
1.418
1.88
2.541
3.46
3.951
4.157
4.175
1999
0.365
0.63
0.974
1.159
1.452
1.778
2.271
2.966
3.881
4.087
4.464
2000
0.294
0.665
0.98
1.366
1.523
1.829
2.155
2.665
3.36
4.035
4.391
2001
0.307
0.54
1.028
1.374
1.77
1.911
2.212
2.547
3.045
3.538
4.336
2002
0.274
0.563
0.853
1.433
1.78
2.198
2.295
2.599
2.916
3.247
3.848
2003
0.249
0.505
0.883
1.205
1.851
2.198
2.606
2.691
2.987
3.114
3.554
2004
0.289
0.463
0.805
1.243
1.578
2.28
2.618
3.038
3.089
3.173
3.429
2005
0.285
0.532
0.742
1.137
1.625
1.975
2.71
3.038
3.438
3.276
3.491
2006
0.294
0.532
0.834
1.057
1.506
2.03
2.367
3.14
3.438
3.618
3.586
2007
0.224
0.545
0.834
1.182
1.4
1.88
2.428
2.771
3.55
3.618
3.932
2008
0.222
0.417
0.859
1.182
1.559
1.769
2.271
2.84
3.163
3.715
3.932
2009
0.249
0.417
0.672
1.212
1.55
1.943
2.144
2.665
3.237
3.352
4.017
2010
0.292
0.467
0.667
0.962
1.587
1.943
2.342
2.522
3.06
3.413
3.666
2011
0.297
0.536
0.742
0.962
1.284
1.987
2.331
2.744
2.902
3.247
3.732
2012
0.372
0.549
0.846
1.057
1.284
1.632
2.38
2.73
3.133
3.1
3.554
2013
0.341
0.67
0.865
1.198
1.4
1.623
1.989
2.784
3.133
3.322
3.398
2014
0.393
0.625
1.042
1.22
1.569
1.769
1.977
2.359
3.177
3.322
3.634
2015
0.355
0.708
0.974
1.451
1.597
1.965
2.144
2.348
2.724
3.367
3.634
2016
0.361
0.645
1.092
1.358
1.872
1.997
2.355
2.522
2.71
2.916
3.683
2017
0.351
0.655
1.001
1.514
1.77
2.304
2.391
2.757
2.902
2.916
3.232
2018
0.277
0.64
1.015
1.399
1.945
2.187
2.737
2.798
3.148
3.1
3.217
2019
0.258
0.514
0.994
1.417
1.811
2.388
2.606
3.154
3.192
3.337
3.413
2020
0.272
0.48
0.811
1.391
1.83
2.233
2.819
3.023
3.566
3.383
3.65
2021
0.297
0.505
0.759
1.152
1.8
2.257
2.658
3.259
3.422
3.732
3.699
2022
0.334
0.549
0.798
1.086
1.514
2.233
2.685
3.08
3.663
3.602
4.052
2023
0.272
0.616
0.865
1.137
1.435
1.89
2.645
3.11
3.486
3.831
3.915
2024
0.297
0.501
0.96
1.22
1.496
1.799
2.282
3.067
3.517
3.666
4.139
2025
0.258
0.549
0.798
1.341
1.597
1.87
2.178
2.677
3.486
3.699
3.966
Table 4.6b. Northeast Arctic haddock. Smoothed stock weights-at-age (kg), updated from 1994 and onwards this year.
Year
3
4
5
6
7
8
9
10
1950-1979
0.027
0.101
0.311
0.622
0.845
0.944
0.982
0.994
1980
0.026
0.076
0.243
0.649
0.86
0.95
0.984
0.995
1981
0.056
0.104
0.303
0.549
0.857
0.948
0.984
0.995
1982
0.053
0.161
0.332
0.577
0.77
0.947
0.983
0.995
1983
0.057
0.183
0.472
0.665
0.8
0.906
0.983
0.995
1984
0.044
0.196
0.51
0.801
0.862
0.921
0.967
0.995
1985
0.027
0.149
0.522
0.796
0.928
0.953
0.973
0.989
1986
0.021
0.103
0.454
0.758
0.928
0.977
0.984
0.991
1987
0.021
0.076
0.294
0.713
0.918
0.976
0.993
0.994
1988
0.025
0.074
0.24
0.576
0.898
0.975
0.993
0.998
1989
0.032
0.09
0.25
0.534
0.822
0.966
0.993
0.998
1990
0.046
0.127
0.305
0.578
0.798
0.937
0.99
0.997
1991
0.041
0.164
0.358
0.623
0.82
0.925
0.98
0.997
1992
0.03
0.147
0.449
0.704
0.855
0.936
0.976
0.994
1993
0.018
0.113
0.396
0.741
0.878
0.95
0.979
0.992
Table 4. 7 a. Northeast Arctic haddock. Proportion mature at age. The data from 1950-1993 is unchanged since AFWG 2019. Age 1-2 are 0, and ages 11-13+ set to 1 (not shown).
Year
3
4
5
6
7
8
9
10
1994
0.027
0.087
0.281
0.665
0.864
0.956
0.968
0.964
1995
0.029
0.078
0.215
0.52
0.854
0.95
0.985
0.985
1996
0.031
0.082
0.193
0.431
0.745
0.943
0.98
0.994
1997
0.043
0.09
0.203
0.397
0.66
0.878
0.977
0.992
1998
0.043
0.124
0.223
0.411
0.627
0.824
0.942
0.991
1999
0.047
0.126
0.297
0.442
0.642
0.795
0.91
0.971
2000
0.035
0.138
0.3
0.544
0.672
0.81
0.894
0.953
2001
0.036
0.097
0.323
0.548
0.761
0.831
0.902
0.944
2002
0.031
0.104
0.239
0.575
0.764
0.89
0.913
0.949
2003
0.027
0.087
0.254
0.466
0.786
0.89
0.948
0.955
2004
0.033
0.075
0.218
0.485
0.694
0.904
0.949
0.976
2005
0.032
0.094
0.19
0.431
0.711
0.847
0.957
0.976
2006
0.035
0.094
0.231
0.39
0.665
0.858
0.923
0.98
2007
0.023
0.098
0.231
0.453
0.618
0.824
0.93
0.96
2008
0.022
0.064
0.242
0.453
0.687
0.792
0.91
0.965
2009
0.027
0.064
0.162
0.469
0.682
0.839
0.892
0.953
2010
0.033
0.076
0.16
0.339
0.697
0.839
0.92
0.942
2011
0.035
0.095
0.19
0.339
0.564
0.849
0.919
0.959
2012
0.048
0.099
0.236
0.39
0.564
0.749
0.925
0.958
2013
0.042
0.14
0.245
0.461
0.618
0.746
0.864
0.961
2014
0.052
0.124
0.33
0.473
0.69
0.792
0.862
0.927
2015
0.045
0.153
0.297
0.583
0.7
0.843
0.892
0.926
2016
0.047
0.131
0.354
0.54
0.792
0.851
0.922
0.942
2017
0.045
0.134
0.31
0.609
0.761
0.908
0.926
0.96
2018
0.031
0.129
0.316
0.559
0.812
0.888
0.959
0.962
2019
0.028
0.089
0.307
0.567
0.774
0.92
0.948
0.98
2020
0.03
0.08
0.22
0.555
0.78
0.897
0.965
0.974
2021
0.035
0.087
0.198
0.438
0.77
0.9
0.953
0.984
2022
0.041
0.099
0.215
0.404
0.668
0.897
0.955
0.977
2023
0.03
0.121
0.245
0.431
0.634
0.826
0.952
0.979
2024
0.035
0.085
0.291
0.473
0.66
0.802
0.912
0.977
2025
0.028
0.099
0.215
0.531
0.7
0.82
0.897
0.954
Table 4.7b. Northeast Arctic haddock. Proportion mature at age. The data from 1950-1993 is unchanged since AFWG 2019. Age 1-2 are 0, and ages 11-13+ set to 1 (not shown).
Age
0
1
2
3
4
5
6
Biomass
1984
2209.91
1018.37
15.31
0.09
0
0
0
55.39
1985
2007.23
1364.84
5.06
0
0
0
0
53.02
1986
91.71
594.67
222.71
166.58
0
0
0
108.23
1987
0
1052.64
0.00
0.00
0
0
0
5.79
1988
0.00
16.60
0.48
8.67
0
0
0
2.49
1989
21.07
219.58
0.00
0.00
0
0
0
9.81
1990
48.42
137.38
34.32
3.33
0
0
0
14.10
1991
0.00
355.86
12.99
0.00
0
0
0
15.69
1992
132.15
1743.81
123.41
0.93
0
0
0
88.06
1993
825.96
1442.40
143.43
32.05
3.09
2.62
0
69.30
1994
1347.11
1483.12
73.19
23.83
6.89
0.81
0.01
48.23
1995
181.37
2863.85
166.95
12.36
28.08
27.70
0.32
113.33
1996
356.94
1529.51
154.53
38.21
5.18
2.45
3.18
66.25
1997
0
936.80
38.58
26.31
1.69
0.75
0.51
43.55
1998
0
1715.38
27.40
1.74
2.56
0.45
0
35.57
1999
0
1030.05
25.06
0.35
0
0
0
29.27
2000
808.29
1403.05
71.16
2.20
1.14
0.19
0.08
57.96
2001
1046.54
592.43
53.15
4.67
0.07
0.00
0.00
51.15
2002
455.05
2432.46
240.07
39.36
2.25
0.36
0.16
126.72
2003
1139.62
3565.66
213.45
39.16
12.66
1.21
0
165.56
2004
5381.41
2858.09
302.58
39.46
9.81
2.44
0
197.42
2005
7696.27
6668.01
274.88
54.59
9.19
2.22
0.85
323.67
2006
12781.51
8398.02
372.83
5.45
4.36
1.16
0.47
359.95
2007
1211.32
10160.34
653.43
70.82
3.78
2.16
0.21
376.02
2008
1364.86
964.09
889.66
226.11
42.80
5.50
3.11
289.78
2009
5620.83
1860.99
273.70
258.79
67.47
21.78
1.50
250.41
2010
1978.44
5695.49
177.95
65.33
66.34
59.99
11.17
262.95
2011
2314.10
2618.13
446.20
55.32
73.44
84.01
18.21
273.62
2012
233.89
7052.98
132.78
105.81
14.81
6.58
4.16
216.64
2013
2139.05
1572.97
370.12
30.62
21.42
5.32
3.99
195.20
2014
1140.59
1960.11
136.38
26.41
1.76
0.61
0
85.26
2015
4850.73
2512.52
125.49
12.82
41.47
1.37
0.21
172.22
2016
7979.06
2610.73
273.93
21.17
2.29
7.14
1.64
217.57
2017
4463.68
7552.61
224.84
22.11
12.13
6.03
12.93
266.57
2018
2252.55
6785.00
565.68
62.25
6.50
0.56
0.01
266.54
2019
517.10
4340.79
390.88
111.82
7.55
0.28
0.00
200.86
2020
1823.24
482.57
73.95
52.20
66.28
3.43
0.12
81.08
2021
987.59
293.16
78.88
5.14
4.08
0.73
0.09
24.65
2022
4118.28
2086.61
210.69
7.91
1.16
0.05
0
75.55
2023
1608.84
816.64
184.66
7.82
1.79
0.07
0
67.16
2024
11028.33
3966.76
350.40
16.92
3.13
0.91
0.38
293.05
Average 1984-2024
2247.88
2603.78
198.32
40.46
12.81
6.08
1.54
137.94
Table 4. 8 . Northeast Arctic haddock. Consumption of Haddock by NEA Cod (mln. spec) age 0–6, and total biomass ages 0–6 consumed.
Survey
Year\Age
3
4
5
6
7
8
9
10
RU-BTr-Q4
1991
62
9
3
6
18
17
RU-BTr-Q4
1992
346
50
4
6
9
9
RU-BTr-Q4
1993
1985
356
48
8
4
4
RU-BTr-Q4
1994
442
1014
116
15
1
6
RU-BTr-Q4
1995
31
123
370
40
5
4
RU-BTr-Q4
1996
28
49
362
334
29
6
RU-BTr-Q4
1997
32
32
10
27
10
8
RU-BTr-Q4
1998
38
46
8
5
15
5
RU-BTr-Q4
1999
196
39
37
8
3
14
RU-BTr-Q4
2000
60
109
26
11
2
5
RU-BTr-Q4
2001
334
40
65
11
4
4
RU-BTr-Q4
2002
399
450
47
24
4
3
RU-BTr-Q4
2003
221
299
231
34
16
3
RU-BTr-Q4
2004
113
94
107
87
5
6
RU-BTr-Q4
2005
240
86
48
57
24
3
RU-BTr-Q4
2006
113
119
57
26
24
13
RU-BTr-Q4
2007
838
73
137
38
14
15
RU-BTr-Q4
2008
2557
1051
124
111
17
11
RU-BTr-Q4
2009
1647
1704
631
57
32
9
RU-BTr-Q4
2010
299
1697
1589
466
34
17
RU-BTr-Q4
2011
47
268
1087
783
165
13
RU-BTr-Q4
2012
209
49
160
720
480
70
RU-BTr-Q4
2013
61
175
50
104
374
272
RU-BTr-Q4
2014
250
46
175
56
142
416
RU-BTr-Q4
2015
22
199
40
74
28
171
RU-BTr-Q4
2016
-1
-1
-1
-1
-1
-1
RU-BTr-Q4
2017
71
99
9
38
6
27
RU-BTr-Q4
2018
-1
-1
-1
-1
-1
-1
RU-BTr-Q4
2019
-1
-1
-1
-1
-1
-1
RU-BTr-Q4
2020
-1
-1
-1
-1
-1
-1
RU-BTr-Q4
2021
-1
-1
-1
-1
-1
-1
RU-BTr-Q4
2022
-1
-1
-1
-1
-1
-1
RU-BTr-Q4
2023
-1
-1
-1
-1
-1
-1
RU-BTr-Q4
2024
-1
-1
-1
-1
-1
-1
BS-NoRU-Q1(Aco)
1994
348.73
626.65
121.38
8.55
0.7
0.33
2.71
BS-NoRU-Q1(Aco)
1995
41.47
121.49
395.37
47.61
2.8
0.05
0.83
BS-NoRU-Q1(Aco)
1996
29.97
22.09
68.65
143.69
5.67
0.93
0.07
BS-NoRU-Q1(Aco)
1997
57.27
22.22
15.47
56.13
62.77
4.68
0.19
BS-NoRU-Q1(Aco)
1998
33.78
58.79
24.2
7.7
14.06
20.69
1.62
BS-NoRU-Q1(Aco)
1999
83.67
21.64
22.1
6.17
1.55
3.88
2.77
BS-NoRU-Q1(Aco)
2000
36.39
75.53
14.01
12.61
1.57
0.53
3.02
BS-NoRU-Q1(Aco)
2001
233.45
40.2
41.38
2.2
1.61
0.15
0.71
BS-NoRU-Q1(Aco)
2002
255.2
201.84
18.47
11.7
1.59
0.29
0.56
BS-NoRU-Q1(Aco)
2003
203.68
184.57
136.04
12.26
6.01
0.26
0.9
BS-NoRU-Q1(Aco)
2004
151.01
101.85
107.82
57.68
7.61
1.15
0.55
BS-NoRU-Q1(Aco)
2005
221.33
115.67
57.43
56.71
12.69
0.38
0.33
BS-NoRU-Q1(Aco)
2006
56.32
123.84
47.37
19.26
13.64
3.23
0.35
BS-NoRU-Q1(Aco)
2007
209.28
46.14
80.57
28.92
10
5.05
2.79
BS-NoRU-Q1(Aco)
2008
812.41
303.04
90.02
74.12
7.41
12.77
2.11
BS-NoRU-Q1(Aco)
2009
883.68
629.98
266.65
38.87
14.57
1.26
1.05
BS-NoRU-Q1(Aco)
2010
128.07
631.03
603.99
166.96
12.07
2.94
2.11
BS-NoRU-Q1(Aco)
2011
54.16
84.23
313.02
292.21
54.91
1.71
1.46
BS-NoRU-Q1(Aco)
2012
191.63
48.84
88.12
310.6
172.52
30.09
1.01
BS-NoRU-Q1(Aco)
2013
67.29
146.77
35.41
53.03
223.77
102.68
14.37
BS-NoRU-Q1(Aco)
2014
334.82
39.12
108.72
23.18
34.77
86.36
38.82
BS-NoRU-Q1(Aco)
2015
24.35
189.4
26.63
46.13
9.22
22.45
31.99
BS-NoRU-Q1(Aco)
2016
71.81
12.08
59.62
12.52
17.28
7.48
33.24
BS-NoRU-Q1(Aco)
2017
81.15
65.05
4.81
34.81
6.24
7.93
17.72
BS-NoRU-Q1(Aco)
2018
171.03
62.74
64.4
6.77
15.57
2.75
14.69
BS-NoRU-Q1(Aco)
2019
507.61
146.22
31.73
21.88
4.72
3.46
4.19
BS-NoRU-Q1(Aco)
2020
286.32
306.38
79.18
22.38
11.59
1.84
6.33
BS-NoRU-Q1(Aco)
2021
50.76
130.37
181.8
19.35
5.44
0.94
1.77
BS-NoRU-Q1(Aco)
2022
11.35
63.4
95.3
101.24
11.79
0.82
1.08
BS-NoRU-Q1(Aco)
2023
76.99
9.02
51.28
53.25
38.07
2.69
0.49
BS-NoRU-Q1(Aco)
2024
337.4
44
3.7
14.9
12.5
7.8
0.33
BS-NoRU-Q1(Aco)
2025
369.4
173.1
22.8
3.7
10.1
7.51
3.65
BS-NoRu-Q1 (BTr)
1994
314.533
436.251
46.176
3.54
0.163
0.13
0.2
0.651
BS-NoRu-Q1 (BTr)
1995
54.857
167.104
343.38
29.623
1.441
0.025
0.043
0.404
BS-NoRu-Q1 (BTr)
1996
55.843
31.334
150.768
238.108
16.131
1.15
0
0.069
BS-NoRu-Q1 (BTr)
1997
79.632
39.855
18.255
61.566
88.411
3.277
0.082
0.043
BS-NoRu-Q1 (BTr)
1998
21.681
36.749
11.844
1.294
9.203
7.212
0.648
0.092
BS-NoRu-Q1 (BTr)
1999
56.92
15.874
9.418
2.831
0.807
1.282
0.771
0.034
BS-NoRu-Q1 (BTr)
2000
24.08
35.241
6.789
4.134
0.684
0.083
0.802
0.288
BS-NoRu-Q1 (BTr)
2001
293.996
26.252
22.997
1.634
0.752
0.058
0.06
0.329
BS-NoRu-Q1 (BTr)
2002
312.87
185.453
12.417
8.04
0.846
0.218
0.009
0.325
BS-NoRu-Q1 (BTr)
2003
352.236
174.452
72.708
5.104
1.682
0.119
0.104
0.217
BS-NoRu-Q1 (BTr)
2004
173.132
100.516
77.021
51.281
7.409
0.912
0.133
0.228
BS-NoRu-Q1 (BTr)
2005
317.889
141.058
50.664
61.191
10.082
0.249
0.08
0.009
BS-NoRu-Q1 (BTr)
2006
78.798
130.76
46.048
20.874
16.208
3.184
0.094
0.265
BS-NoRu-Q1 (BTr)
2007
443.266
81.784
84.667
26.279
5.411
2.197
1.376
0.896
BS-NoRu-Q1 (BTr)
2008
1591.031
583.606
53.079
54.732
6.794
10.248
0.23
0.167
BS-NoRu-Q1 (BTr)
2009
1230.426
751.012
368.33
25.414
12.437
0.851
0.09
0.363
BS-NoRu-Q1 (BTr)
2010
102.451
510.449
443.759
139.316
7.988
1.016
0.386
0.574
BS-NoRu-Q1 (BTr)
2011
52.883
123.634
469.482
290.036
65.236
1.416
1.121
0.184
BS-NoRu-Q1 (BTr)
2012
316.077
28.785
74.714
267.945
154.601
24.766
3.115
0.391
BS-NoRu-Q1 (BTr)
2013
57.444
143.984
22.019
33.624
191.145
69.385
6.114
0.076
BS-NoRu-Q1 (BTr)
2014
381.173
32.729
104.397
23.257
50.035
97.536
38.692
2.425
BS-NoRu-Q1 (BTr)
2015
30.615
187.035
43.601
39.44
14.668
18.735
30.744
10.2
BS-NoRu-Q1 (BTr)
2016
163.385
34.342
115.597
22.406
41.948
12.437
32.396
33.161
BS-NoRu-Q1 (BTr)
2017
134.9
105.5
7.553
55.338
9.692
15.6
2.527
23.861
BS-NoRu-Q1 (BTr)
2018
336.307
86.656
65.764
7.771
15.59
3.621
2.564
11.931
BS-NoRu-Q1 (BTr)
2019
1075.552
187.224
49.399
16.996
4.038
2.948
0.736
1.91
BS-NoRu-Q1 (BTr)
2020
424.225
586.985
99.123
22.08
6.057
2.605
1.042
2.827
BS-NoRu-Q1 (BTr)
2021
111.35
176.57
265.49
19.32
3.57
0.68
0.19
0.72
BS-NoRu-Q1 (BTr)
2022
12.226
86.54
121.699
113.566
9.099
0.617
0.113
0.44
BS-NoRu-Q1 (BTr)
2023
82.055
8.058
50.201
49.022
33.313
2.168
0.096
0.318
BS-NoRu-Q1 (BTr)
2024
346.712
40.855
3.345
15.762
12.595
7.724
0.355
0.119
BS-NoRu-Q1 (BTr)
2025
477.027
186.551
17.784
2.422
7.565
5.048
2.564
0.146
FLT007: Eco-NoRu-Q3 (Btr)
2004
123.368
70.303
69.118
31.482
2.989
1.721
0.22
FLT007: Eco-NoRu-Q3 (Btr)
2005
324.56
89.531
30.44
32.246
15.035
0.472
1.116
FLT007: Eco-NoRu-Q3 (Btr)
2006
107.467
124.64
41.597
18.98
17.482
7.289
1.384
FLT007: Eco-NoRu-Q3 (Btr)
2007
1282.94
88.498
90.369
19.227
5.881
7.102
3.209
FLT007: Eco-NoRu-Q3 (Btr)
2008
1154.869
405.999
43.133
35.517
4.94
2.514
2.539
FLT007: Eco-NoRu-Q3 (Btr)
2009
650.742
619.088
305.883
21.045
6.549
0.87
0.576
FLT007: Eco-NoRu-Q3 (Btr)
2010
184.001
865.318
666.439
147.72
15.84
2.73
0.589
FLT007: Eco-NoRu-Q3 (Btr)
2011
40.446
73.802
392.93
301.368
37.357
2.972
0.514
FLT007: Eco-NoRu-Q3 (Btr)
2012
92.468
20.348
67.607
214.052
152.03
12.739
2.003
FLT007: Eco-NoRu-Q3 (Btr)
2013
25.779
65.228
19.575
50.846
150.131
76.427
7.561
FLT007: Eco-NoRu-Q3 (Btr)
2014
261.631
40.768
70.161
25.781
60.452
85.771
19.646
FLT007: Eco-NoRu-Q3 (Btr)
2015
42.148
213.636
25.132
37.111
20.577
47.868
42.903
FLT007: Eco-NoRu-Q3 (Btr)
2016
209.303
34.43
184.09
47.965
56.787
40.367
125.907
FLT007: Eco-NoRu-Q3 (Btr)
2017
70.313
70.306
11.47
20.537
3.963
4.025
15.265
FLT007: Eco-NoRu-Q3 (Btr)
2018
-1
-1
-1
-1
-1
-1
-1
FLT007: Eco-NoRu-Q3 (Btr)
2019
896.982
160.736
38.067
15.133
5.303
5.037
11.56
FLT007: Eco-NoRu-Q3 (Btr)
2020
204.059
341.372
58.813
4.918
1.959
0.802
1.483
FLT007: Eco-NoRu-Q3 (Btr)
2021
129.533
345.768
330.627
32.25
5.446
0.885
1.41
FLT007: Eco-NoRu-Q3 (Btr)
2022
-1
-1
-1
-1
-1
-1
-1
FLT007: Eco-NoRu-Q3 (Btr)
2023
182.62
13.345
37.289
36.344
12.06
0.456
0.341
FLT007: Eco-NoRu-Q3 (Btr)
2024
213.83
26.90
19.47
17.33
13.40
3.17
0.97
Table 4.9. Northeast Arctic haddock. Survey indices for SAM tuning (see section 4.4.6). The last age is a plus group.
#Configuration saved: Wed Feb 12 12:57:09 2020
# Where a matrix is specified rows corresponds to fleets and columns to ages.
# Same number indicates same parameter used
# Numbers (integers) starts from zero and must be consecutive
$minAge
# The minimum age class in the assessment
3
$maxAge
# The maximum age class in the assessment
13
$maxAgePlusGroup
# Is last age group considered a plus group for each fleet (1 yes, or 0 no).
1 1 1 1 1
$keyLogFsta
# Coupling of the fishing mortality states (nomally only first row is used).
0 1 2 3 4 5 5 5 5 5 5
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
$corFlag
# Correlation of fishing mortality across ages (0 independent, 1 compound symmetry, 2 AR(1), 3 separable AR(1).
2
$keyLogFpar
# Coupling of the survey catchability parameters (nomally first row is not used, as that is covered by fishing mortality).
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
0 1 1 1 1 1 -1 -1 -1 -1 -1
2 3 3 3 3 4 4 -1 -1 -1 -1
5 6 6 6 6 7 7 7 -1 -1 -1
8 9 9 9 9 9 9 -1 -1 -1 -1
$keyQpow
# Density dependent catchability power parameters (if any).
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
0 0 0 0 0 0 -1 -1 -1 -1 -1
1 1 1 1 1 2 2 -1 -1 -1 -1
3 3 3 3 3 4 4 4 -1 -1 -1
5 5 5 5 5 5 5 -1 -1 -1 -1
$keyVarF
# Coupling of process variance parameters for log(F)-process (nomally only first row is used)
0 1 1 1 1 1 1 1 1 1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
$keyVarLogN
# Coupling of process variance parameters for log(N)-process
0 1 1 1 1 1 1 1 1 1 1
$keyVarObs
# Coupling of the variance parameters for the observations.
0 1 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 -1 -1 -1 -1 -1
4 4 4 4 4 4 4 -1 -1 -1 -1
5 5 5 5 5 5 5 5 -1 -1 -1
6 6 6 6 6 6 6 -1 -1 -1 -1
$obsCorStruct
# Covariance structure for each fleet ("ID" independent, "AR" AR(1), or "US" for unstructured). | Possible values are: "ID" "AR" "US"
"ID" "AR" "AR" "AR" "AR"
$keyCorObs
# Coupling of correlation parameters can only be specified if the AR(1) structure is chosen above.
# NA's indicate where correlation parameters can be specified (-1 where they cannot).
#V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
NA NA NA NA NA NA NA NA NA NA
0 1 1 1 2 -1 -1 -1 -1 -1
3 3 3 3 3 4 -1 -1 -1 -1
5 5 5 5 5 6 6 -1 -1 -1
7 7 7 7 7 7 -1 -1 -1 -1
$stockRecruitmentModelCode
# Stock recruitment code (0 for plain random walk, 1 for Ricker, 2 for Beverton–Holt, and 3 piece-wise constant).
0
$noScaledYears
# Number of years where catch scaling is applied.
0
$keyScaledYears
# A vector of the years where catch scaling is applied.
$keyParScaledYA
# A matrix specifying the couplings of scale parameters (nrow = no scaled years, ncols = no ages).
$fbarRange
# lowest and higest age included in Fbar
4 7
$keyBiomassTreat
# To be defined only if a biomass survey is used (0 SSB index, 1 catch index, 2 FSB index, 3 total catch, 4 total landings and 5 TSB index).
-1 -1 -1 -1 -1
$obsLikelihoodFlag
# Option for observational likelihood | Possible values are: "LN" "ALN"
"LN" "LN" "LN" "LN" "LN"
$fixVarToWeight
# If weight attribute is supplied for observations this option sets the treatment (0 relative weight, 1 fix variance to weight).
0
$fracMixF
# The fraction of t(3) distribution used in logF increment distribution
0
$fracMixN
# The fraction of t(3) distribution used in logN increment distribution
0
$fracMixObs
# A vector with same length as number of fleets, where each element is the fraction of t(3) distribution used in the distribution of that fleet
0 0 0 0 0
$constRecBreaks
# This option is only used in combination with stock-recruitment code 3)
$predVarObsLink
# Coupling of parameters used in a mean-variance link for observations.
0 1 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 -1 -1 -1 -1 -1
4 4 4 4 4 4 4 -1 -1 -1 -1
5 5 5 5 5 5 5 5 -1 -1 -1
6 6 6 6 6 6 6 -1 -1 -1 -1
Table 4.10 SAM model configuration used. Updated at WKDEM 2020.
Year
R(age 3)
Low
High
SSB
Low
High
Fbar(4-7)
Low
High
TSB
Low
High
1950
109205
69850
170733
213037
190711
237977
0.794
0.673
0.936
396433
355768
441746
1951
627326
417573
942440
124773
110703
140633
0.683
0.576
0.810
425468
340792
531184
1952
83903
54178
129937
100853
88165
115368
0.702
0.588
0.839
414379
331979
517232
1953
1175428
784414
1761354
120273
104016
139071
0.533
0.441
0.643
710782
550758
917301
1954
130455
84294
201893
173161
147274
203599
0.432
0.357
0.524
808235
643274
1015497
1955
58576
37390
91767
309089
264221
361577
0.448
0.373
0.539
836155
706490
989619
1956
221231
142492
343478
363732
310115
426617
0.474
0.395
0.569
680251
585441
790414
1957
60392
38608
94466
253141
217080
295193
0.428
0.357
0.513
432450
376133
497200
1958
73501
47508
113717
181369
157528
208818
0.517
0.430
0.622
314304
276817
356867
1959
382306
253852
575758
125449
109005
144374
0.446
0.369
0.540
331320
274259
400252
1960
312759
206179
474435
112805
99525
127858
0.541
0.452
0.647
414469
346875
495234
1961
141716
93577
214619
124378
110802
139617
0.664
0.562
0.784
398840
347573
457669
1962
288516
191930
433707
124539
110587
140251
0.793
0.674
0.932
372594
321945
431212
1963
310273
208224
462335
93925
82650
106737
0.760
0.638
0.905
349414
293699
415698
1964
349427
233167
523656
84228
74078
95769
0.634
0.528
0.762
383262
318904
460607
1965
125264
81812
191793
102863
89899
117696
0.527
0.437
0.636
384555
326205
453343
1966
308278
203489
467027
144655
126065
165986
0.559
0.466
0.670
446661
382712
521294
1967
336411
221609
510684
150640
130041
174503
0.444
0.368
0.536
460702
388958
545679
1968
18630
11587
29955
166970
144796
192540
0.485
0.401
0.586
423233
360117
497411
1969
20294
12601
32685
166741
143546
193685
0.416
0.340
0.508
314376
269840
366261
1970
204608
132949
314890
154465
131254
181780
0.386
0.313
0.477
283804
240016
335581
1971
110060
71679
168993
127035
107265
150449
0.329
0.264
0.410
261919
223270
307258
1972
1063159
699647
1615540
127920
111215
147135
0.654
0.537
0.797
603949
463099
787637
1973
309302
205800
464858
125158
107948
145113
0.539
0.442
0.657
637434
514771
789325
1974
64978
42349
99699
154044
134410
176547
0.503
0.416
0.608
464133
401371
536709
1975
58765
38294
90180
194620
166846
227016
0.497
0.415
0.594
378081
328453
435208
1976
59524
38039
93144
195464
167823
227657
0.718
0.606
0.851
294497
257819
336393
1977
120299
76136
190079
118892
100276
140964
0.734
0.607
0.889
200380
171891
233591
1978
211943
140914
318773
80839
67032
97489
0.628
0.511
0.770
197661
163877
238411
1979
159503
105599
240923
62230
52414
73885
0.584
0.472
0.722
204520
170694
245050
1980
23166
14478
37069
62493
53169
73453
0.476
0.383
0.591
211914
177477
253032
1981
10834
6488
18090
72359
61298
85417
0.437
0.351
0.543
167595
141696
198227
1982
16365
10014
26744
68355
56657
82469
0.383
0.305
0.481
122361
102660
145843
1983
8087
4722
13852
58470
48118
71048
0.350
0.274
0.446
87673
73543
104519
1984
13091
8028
21348
53097
43383
64986
0.315
0.245
0.406
71456
59753
85452
1985
357274
235746
541451
48966
40785
58788
0.399
0.314
0.507
190737
141173
257704
1986
476016
315391
718444
54557
46327
64250
0.536
0.428
0.672
372321
294507
470695
1987
91595
59489
141030
77165
66019
90192
0.630
0.508
0.782
354129
296609
422804
1988
39726
25023
63068
79572
67080
94390
0.512
0.411
0.637
253762
215637
298627
1989
27985
17392
45031
84270
69583
102057
0.371
0.295
0.467
192286
161430
229040
1990
36259
23363
56275
86046
70288
105337
0.212
0.167
0.270
153395
128592
182983
1991
108038
76133
153312
100226
84341
119104
0.240
0.191
0.300
184623
157973
215768
1992
317123
226311
444375
110154
95331
127283
0.296
0.239
0.366
285180
240189
338599
1993
807521
590108
1105035
123904
109396
140336
0.320
0.262
0.393
509250
423978
611671
1994
388099
316581
475773
156808
140427
175100
0.375
0.310
0.454
633752
557316
720671
1995
99893
78807
126622
191602
171330
214274
0.305
0.256
0.362
632711
561965
712364
1996
99365
78795
125305
222898
199541
248989
0.372
0.317
0.436
550974
493390
615279
1997
119217
94787
149943
194388
173628
217630
0.450
0.382
0.531
400918
361105
445121
1998
63007
49253
80602
134234
119187
151181
0.455
0.382
0.542
265960
239054
295894
1999
146615
118401
181552
96981
86161
109160
0.464
0.386
0.559
231721
207490
258782
2000
82744
65532
104476
80889
71779
91156
0.343
0.282
0.418
213204
189217
240233
2001
357393
295558
432164
94278
84250
105501
0.370
0.308
0.445
314791
279627
354376
2002
385143
317862
466665
111802
99993
125005
0.355
0.296
0.426
428762
380794
482773
2003
333954
271890
410184
141057
126864
156837
0.429
0.363
0.507
499309
446943
557810
2004
256154
211388
310400
160281
144197
178159
0.395
0.336
0.464
488503
440125
542199
2005
354219
294011
426756
171410
154221
190516
0.409
0.349
0.480
505054
455849
559569
2006
153964
125825
188397
156157
140474
173591
0.373
0.317
0.440
436241
393895
483140
2007
510371
422347
616740
157546
142097
174675
0.389
0.330
0.460
495715
446511
550342
2008
1048496
877115
1253363
165470
148295
184636
0.322
0.270
0.385
712535
632849
802255
2009
979985
821372
1169226
185526
166520
206700
0.269
0.226
0.321
961376
852223
1084510
2010
234126
192163
285253
249278
223638
277859
0.254
0.216
0.300
1091839
968367
1231055
2011
116753
93342
146037
361199
323994
402677
0.266
0.228
0.311
1143359
1021054
1280315
2012
332647
274160
403611
480135
427624
539095
0.229
0.195
0.268
1139697
1019203
1274436
2013
117381
94167
146318
526559
467084
593606
0.153
0.129
0.182
978860
874858
1095226
2014
402425
333405
485733
526163
469932
589124
0.158
0.132
0.189
962829
869017
1066767
2015
72042
56928
91169
503022
453702
557703
0.192
0.161
0.229
857782
778635
944974
2016
207043
168898
253803
494946
447283
547689
0.264
0.223
0.312
788822
716895
867966
2017
192788
157574
235870
415349
377738
456703
0.355
0.301
0.417
691950
631707
757938
2018
354062
290241
431917
305316
276968
336566
0.412
0.351
0.484
598656
544238
658516
2019
776087
645770
932701
232647
210882
256659
0.450
0.380
0.531
646597
582425
717839
2020
414649
342860
501469
191172
172921
211349
0.479
0.406
0.566
655246
587684
730576
2021
155855
125600
193399
174736
157928
193333
0.496
0.422
0.584
591402
531488
658071
2022
45328
34673
59258
172599
153861
193620
0.427
0.361
0.507
485024
433243
542994
2023
166467
134426
206146
177438
156774
200825
0.448
0.376
0.534
417283
372157
467882
2024
427761
351365
520767
163226
140567
189539
0.470
0.378
0.586
424313
372971
482722
2025
532133
426734
663565
149209
120565
184657
0.467
0.289
0.756
493213
418756
580910
Table 4.11. Northeast Arctic haddock. SAM model. Estimated recruitment, spawning-stock biomass (SSB), and average fishing mortality (Fbar ages 4.-7).
Year Age
3
4
5
6
7
8
9
10
11
12
13
1950
0.196
0.481
0.750
0.873
1.071
0.894
0.894
0.894
0.894
0.894
0.894
1951
0.132
0.373
0.615
0.767
0.977
0.881
0.881
0.881
0.881
0.881
0.881
1952
0.125
0.379
0.627
0.783
1.020
0.927
0.927
0.927
0.927
0.927
0.927
1953
0.081
0.280
0.468
0.583
0.800
0.738
0.738
0.738
0.738
0.738
0.738
1954
0.055
0.209
0.359
0.470
0.692
0.651
0.651
0.651
0.651
0.651
0.651
1955
0.051
0.202
0.372
0.506
0.714
0.603
0.603
0.603
0.603
0.603
0.603
1956
0.055
0.212
0.393
0.554
0.737
0.624
0.624
0.624
0.624
0.624
0.624
1957
0.050
0.200
0.370
0.495
0.647
0.551
0.551
0.551
0.551
0.551
0.551
1958
0.061
0.237
0.451
0.601
0.780
0.691
0.691
0.691
0.691
0.691
0.691
1959
0.062
0.231
0.411
0.522
0.621
0.569
0.569
0.569
0.569
0.569
0.569
1960
0.096
0.320
0.538
0.633
0.672
0.616
0.616
0.616
0.616
0.616
0.616
1961
0.127
0.408
0.684
0.782
0.782
0.692
0.692
0.692
0.692
0.692
0.692
1962
0.160
0.504
0.857
0.943
0.867
0.720
0.720
0.720
0.720
0.720
0.720
1963
0.140
0.471
0.809
0.913
0.847
0.681
0.681
0.681
0.681
0.681
0.681
1964
0.098
0.360
0.637
0.772
0.767
0.647
0.647
0.647
0.647
0.647
0.647
1965
0.077
0.294
0.516
0.639
0.659
0.568
0.568
0.568
0.568
0.568
0.568
1966
0.091
0.331
0.565
0.668
0.671
0.555
0.555
0.555
0.555
0.555
0.555
1967
0.072
0.271
0.449
0.518
0.538
0.466
0.466
0.466
0.466
0.466
0.466
1968
0.085
0.302
0.494
0.556
0.589
0.514
0.514
0.514
0.514
0.514
0.514
1969
0.081
0.273
0.433
0.472
0.484
0.418
0.418
0.418
0.418
0.418
0.418
1970
0.083
0.268
0.406
0.431
0.442
0.382
0.382
0.382
0.382
0.382
0.382
1971
0.072
0.238
0.354
0.357
0.368
0.326
0.326
0.326
0.326
0.326
0.326
1972
0.211
0.509
0.761
0.694
0.653
0.544
0.544
0.544
0.544
0.544
0.544
1973
0.218
0.494
0.647
0.534
0.480
0.384
0.384
0.384
0.384
0.384
0.384
1974
0.189
0.432
0.546
0.513
0.521
0.460
0.460
0.460
0.460
0.460
0.460
1975
0.208
0.459
0.547
0.494
0.487
0.419
0.419
0.419
0.419
0.419
0.419
1976
0.319
0.645
0.782
0.720
0.725
0.640
0.640
0.640
0.640
0.640
0.640
1977
0.361
0.712
0.852
0.717
0.657
0.559
0.559
0.559
0.559
0.559
0.559
1978
0.243
0.552
0.733
0.647
0.578
0.506
0.506
0.506
0.506
0.506
0.506
1979
0.167
0.447
0.675
0.654
0.558
0.503
0.503
0.503
0.503
0.503
0.503
1980
0.102
0.320
0.531
0.567
0.484
0.461
0.461
0.461
0.461
0.461
0.461
1981
0.085
0.279
0.477
0.542
0.448
0.430
0.430
0.430
0.430
0.430
0.430
1982
0.075
0.249
0.415
0.479
0.389
0.382
0.382
0.382
0.382
0.382
0.382
1983
0.076
0.247
0.386
0.425
0.341
0.340
0.340
0.340
0.340
0.340
0.340
1984
0.067
0.228
0.348
0.376
0.309
0.293
0.293
0.293
0.293
0.293
0.293
1985
0.075
0.261
0.417
0.485
0.433
0.414
0.414
0.414
0.414
0.414
0.414
1986
0.089
0.316
0.543
0.667
0.620
0.587
0.587
0.587
0.587
0.587
0.587
1987
0.100
0.360
0.647
0.789
0.726
0.659
0.659
0.659
0.659
0.659
0.659
1988
0.072
0.279
0.514
0.659
0.595
0.540
0.540
0.540
0.540
0.540
0.540
1989
0.055
0.218
0.386
0.466
0.414
0.363
0.363
0.363
0.363
0.363
0.363
1990
0.028
0.127
0.215
0.257
0.249
0.234
0.234
0.234
0.234
0.234
0.234
1991
0.030
0.137
0.244
0.292
0.286
0.263
0.263
0.263
0.263
0.263
0.263
1992
0.032
0.148
0.295
0.368
0.373
0.342
0.342
0.342
0.342
0.342
0.342
1993
0.025
0.132
0.297
0.412
0.441
0.402
0.402
0.402
0.402
0.402
0.402
1994
0.023
0.128
0.311
0.481
0.581
0.548
0.548
0.548
0.548
0.548
0.548
1995
0.018
0.103
0.238
0.375
0.503
0.496
0.496
0.496
0.496
0.496
0.496
1996
0.024
0.127
0.293
0.447
0.620
0.627
0.627
0.627
0.627
0.627
0.627
1997
0.033
0.161
0.379
0.540
0.721
0.689
0.689
0.689
0.689
0.689
0.689
1998
0.039
0.180
0.404
0.555
0.682
0.684
0.684
0.684
0.684
0.684
0.684
1999
0.047
0.205
0.434
0.562
0.656
0.630
0.630
0.630
0.630
0.630
0.630
2000
0.034
0.161
0.327
0.414
0.472
0.443
0.443
0.443
0.443
0.443
0.443
2001
0.035
0.166
0.359
0.458
0.496
0.453
0.453
0.453
0.453
0.453
0.453
2002
0.032
0.154
0.325
0.455
0.485
0.425
0.425
0.425
0.425
0.425
0.425
2003
0.037
0.173
0.372
0.536
0.635
0.571
0.571
0.571
0.571
0.571
0.571
2004
0.036
0.163
0.336
0.491
0.589
0.553
0.553
0.553
0.553
0.553
0.553
2005
0.038
0.167
0.339
0.500
0.631
0.605
0.605
0.605
0.605
0.605
0.605
2006
0.038
0.161
0.319
0.448
0.565
0.553
0.553
0.553
0.553
0.553
0.553
2007
0.039
0.162
0.324
0.472
0.600
0.581
0.581
0.581
0.581
0.581
0.581
2008
0.026
0.117
0.237
0.393
0.544
0.536
0.536
0.536
0.536
0.536
0.536
2009
0.021
0.094
0.187
0.319
0.478
0.491
0.491
0.491
0.491
0.491
0.491
2010
0.021
0.089
0.177
0.299
0.453
0.501
0.501
0.501
0.501
0.501
0.501
2011
0.022
0.093
0.192
0.317
0.463
0.506
0.506
0.506
0.506
0.506
0.506
2012
0.021
0.086
0.165
0.275
0.389
0.417
0.417
0.417
0.417
0.417
0.417
2013
0.015
0.064
0.111
0.176
0.262
0.326
0.326
0.326
0.326
0.326
0.326
2014
0.017
0.071
0.123
0.182
0.257
0.360
0.360
0.360
0.360
0.360
0.360
2015
0.022
0.091
0.161
0.224
0.293
0.409
0.409
0.409
0.409
0.409
0.409
2016
0.029
0.118
0.226
0.314
0.397
0.521
0.521
0.521
0.521
0.521
0.521
2017
0.039
0.153
0.307
0.441
0.518
0.598
0.598
0.598
0.598
0.598
0.598
2018
0.038
0.161
0.354
0.530
0.605
0.648
0.648
0.648
0.648
0.648
0.648
2019
0.036
0.163
0.385
0.616
0.634
0.613
0.613
0.613
0.613
0.613
0.613
2020
0.038
0.170
0.409
0.650
0.688
0.622
0.622
0.622
0.622
0.622
0.622
2021
0.039
0.174
0.413
0.665
0.732
0.676
0.676
0.676
0.676
0.676
0.676
2022
0.041
0.172
0.371
0.553
0.613
0.544
0.544
0.544
0.544
0.544
0.544
2023
0.052
0.203
0.411
0.579
0.601
0.498
0.498
0.498
0.498
0.498
0.498
2024
0.059
0.225
0.452
0.601
0.604
0.469
0.469
0.469
0.469
0.469
0.469
2025
0.058
0.224
0.450
0.596
0.598
0.464
0.464
0.464
0.464
0.464
0.464
Table 4.12. Northeast Arctic haddock. SAM model estimated fishing mortality-at-age. SAM model.
Year Age
3
4
5
6
7
8
9
10
11
12
13
1950
109205
99279
73820
36899
46521
16578
4932
2705
1377
1453
2049
1951
627326
56171
45134
26820
12672
12341
5388
1926
1004
444
1089
1952
83903
422960
32370
19056
9013
4292
3826
1645
730
355
509
1953
1175428
49840
209003
14438
6407
2662
1334
1062
537
251
308
1954
130455
885992
25851
91828
6986
2339
1092
548
391
200
226
1955
58576
84299
620245
14554
51512
3103
923
454
236
161
168
1956
221231
40861
55900
320224
7235
17614
1441
403
213
112
153
1957
60392
148229
27646
35753
111024
3088
6156
696
168
98
128
1958
73501
40295
91829
15503
20530
40272
1621
2518
347
84
117
1959
382306
51838
26170
40063
7328
7272
14936
717
907
145
86
1960
312759
263706
35713
15594
17157
3465
3632
6212
355
374
107
1961
141716
190100
144793
17668
6951
8007
1590
1505
2808
154
205
1962
288516
85170
91652
59390
6769
2697
3273
658
610
1166
139
1963
310273
174590
37685
26427
17517
2637
1085
1230
273
244
538
1964
349427
198074
75335
12243
7708
5819
1213
440
509
122
346
1965
125264
239043
114569
30255
4176
2799
2268
531
198
218
210
1966
308278
82034
157882
61677
12336
1706
1279
949
268
91
187
1967
336411
199088
43520
72304
24748
4866
791
602
452
130
132
1968
18630
244826
117376
21901
35935
12409
2357
409
313
233
136
1969
20294
12119
140694
54866
10670
15727
5738
1166
197
156
175
1970
204608
12577
7579
69889
25063
5867
8055
3006
643
106
185
1971
110060
132966
7129
4520
33307
12256
3334
4541
1689
370
162
1972
1063159
80128
81165
4488
3089
17547
6729
1999
2769
1022
314
1973
309302
613376
45603
23373
1692
1533
7663
2914
921
1373
610
1974
64978
168222
252478
16442
10694
878
995
4442
1679
542
1211
1975
58765
37015
90272
140233
6825
4973
445
551
2143
816
924
1976
59524
33587
16601
44241
78693
3171
2769
244
325
1145
961
1977
120299
30288
13748
6470
17671
30362
1295
1183
102
145
810
1978
211943
54625
9624
4462
2893
7755
15022
631
562
44
430
1979
159503
116393
23102
3225
2035
1398
4090
7070
337
272
226
1980
23166
101991
58069
8297
1152
1040
712
2151
3476
174
240
1981
10834
16190
62866
26080
3458
550
553
377
1132
1715
213
1982
16365
7133
11192
31460
10527
1724
277
304
215
618
959
1983
8087
11159
4767
6820
13608
5594
982
146
175
125
805
1984
13091
4944
6647
2795
3887
8775
2898
576
80
103
520
1985
357274
8968
2849
3596
1796
2555
5336
1843
367
51
397
1986
476016
275369
5239
1567
1837
992
1461
2782
1024
204
260
1987
91595
250107
154890
2556
642
787
468
674
1205
469
207
1988
39726
70401
135599
46132
1068
230
318
203
298
506
279
1989
27985
26102
49084
70494
12249
546
95
151
98
143
363
1990
36259
20597
17341
26283
32727
5522
351
58
87
56
275
1991
108038
24515
13589
14116
20140
20216
3159
246
39
57
204
1992
317123
82171
15797
10061
10364
12560
12587
1895
162
25
157
1993
807521
218975
56427
10503
5909
6207
7598
7239
1053
99
106
1994
388099
563086
151472
31131
4652
3142
3715
4689
4272
593
114
1995
99893
222155
422904
77675
14540
2077
1428
1842
2163
2108
337
1996
99365
61536
166063
244574
32069
7203
1073
706
920
1081
1240
1997
119217
55574
37872
95308
102850
13927
2518
486
310
407
1071
1998
63007
79976
35390
17934
36956
38440
5228
991
206
130
688
1999
146615
48525
47265
17553
8858
15746
13696
1911
409
91
374
2000
82744
116962
30976
21563
6924
4249
6576
5387
809
186
222
2001
357393
69177
92018
16824
10264
3495
2544
3500
2656
435
229
2002
385143
290591
51908
47075
9190
5484
1875
1426
1920
1397
349
2003
333954
255179
191564
34423
24302
4598
3448
1205
817
1086
991
2004
256154
169937
162939
110293
16475
10591
2158
1646
606
388
1061
2005
354219
170232
94610
109331
50127
6687
5427
1137
730
303
774
2006
153964
215189
108565
52291
44926
20509
3226
2779
553
344
525
2007
510371
120816
163638
61527
27035
19068
8193
1752
1456
282
436
2008
1048496
443192
96502
102061
21706
14226
7133
3315
887
706
351
2009
979985
688572
364960
61588
39909
10217
5372
3154
1467
485
577
2010
234126
654904
582499
229779
31969
15032
4823
2751
1612
782
622
2011
116753
189388
532448
413472
121997
13937
6246
2135
1348
826
800
2012
332647
72969
134925
386010
260450
54631
6090
2578
1032
693
912
2013
117381
197582
57715
93465
269090
124646
23777
3123
1398
582
951
2014
402425
73108
145650
49704
86625
142262
61280
10866
1835
869
963
2015
72042
278986
66129
92741
40543
67844
72638
25704
5344
997
1002
2016
207043
49951
166172
46355
62202
33028
48476
37708
12801
2565
983
2017
192788
173668
33632
109626
28253
36537
18427
21644
17865
5607
1477
2018
354062
134181
123682
24687
43504
14635
17673
8777
9200
8414
3120
2019
776087
234755
87101
61980
16278
17293
6891
7511
3638
3837
4236
2020
414649
495082
152514
44895
22074
8369
7086
3393
3194
1720
3332
2021
155855
256157
331207
65513
18003
7903
3830
2891
1604
1460
2194
2022
45328
138208
178235
158707
26355
6318
2937
1561
1149
693
1484
2023
166467
33367
102157
109411
69824
9908
2707
1277
723
556
1016
2024
427761
100331
25683
57426
51877
30239
4196
1301
610
367
778
2025
532133
282978
58948
13390
27447
24704
15639
2125
664
312
585
Table 4.13. Northeast Arctic haddock. SAM model. Estimated stock numbers-at-age.
Year
3
4
5
6
7
8
9
10
11
12
13
1950
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1951
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1952
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1953
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1954
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1955
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1956
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1957
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1958
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1959
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1960
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1961
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1962
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1963
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1964
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1965
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1966
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1967
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1968
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1969
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1970
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1971
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1972
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1973
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1974
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1975
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1976
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1977
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1978
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1979
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1980
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1981
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1982
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1983
0.338
0.253
0.24
0.238
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1984
0.215
0.22
0.213
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1985
0.209
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1986
0.636
0.262
0.2
0.21
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1987
0.2
0.207
0.415
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1988
0.38
0.2
0.2
0.385
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1989
0.2
0.2
0.2
0.231
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1990
0.33
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1991
0.202
0.214
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1992
0.215
0.204
0.202
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1993
0.252
0.246
0.273
0.257
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1994
0.288
0.211
0.289
0.223
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1995
0.379
0.339
0.313
0.29
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1996
0.72
0.32
0.247
0.278
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1997
0.501
0.265
0.256
0.277
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1998
0.231
0.29
0.268
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
1999
0.2
0.208
0.272
0.263
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2000
0.213
0.2
0.215
0.244
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2001
0.21
0.2
0.225
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2002
0.322
0.211
0.2
0.203
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2003
0.415
0.247
0.206
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2004
0.413
0.298
0.2
0.228
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2005
0.395
0.302
0.229
0.268
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2006
0.222
0.214
0.275
0.209
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2007
0.295
0.2
0.235
0.326
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2008
0.374
0.272
0.263
0.333
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2009
0.404
0.246
0.277
0.255
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2010
0.357
0.246
0.27
0.279
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2011
0.526
0.465
0.303
0.224
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2012
0.589
0.31
0.202
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2013
0.453
0.333
0.244
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2014
0.282
0.205
0.218
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2015
0.338
0.392
0.209
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2016
0.301
0.2
0.243
0.226
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2017
0.339
0.294
0.231
0.407
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2018
0.435
0.266
0.268
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2019
0.372
0.263
0.223
0.282
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2020
0.348
0.357
0.293
0.224
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2021
0.215
0.2
0.243
0.218
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2022
0.345
0.2
0.2
0.221
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2023
0.279
0.214
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2024
0.257
0.255
0.23
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2025
0.257
0.255
0.23
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
Table 4.14. Northeast Arctic haddock. SAM model. Natural mortality estimated age 3-6 from 0.20 + consumption from cod, ages 7-13+ natural mortality set to 0.2.
YEAR
RECR_a3
TOTBIO
TOTSPB
LANDINGS
YIELDSSB
SOPCOFAC
FBAR 4–7
1950
81677
242242
134529
132125
0.9821
1.5897
0.8315
1951
663622
354239
101024
120077
1.1886
1.2272
0.6242
1952
76240
234936
57440
127660
2.2225
1.7404
0.7248
1953
1264003
508893
82405
123920
1.5038
1.4279
0.5162
1954
151250
536523
117188
156788
1.3379
1.474
0.3805
1955
68041
484886
178637
202286
1.1324
1.536
0.512
1956
206957
474081
243486
213924
0.8786
1.2623
0.4335
1957
65596
325912
186222
123583
0.6636
1.2455
0.4328
1958
86292
276560
156921
112672
0.718
1.1252
0.519
1959
395168
363527
133216
88211
0.6622
0.9405
0.3672
1960
287477
399949
114568
154651
1.3499
1.0411
0.4845
1961
129789
390654
129899
193224
1.4875
0.9942
0.637
1962
288717
345543
118812
187408
1.5773
1.0518
0.801
1963
338192
309650
82597
146224
1.7703
1.1458
0.8655
1964
394864
300687
63783
99158
1.5546
1.3572
0.6528
1965
123280
357098
95353
118578
1.2436
1.1507
0.4938
1966
291448
386593
127441
161778
1.2694
1.1621
0.5838
1967
359235
466398
154432
136397
0.8832
0.9984
0.4152
1968
23722
420706
169413
181726
1.0727
0.9976
0.5035
1969
21252
342151
184036
130820
0.7108
0.882
0.3975
1970
200821
285972
156039
88257
0.5656
0.9762
0.358
1971
121458
344845
168534
78905
0.4682
0.7638
0.2468
1972
1242369
616109
122911
266153
2.1654
1.0883
0.6925
1973
339326
601872
114569
322226
2.8125
1.1656
0.537
1974
68685
602582
200548
221157
1.1028
0.8946
0.4322
1975
59735
492450
256090
175758
0.6863
0.8957
0.4275
1976
66435
307132
206675
137264
0.6642
1.12
0.5712
1977
133592
228676
141794
110158
0.7769
1.09
0.6845
1978
211904
255336
130559
95422
0.7309
0.9219
0.512
1979
174603
317372
129485
103623
0.8003
0.7684
0.552
1980
34438
342532
133155
87889
0.6601
0.7568
0.3982
1981
13306
292519
148158
77153
0.5207
0.7174
0.4018
1982
17254
211659
127181
46955
0.3692
0.7224
0.3093
1983
9509
104296
71460
24600
0.3442
1.0373
0.2715
1984
13434
83502
64118
20945
0.3267
1.0547
0.2498
1985
288301
182801
62013
45052
0.7265
0.9761
0.32
1986
527812
343187
62296
100563
1.6143
1.0484
0.4388
1987
109761
333920
75055
154916
2.064
0.992
0.5958
1988
54817
260031
78423
95255
1.2146
0.9955
0.499
1989
26591
212726
91989
58518
0.6361
0.9774
0.3892
1990
36934
170801
95308
27182
0.2852
1.0159
0.1562
1991
104276
195370
110525
36216
0.3277
1.0374
0.2082
1992
207548
269163
125748
59922
0.4765
0.9797
0.2838
1993
661420
442058
130406
82379
0.6317
1.0031
0.359
1994
292013
545112
150591
135186
0.8977
1.0056
0.425
1995
97769
541424
166124
142448
0.8575
1.0247
0.3828
1996
102109
474111
193160
178128
0.9222
1.0175
0.4235
1997
115462
351358
170081
154359
0.9076
1.0519
0.4862
1998
58315
250670
128542
100630
0.7829
1.0113
0.4235
1999
230844
253844
96266
83195
0.8642
1.021
0.4212
2000
89291
252459
89291
68944
0.7721
1.026
0.2802
2001
365849
359747
115898
89640
0.7734
0.9903
0.2792
2002
341859
445830
135007
114798
0.8503
1.011
0.317
2003
222966
476398
158105
138926
0.8787
1.019
0.4298
2004
223988
457207
164946
158279
0.9596
1.0192
0.3812
2005
345084
471750
174290
158298
0.9082
1.0029
0.493
2006
155170
415444
147917
153157
1.0354
0.9938
0.4088
2007
662178
496229
144142
161525
1.1206
0.9916
0.4288
2008
1330118
736982
149335
155604
1.042
0.9928
0.3955
2009
1447015
1075967
172388
200061
1.1605
1.0019
0.3585
2010
523446
1255703
238160
249200
1.0464
0.9994
0.2985
2011
243968
1282531
350009
309785
0.8851
0.9978
0.32
2012
382118
1164362
437237
315627
0.7219
0.9994
0.2652
2013
150303
991705
485092
193744
0.3994
0.9967
0.133
2014
374732
993346
532091
177522
0.3336
0.9968
0.1108
2015
100817
932603
546389
194756
0.3564
0.9953
0.158
2016
252599
839082
513257
233183
0.4543
1.0006
0.2248
2017
172395
710594
426046
227588
0.5342
0.994
0.3512
2018
315402
574608
308100
191276
0.6208
0.9943
0.426
2019
712887
593297
224182
175402
0.7824
0.9963
0.5128
2020
397126
605020
176880
182468
1.0316
0.9962
0.5825
2021
181783
545520
158732
204743
1.2899
0.9981
0.585
2022
65914
460587
154516
176906
1.1449
0.998
0.5145
2023
157194
397908
161601
178898
1.107
0.9854
0.4992
2024
413932
400606
143462
139992
0.9758
0.9956
0.562
Table 4.15. Northeast Arctic haddock. Summary XSA (p-shrinkage not applied, F shrinkage= 0.5). FLR Tue Jun 03 19:01:02 2025.
YC
recruitment
NT1
NT2
NT3
NAK1
NAK2
NAK3
EC01
ECO2
1990
807521
NA
NA
NA
NA
NA
NA
NA
NA
1991
388099
NA
NA
314.50
NA
NA
348.73
NA
NA
1992
99893
NA
224.79
54.90
NA
187.96
41.47
NA
NA
1993
99365
604.2
199.52
55.80
887.82
88.59
29.97
NA
NA
1994
119217
1429.0
265.08
79.60
1198.18
94.52
57.27
NA
NA
1995
63007
300.8
90.81
21.70
132.6
26.51
33.78
NA
NA
1996
146615
1117.8
196.70
56.90
508.87
150.99
83.67
NA
NA
1997
82744
248.3
83.20
24.10
210.96
30.11
36.39
NA
NA
1998
357393
1208.0
437.22
294.00
653.4
404.77
233.45
NA
NA
1999
385143
832.3
446.84
312.90
1063.01
266.12
255.2
NA
NA
2000
333954
1231.0
475.31
352.20
753.01
267.9
203.68
NA
NA
2001
256154
1700.2
471.68
173.10
1315.15
362.35
151.01
NA
NA
2002
354219
3327.3
706.61
317.90
2743.74
466.54
221.33
NA
268.46
2003
153964
700.9
386.39
78.80
528.97
143.98
56.32
188.99
114.24
2004
510371
4473.2
1310.22
443.30
2276.46
624.78
209.28
603.79
929.12
2005
1048496
4944.6
1684.83
1591.00
2091.11
953.5
812.41
2270.19
1818.93
2006
979985
3731.2
2042.01
1230.40
2015.71
1753.54
883.68
988.39
1291.86
2007
234126
853.1
317.05
102.50
778.39
209.05
128.07
322.02
143.82
2008
116753
562.6
79.90
52.90
443.93
86.03
54.16
134.83
65.09
2009
332647
1634.8
353.87
316.10
1559.42
288.27
191.63
274.35
113.56
2010
117381
676.3
137.38
57.40
428.46
94.54
67.29
105.26
41.53
2011
402425
1867.0
490.28
381.20
1583.44
407.16
334.82
591.10
222.99
2012
72042
344.6
123.95
30.60
292.71
109.92
24.35
155.94
75.05
2013
207043
1281.4
342.02
163.40
1838.71
246.59
71.81
264.81
145.25
2014
192788
1134.0
561.96
134.94
1593.12
107.18
81.15
319.96
144.86
2015
354062
2299.4
770.00
336.31
1276
331.42
171.03
793.77
189.25
2016
776087
5065.4
1675.64
1075.55
3343.93
810.16
507.61
935.79
NA
2017
414649
3823.3
1125.27
424.22
2925.9
687.8
286.32
NA
585.30
2018
155855
1898.2
267.79
109.80
1544.96
260.72
50.76
379.39
57.78
2019
45328
110.6
25.12
12.20
272.94
15.69
11.4
26.82
35.88
2020
166467
406.3
110.30
82.50
431.68
70.15
77
107.62
106.65
2021
427761
1662.1
583.90
346.71
1797.1
511.1
337.4
691.82
964.83
2022
532133
1343.8
650.98
477.03
1032.7
634
369.4
648.48
174.85
2023
NA
2179.5
843.01
NA
1690.2
529.2
NA
322.44
NA
2024
NA
4369.7
NA
NA
4070.5
NA
NA
NA
NA
Table 4.16. Northeast Arctic haddock. Input data for recruitment prediction (RCT3)- recruits as 3 year-olds. R3: recruitment estimate from SAM 2024. NT1: Norwegian Russian winter bottom trawl survey age 1 NT2: Norwegian Russian winter bottom trawl survey age. NAK1: Norwegian Russian winter acoustic survey age 1 NAK2: Norwegian Russian winter acoustic survey age 2. ECO1: Ecosystem survey age 1. ECO2: Ecosystem survey age 2. The Russian survey (RT) was discontinued in 2017 and has not been used for recruitment forecast since.
yearclass: 2022
index
slope
intercept
se
rsquare
n
indices
prediction
se.pred
WAP.weights
NT1
0.8353
6.421
0.3887
0.8343
20
7.204
12.44
0.4431
0.06452
NT2
0.7431
8.017
0.3372
0.8700
20
6.480
12.83
0.3894
0.08354
NT3
0.6644
8.956
0.1028
0.9863
20
6.170
13.06
0.1207
0.31667
NAK1
1.1245
4.441
0.5070
0.7474
20
6.941
12.25
0.5778
0.03795
NAK2
0.7854
8.129
0.3696
0.8478
20
6.454
13.20
0.4373
0.06625
NAK3
0.7393
8.838
0.1612
0.9669
20
5.915
13.21
0.1919
0.31667
ECO1
0.8651
7.399
0.4125
0.8296
18
6.476
13.00
0.4889
0.05300
ECO2
0.8289
8.056
0.4695
0.7636
19
5.170
12.34
0.5418
0.04315
yearclass: 2023
index
slope
intercept
se
rsquare
n
indices
prediction
se.pred
WAP.weights
NT1
0.8917
6.082
0.4685
0.7771
20
7.687
12.94
0.5414
0.14719
NT2
0.7636
7.925
0.3503
0.8621
20
6.738
13.07
0.4087
0.25824
NT3
NA
NA
NA
NA
NA
NA
NA
NA
NA
NAK1
1.2305
3.761
0.6117
0.6716
20
7.433
12.9
0.7045
0.08690
NAK2
0.7766
8.178
0.3564
0.8580
20
6.273
13.05
0.4152
0.25019
NAK3
NA
NA
NA
NA
NA
NA
NA
NA
NA
ECO1
0.8728
7.369
0.4074
0.8336
19
5.779
12.41
0.4698
0.19547
ECO2
NA
NA
NA
NA
NA
NA
NA
NA
NA
yearclass: 2024
index
slope
intercept
se
rsquare
n
indices
prediction
se.pred
WAP.weights
NT1
0.8847
6.137
0.4824
0.7709
19
8.383
13.55
0.5933
0.4869
NT2
NA
NA
NA
NA
NA
NA
NA
NA
NA
NT3
NA
NA
NA
NA
NA
NA
NA
NA
NA
NAK1
1.2314
3.747
0.6250
0.6671
19
8.312
13.98
0.7968
0.2700
NAK2
NA
NA
NA
NA
NA
NA
NA
NA
NA
NAK3
NA
NA
NA
NA
NA
NA
NA
NA
NA
ECO1
NA
NA
NA
NA
NA
NA
NA
NA
NA
ECO2
NA
NA
NA
NA
NA
NA
NA
NA
NA
WAP
logWAP
int.se
yearclass: 2022
432712
12.98
0.08956
yearclass: 2023
384665
12.86
0.20770
yearclass: 2024
649065
13.38
0.41401
Table 4.17. Northeast Arctic haddock Analysis by RCT3 ver3.1 - R translation. Data for 6 surveys over 32 year classes : 1990 – 2024 Regression type = C, Tapered time weighting applied, power = 3 over 20 years, Survey weighting not applied, Final estimates shrunk towards mean, Estimates with S.E.'S greater than that of mean included, Minimum S.E. for any survey taken as 0.2, Minimum of 3 points used for regression, Forecast/Hindcast variance correction used.
2025
Age
N
M
Mat
PF
PM
SWt
Sel
CWt
3
532133
0.294
0.028
0
0
0.258
0.0530
0.680
4
282978
0.223
0.099
0
0
0.549
0.2100
0.963
5
58948
0.21
0.215
0
0
0.798
0.4310
1.153
6
13390
0.207
0.531
0
0
1.341
0.6060
1.578
7
27447
0.2
0.7
0
0
1.597
0.6350
1.734
8
24704
0.2
0.82
0
0
1.87
0.5280
1.986
9
15639
0.2
0.897
0
0
2.178
0.5280
2.207
10
2125
0.2
0.954
0
0
2.677
0.5280
2.540
11
664
0.2
1.000
0
0
3.486
0.5280
2.882
12
312
0.2
1.000
0
0
3.699
0.5280
3.118
13
585
0.2
1.000
0
0
3.966
0.5280
3.861
2026
Age
N
M
Mat
PF
PM
SWt
Sel
CWt
3
384665
0.294
0.031
0
0
0.276
0.053
0.699
4
-
0.223
0.08
0
0
0.48
0.210
0.889
5
-
0.21
0.245
0
0
0.865
0.431
1.214
6
-
0.207
0.427
0
0
1.13
0.606
1.386
7
-
0.2
0.755
0
0
1.75
0.635
1.825
8
-
0.2
0.851
0
0
1.997
0.528
1.999
9
-
0.2
0.909
0
0
2.26
0.528
2.234
10
-
0.2
0.947
0
0
2.573
0.528
2.496
11
-
0.2
1.000
0
0
3.075
0.528
2.75
12
-
0.2
1.000
0
0
3.65
0.528
3.074
13
-
0.2
1.000
0
0
4
0.528
3.527
2027
Age
N
M
Mat
PF
PM
SWt
Sel
CWt
3
649065
0.294
0.031
0
0
0.269
0.053
0.692
4
-
0.223
0.088
0
0
0.51
0.21
0.921
5
-
0.21
0.2
0
0
0.764
0.431
1.122
6
-
0.207
0.473
0
0
1.22
0.606
1.468
7
-
0.2
0.657
0
0
1.487
0.635
1.669
8
-
0.2
0.884
0
0
2.164
0.528
2.075
9
-
0.2
0.926
0
0
2.391
0.528
2.245
10
-
0.2
0.952
0
0
2.651
0.528
2.517
11
-
0.2
1.000
0
0
2.944
0.528
2.712
12
-
0.2
1.000
0
0
3.261
0.528
2.986
13
-
0.2
1.000
0
0
3.966
0.528
3.491
Table 4.18. Northeast Arctic haddock. Prediction with management option table: Input data (based on SAM estimates and forecast estimates according to stock annex).
2025
Biomass
SSB
FMult
FBar
Landings
493210
149206
0.8516
0.4007
130000
2026
2027
Biomass
SSB
FMult
FBar
Landings
Biomass
SSB
583540
157726
0
0
0
870223
265334
.
.
0.1
0.047
23151
849616
254503
.
.
0.2
0.0941
45447
829837
244179
.
.
0.3
0.1412
66927
810848
234338
.
.
0.4
0.1882
87625
792613
224955
.
.
0.5
0.2352
107575
775099
216009
.
.
0.6
0.2823
126810
758273
207477
.
.
0.7
0.3294
145360
742104
199339
.
.
0.8
0.3764
163255
726562
191577
.
.
0.9
0.4234
180522
711620
184171
.
.
1
0.4705
197189
697250
177105
.
.
1.1
0.5176
213279
683428
170361
.
.
1.2
0.5646
228818
670129
163924
.
.
1.3
0.6116
243829
657330
157780
.
.
1.4
0.6587
258333
645010
151913
.
.
1.5
0.7058
272353
633147
146311
.
.
1.6
0.7528
285906
621721
140961
.
.
1.7
0.7999
299014
610714
135850
.
.
1.8
0.8469
311693
600107
130968
.
.
1.9
0.894
323962
589883
126303
.
.
2
0.941
335837
580026
121844
Table 4.19. Northeast Arctic haddock. Prediction with management option table for 2025-2027
Year:
2025
F multiplier:
1.0962
Fbar:
0.4007
age
CatchN
CatchYield
F
SSB (Jan)
StockBiomass (Jan)
StockN (Jan)
3
20368
13850
0.0451
3844
137290
532133
4
41673
40131
0.1788
15380
155355
282978
5
16439
18954
0.367
10114
47040.5
58948
6
4919
7762
0.5161
9535
17956
13390
7
10484
18179
0.5407
30683
43832.9
27447
8
8169
16224
0.4496
37881
46196.5
24704
9
5171
11413
0.4496
30553
34061.7
15639
10
703
1785
0.4496
5427
5688.63
2125
11
220
633
0.4496
2315
2314.7
664
12
103
322
0.4496
1154
1154.09
312
13
193
747
0.4496
2320
2320.11
585
TOTAL
108442
130000
149206
493210
958925
Year:
2026
F multiplier:
0.7439
Fbar:
0.35
age
CatchN
CatchYield
F
SSB (Jan)
StockBiomass (Jan)
StockN (Jan)
3
12897
9015
0.0394
3291
106168
384665
4
49285
43815
0.1562
14557
181961
379085
5
47107
57188
0.3206
40126
163778
189339
6
10935
15156
0.4508
15973
37406.6
33103.2
7
2235
4078
0.4724
8585
11371.1
6497.76
8
3878
7751
0.3928
22238
26131.9
13085.6
9
3823
8540
0.3928
26504
29157.2
12901.4
10
2420
6041
0.3928
19901
21014.5
8167.3
11
329
904
0.3928
3413
3412.51
1109.76
12
103
316
0.3928
1266
1265.7
346.767
13
139
490
0.3928
1874
1873.8
468.449
TOTAL
133149
153293
157726
583540
1028769
Year:
2027
Fmultiplier:
0.82551
Fbar:
0.33
age
CatchN
CatchYield
F
SSB (Jan)
StockBiomass (Jan)
StockN (Jan)
3
20587
14246
0.0373
5413
174598
649065
4
34000
31314
0.1476
12369
140555
275599
5
61497
69000
0.3030
39643
198216
259445
6
35157
51610
0.4260
64271
135880
111377
7
5638
9409
0.4464
16752
25498
17147
8
938
1946
0.3712
6346
7178
3317
9
2046
4592
0.3712
16016
17296
7234
10
2017
5076
0.3712
17999
18906
7132
11
1277
3463
0.3712
13292
13292
4515
12
173
518
0.3712
2001
2001
613
13
127
445
0.3712
1787
1787
451
TOTAL
163457
191620
195888
735208
1335895
Table 4.20. Northeast Arctic haddock. Prediction single option table for 2023-2025 based on HCR. MFDP R version data from file fhcr_fmgmt.xls. Fbar age range: 4-7. Input units are thousands and kg - output in tonnes.
Figure 4.1. Northeast Arctic haddock landings (top left 1950-2024), fishing mortality (top right 1950-2024), recruitment (bottom left 1950-2024), and total stock biomass for ages 3+ (TSB) and spawning-stock biomass (SSB) (bottom right 1950–2024). The reference points in the SSB and TSB plot refers to the spawning stock biomass. Fishing mortality and total and spawning stock biomass are given with point wise 95% confidence intervals (shaded areas), recruitment is given with upper 95% confidence interval (bar).Figure 4.2. Northeast Arctic haddock; one step ahead residuals for the final SAM run 2025. Blue circles indicate positive residuals (observations larger than predicted) and red circles indicate negative residuals.
Figure 4.3 Northeast Arctic haddock. 5 year retrospective plots of Recruitment (top left), catch (top middle) and TSB (top right), SSB (bottom left), and fishing mortality TSB (bottom right) for years 1950–2024 (2023 catches and F) (SAM with 95% confidence interval.
Figure 4.4. Results of assessment of NEA haddock. Fbar(4-7), TSB, recruits and SSB from AFWG 2023 (black), JRN-AFWG 2024 (blue) and this year’s (2025) assessment (red) from 2014 and onwards.
Figure 4.5. Northeast Arctic haddock. Retrospective plots of SSB, fishing mortality and recruitment for assessment years 1950–2024 (left - XSA without P shrinkage, F shrinkage= 0.5) and right - for assessment years 1990–2025 from the TSVPA model.
Figure 4.6. Comparison of results of assessment of NEA haddock. Recruits, biomass, spawning biomass and F in 1990–2025 by different models: median SAM estimates, XSA with setting mentioned at section 4.9 and TISVPA with settings established in WKDEM 2020.
Figure 4.7 Standard selection pattern model (red) used for short-term forecasts at the current meeting.
Figure 4.8 Top left: proportion of the stock (number of individuals) by age in 2025, output from SAM (Table 4.13). Top right: proportion of yield in biomass by age forecasted for 2025, using TAC constraint for 2025, taken from Table 4.20. Bottom left: proportion of the stock (number of individuals) by age in 2026, taken from Table 4.20. Bottom right: proportion of yield in biomass by age forecasted for 2026 applying Fbar=0.35, taken from Table 4.20.
Chapter 6. Beaked redfish in subareas 1 and 2 (Northeast Arctic)
Status of the fisheries
Development of the fishery
A description of the historical development of the fishery in subareas 1 and 2 is found in the ICES stock annex (ICES 2018c) for this stock (Figure 6.1). An international pelagic fishery for S. mentella in the Norwegian Sea outside EEZs has developed since 2004 (Figure 6.2, left panel). This pelagic fishery, which is further described in the stock annex, is managed by the Northeast Atlantic Fisheries Commission (NEAFC). Since 2014 the directed demersal and pelagic fisheries are reopened in the Norwegian Economic Zone, the Fisheries Protection Zone around Svalbard and, for pelagic fisheries only, in the Fishing Zone around Jan Mayen. The spatial regulation for this fishery is illustrated in Figures 6.2 and 6.3. In 2024, most of the catches of S. mentella from the Norwegian fisheries were taken in the Norwegian Exclusive Economic Zone and from the Russian fisheries in the Fisheries Protection Zone around Svalbard.
Figure 6.2 (right panel) shows the location of Norwegian S. mentella catches in the Norwegian EEZ in 2024 as well as bycatch in other areas. The 44th Session of the Joint Norwegian-Russian Fisheries Commission decided to split the total TAC among countries as follows: Norway: 72%, Russia: 18%, Third countries: 10% (as bycatch in the fishery protection zone at Svalbard (Spitsbergen): 4.1%, and international waters of the Norwegian Sea (NEAFC-area): 5.9%). This split was confirmed at the 51 st session of the commission in 2021.
Bycatch in other fisheries
During 2003–2013, all catches of S. mentella, except the pelagic fishery in the Norwegian Sea outside EEZ, were taken as bycatches in other fisheries. Some of the pelagic catches are taken as bycatches in the blue whiting and herring fisheries. From 2014 onwards most of the catch is taken as targeted catch and no longer as bycatch, following the opening of a targeted fishery in the Norwegian EEZ, Svalbard Fisheries Protection Zone and around Jan Mayen. When fishing for other species it has since 2013 been allowed to have up to 20% redfish (both species together) in round weight as bycatch outside 12 nautical miles and only 10% bycatch inside 12 nautical miles to better protect S. norvegicus.
Landings prior to 2025 (Tables 6.1–6.7, Figure 6.1)
Nominal catches of S. mentella by country for subareas 1 and 2 combined are presented in Table 6.1, while they are presented separately for Subarea 1 and divisions 2.a and 2.b in Tables 6.2–6.4. The pelagic catch of S. mentella in the Norwegian Sea outside EEZs reported to NEAFC and/or ICES amounted to 7 739 t in 2018, 6060 t in 2019, 5469 t in 2020, 2 872 t in 2021, 2 680t in 2022, 5t in 2023 and 1693t in 2024, as shown by country in Table 6.5. Nominal catches for both redfish species combined (i.e. S. mentella and S. norvegicus) by country are presented in Table 6.6. The sources of information used are catches reported to ICES, NEAFC, Norwegian and Russian authorities (foreign vessels fishing in the Norwegian and Russian economic zones) or direct reporting to the AFWG. Where catches are reported as Sebastes sp., they are split into S. norvegicus and S. mentella by AFWG experts based on available correlation between official catches of these two species in the considered areas. All tables have been updated with 2024 data. Total international landings in 1952–2024 are also shown in Figure 6.1.
JRN-AFWG advised an annual catch of no more than 66 779 t in 2023 and 70 164 t in 2024, corresponding to F = 0.097. In 2023, the catch was 60 466 t, of which only 5 t were reported from the pelagic fishery in international waters of the Norwegian Sea. As such, the catch was 6 313 t below the TAC advised by the JRN-AFWG in 2023, whereas in 2024, the total landings were 3 399 t below the advised TAC. Finally, JRN-AFWG 2024 advised an annual catch of no more than 67 191 t in 2025 and 69 177 t in 2026, corresponding to F = 0.077.
The redfish population in Subarea 4 (North Sea) is believed to belong to the Northeast Arctic stock. Since this area is outside the traditional areas handled by this Working Group, the catches are not included in the assessment. The total redfish landings (golden and beaked redfish combined) from Subarea 4 were up to 2003 between 1000–3000 t per year. Since 2005 the annual landings from this area have varied between 77 t (2024) and 341 t (2006) (Table 6.7).
Expected landings in 2025
JRN-AFWG has advised on the basis of precautionary considerations that the annual catch should be set at no more than 67 191 t in 2025. The 534st sessions of the Joint Norwegian-Russian Fisheries Commission decided to follow this advice.
In 2025, Norwegian fishing vessels can catch and land up to 486 3778 t of redfish in the Norwegian economic zone (NEZ) in a limited area north of 65°20’N (see map in Figure 6.3), in international waters and the fisheries zone around Jan Mayen. Only vessels with cod and saithe trawl permits can participate in the directed fishery for redfish. Each vessel which has the right to participate is assigned a maximum quota, which can be adjusted during the year, per how much of the national quota is exploited. The fishery may be stopped if the total quota is reached. This quota must also cover catches of redfish (both species) in other fisheries. It is prohibited to fish for redfish with bottom trawls in the period from 1 March until 10 May. Investigations were conducted in 2015–2016 to see if the protection of females during the main time of larvae release should be improved by extending the period of prohibited fishing until later in May, and to see if the area south of Bear Island (Area 20 in Figure 6.3) can be opened for directed fishing, either with or without sorting grid, and permissions were granted to a small number of vessels of the Norwegian reference fleet for an earlier onset of fishing to gain further data. The hitherto conclusion is that males dominated the catches (more than 70%) in the main fishing areas south and southwest of Bear Island during the investigations from late April until the directed fishery started on 10 May, and that the area south of Bear Island should stay closed during January-February due to smaller S. mentella inhabiting this area at the beginning of the year.
Since 2015, Russia has had access to the NEZ when fishing their quota share. In 2025 Russia may fish 12 094 t (18%) plus 2000 t transferred from Norway to Russia. Apart from this an additional 2200 t were transferred from Norway to Russia to cover bycatch of redfish (both species) in Russian fisheries targeting other species. The remaining 6 719 t are divided between third countries in the NEZ and Svalbard Zone and the NEAFC areas.
The Joint Russian-Norwegian Fisheries Commission agreed the possibility of transferring uo 10 % of national quotas for redfish (S. Mentella) from 2024 to 2025 (paragraph 8 of the Prptocol of the 54-st session).
Catch in the NEAFC areas in 2024 amounted to 1 693 t. In 2024, the total landings were 3 399 t below the advised TAC.
Data used in the assessment
Analytical assessment was conducted for this stock following recommendation from the benchmark assessment working group (WKREDFISH, ICES 2018a). Input datasets were updated with the most recently available data. The analytical assessment, based on a statistical catch-at-age model (SCAA), covers the period 1992–2023. The input data consists of the following tables:
Total catch in tonnes (Table 6.1)
Catch in tonnes in the pelagic fishery Norwegian Sea outside EEZs (Table 6.5)
Total catch numbers-at-age 6–19+ (Table 6.8)
Catch numbers-at-age 7–19+ in the pelagic fishery (Table 6.9)
Weight-at-age 2–19+ in the population (Table 6.12)
Maturity-at-age 2–19+ in the population (Table 6.14)
Deep pelagic ecosystem survey proportions-at-age (Table 6.19)
There was no direct observation of catch numbers-at-age for the pelagic fishery in the Norwegian Sea outside EEZs in 2012–2023. Instead, numbers-at-age were estimated based on catch-at-age from previous or following year, and weight-at-age and fleet selectivities (section 6.2.2 in AFWG report 2013). In 2013, 2016, 2019 and 2022, observations from the scientific survey in the Norwegian Sea were used to derive numbers-at-age in the pelagic fishery. This was considered appropriate given that the survey operates in the area of the fishery, with a commercial pelagic trawl and at the time of the start of the fishery.
Length- composition from the fishery (Figure 6.4)
Comparison of length distributions of the Norwegian and Russian catches of S. mentella in 2022–2023 are shown in Figure 6.4. In 2022, the length distributions from Russian and Norwegian fleets were almost identical, with maximum catches around 38 cm length. In 2023, length of beaked redfish in Norwegian catches was slightly larger than in Russian catches. This may be due to differences in the fishing areas. The Russian fleet largely operated in area 2b, and the Norwegian fleet in area 2a. No Norwegian data were available for such comparison 2024.
Catch-at-age (Tables 6.8–6.11, Figure 6.5)
For JRN-AFWG 2022, catch-at-age in the Norwegian fishery was estimated using StoX-Reca for 2014 and 2020. For 2015, 2016 and 2018, running StoX-Reca failed and catch-at-age for the Norwegian Fishery was estimated using the older Biomass program in SAS (Table 6.8).
Not enough age readings were available to estimate catch-at-age in 2017, 2019 and 2021. For the pelagic fisheries 2017, 2018, 2020 and 2021 (Table 6.9) proportions-at-age in the catch were derived from proportions at-age in earlier years, weight-at-age and fleet selectivity (section 6.2.2 in AFWG report 2013). This procedure for estimating catch-at-age for recent years in which age data are not available is somewhat problematic. This is because the last year of observation has a large effect on the estimated catch-at-age for several years. At the assessment working group in 2017 and at the benchmark assessment in January 2018, the last year of observations for the catch-at-age was 2014 and the values for the years 2015 and 2016 were extrapolated. Once available, the data for 2015 (demersal) and 2016 (pelagic) were substantially different from these earlier extrapolations. In the 2022 assessment the catch-at-age observations in 2018, had a large effect on the years around it, producing a very large proportion of the 19+ class in the catch and a correspondingly high F. As the age structure in 2018 was based on less than 1000 aged fish it was decided to use a time-averaged age-length-key (ALK) to convert the length distribution in 2017-2019 and in 2021 to an age distribution. The time averaged ALK is based on the Norwegian age-length data back to 2009, excluding the years 2017, 2019 and 2021 and on commercial catches with demersal gears. The conversion still produced a fraction of the 19+-group of >60% but F was lower than in the standard method.
Several other options were considered. Firstly, extrapolation as in the standard method but extrapolating also the 19+-group and then rescaling to sum up to 100%, rather than calculating the 19+ as the difference between other ages and 100%. Secondly, calculating the fraction of each age-class as an average of the same cohort’s fraction in the year before and after. Thirdly, as an average of the fraction of the same age-class in the last 3 years with data or last 3 calendar years. Finally, using a combined Russian-Norwegian ALK for individual years. Whilst some of these options produced lower fishing mortalities for the 19+-group, the change in observed selectivity for the demersal catches since 2017 remained largely the same. Therefore, the option of a common ALK across years was chosen because a as the option with the most sensible underlying reasoning.
Age composition of the Russian and Norwegian catches in 2021 was calculated using the age–length key, based on Russian age readings. The joint age–length key for the last three years (2019–2021) was applied. In general, the age distribution in the Norwegian fishery was shifted towards older fish compared to the Russian fishery. In the Russian catches fish at age 15–16 dominated, while in the Norwegian catches 16–17 years old made up the majority of the catches (Figure 6.5). The proportion (by numbers) of individuals at age 18 and older in the Norwegian catches was almost twice as large as in the Russian ones.
For JRN-AFWG 2024, StoX-Reca again failed in producing catch-at-age data for Norwegian catch in 2022. In addition, the older Biomass program could not be run. A simplified method was therefore used. Catch-at-length was calculated (by gear “bottom trawl” and “pelagic trawl”, and by stratum “Norwegian statistical area 12/20” and “other areas”) through a length-weight relationship and length distributions from the Norwegian reference fleet. An age-length-key was used to convert catch-at-length to catch-at-age. Ages were not available for 2023, and proportions-at-age in the catch were derived from proportions at-age in earlier years, similar to earlier years.
Catch-at-age for the pelagic fleet in 2022 was derived from proportion-at-age in the scientific survey in the Norwegian Sea. Catch-at-age for the 2023 pelagic catches (only 5 tonnes) were extrapolated for 2023 like earlier years.
Age–length-keys for S. mentella are uncertain because of the slow growth rate of individuals and therefore these data should be used with caution. Given that age is difficult to derive from length it is important that age readings are available for the most recent years, at the time of the working group.
In earlier assessment, weight-at-age in the stock was set equal to the weight-at-age in the catch. This turned out to be problematic because of important fluctuations in reported weight-at-age in the catch that cannot be xplained biologically (i.e. these are noisy data). In 2015, it was advised to either use a fixed weight-at-age for the 19+ group, or use a modelled weight-at-age based on catch and survey records (Planque, 2015). The second option was chosen. Weight-at-age in the population was modelled for each year using mixed-effect models of a von Bertalanffy growth function (in weight). In 2018 an attempt was made to model weight-at-age for each cohort (rather than each year of observation). This showed that the growth function is nearly invariant between cohorts. Therefore, it was decided to use a fixed (i.e. common to all years) weight-at-age as input to the Statistical Catch-at-age model. The observed and modelled weight-at-age are presented in Table 6.12 as well as Figures 6.6 and 6.7 (not updated after 2019).
Maturity-at-age (Table 6.14, Figure 6.8)
The proportion maturity-at-age was estimated for individual years using a mixed-effect statistical model (Table 6.14, Figure 6.8). Since JRN-AFWG 2024 maturity-at-age used in the statistical catch-at-age model are identical for every year, based on average values from the previous years.
Natural mortality
In previous years, natural mortality for S. mentella was set to 0.05 for all ages and all years. This was based on life-history correlates presented in Hoenig (1983). Thirty-nine alternative mortality estimates were explored during the 2018 benchmark workshop, based on the review work by Kenchington (2014) and several additional recent papers (Then et al., 2014; Hamel, 2014; Charnov et al., 2013). Overall, the mode of these natural mortality estimates is 0.058 which departs only slightly from the original estimate of 0.050 (Figure 6.9). WKREDFISH (ICES, 2018a) decided to continue using 0.050 as the value of M in the assessment model. These estimates were updated for a peer-reviewed paper submitted in 2022 (Höffle and Planque, 2023) with 44 estimators resulting in a mode of the distribution of 0.07.
Figure 6.10 shows cod’s predation on juvenile (5–14 cm) redfish during 1984–2020. This time-series confirms the presence of redfish juveniles and may be used as an indicator of redfish abundance. A clear difference is seen between the abundance/consumption ratio in the 1980s and at present. A change in survey trawl catchability (smaller meshes) from 1993 onwards (Jakobsen et al., 1997) and/or a change in the cod’s prey preference may cause this difference. As long as the trawl survey time-series has not been corrected for the change in catchability, the abundance index of juvenile redfish less than 15 cm during the 1980s might have been considerably higher, if this change in catchability had been corrected for. The decrease in the abundance of young redfish in the surveys during the 1990s is consistent with the decline in the consumption of redfish by cod. It is important that the estimation of the consumption of redfish by cod is being continued.
Scientific surveys
Following a dedicated review, ICES AFWG approved the use of the new SToX versions of winter and ecosystem surveys for use in the S. mentella assessment (WD 17 and WD 18 in ICES AFWG 2020). The group recommended that the data be monitored annually to identify if a significant portion of the mentella stock moves east of the strata system. The group further recommended that work continues to investigate redfish-specific strata systems for the winter survey.
The results from the following research vessel survey series were evaluated by the Working Group:
Surveys in the Barents Sea and Svalbard area (Tables 6.15–6.18, Figures 6.11, 6.12)
Russian bottom-trawl survey in the Svalbard and Barents Sea areas in October-December for 1978–2015 in fishing depths of 100–900 m (Table 6.15, Figure 6.11). ICES acronym: RU-BTr-Q4.
Russian-Norwegian Barents Sea ‘Ecosystem survey’ (bottom-trawl survey, August-September) from 1996–2024 in fishing depths of 100–500 m (Figures 6.11–6.12). Data disaggregated by age for the entire period 1996–2024 apart from 2010 (Tables 6.16b-6.17). ICES acronym: Since 2003 part of Eco-NoRu-Q3 (BTr), survey code: A5216.
Winter Barents Sea seabed-trawl survey (February) from 1986–2025 (jointly with Russia since 2000, except 2006 and 2007) in fishing depths of 100–500 m (Figures 6.11–6.12). Data disaggregated by age for the period 1992–2011, 2013, 2018 and 2020 (Table 6.18b). ICES acronym: BS-NoRu-Q1 (BTr), survey code: A6996.
The Norwegian survey initially designed for redfish and Greenland halibut is now part of the ecosystem survey and covers the Norwegian Economic Zone (NEZ) and Svalbard Fisheries Protection Zone incl. north and east of Spitsbergen during August 1996–2012 from less than 100 m to 800 m depth. This survey includes survey no. 2 above, and has been a joint survey with Russia since 2003, and since then called the Ecosystem survey. ICES acronym: Eco-NoRu-Q3 (Btr), survey code: A5216.
Pelagic survey in the Norwegian Sea (Table 6.19, Figures 6.13, 6.14)
The international deep pelagic ecosystem survey in the Norwegian Sea (WGIDEEPS, ICES 2016, survey code: A3357) monitors deep pelagic ecosystems, focusing on beaked redfish (S. mentella). The latest survey was conducted in the open Norwegian Sea from 22 July until 12 August 2022, following similar surveys in 2008, 2009, 2013, 2016 and 2019. The spatial coverage of the 2022 survey and the catch rates of beaked redfish in the 2019 survey are presented in Figure 6.13. The survey is scheduled every third year, but the 2025 survey has been postponed until 2026 Estimated numbers-at-age from this survey were presented at the benchmark assessment in 2018 and used in the SCAA model. Data for 2016 was updated in 2019, using additional age readings and numbers-at-age for the 2019 survey were presented during AFWG 2020, used in the assessment and updated for AFWG 2021. The details of the data preparation, using StoX, are available from WD7 of AFWG 2018 (Planque et al., 2018). The data used as input to the analytical assessment consists of proportions-at-age from age 2 to 75 years (Figure 6.14).
Additional surveys (Figures 6.15–6.17)
The international 0-group survey in the Svalbard and Barents Sea areas in August-September 1980–2024, is now part of the Ecosystem survey (Figures 6.15 and 6.16). ICES acronym: Eco-NoRu-Q3 (Btr), survey code: A5216.
A slope survey, “Egga-sør survey” was carried out by IMR from 29 February to 23 March 2024, following similar surveys in 2009, 2012, 2014, 2016, 2018, 2020 and 2022. The spatial coverage of the 2022 survey and the distribution of beaked redfish registered by acoustic is presented in Figure 6.17. Egga-Sør and Egga-Nord surveys operate on a biennial basis. The length and age distributions of beaked redfish from these surveys show consistent ageing in the population and gradual incoming of new cohorts after the recruitment failure period. These surveys are considered as candidates for data input to the analytical assessment of S. mentella (see also Planque, 2016).
Assessment
The group performed the analytical assessment using the statistical catch-at-age (SCAA) model reviewed at the benchmark in January 2018 (WKREDFISH, ICES 2018a). The model was configured as the benchmark baseline model which includes 53 parameters to be estimated and the model converged correctly.
Results of the assessment (Tables 6.20, 6.21, Figures 6.18–6.24)
Stock trends
The temporal patterns in recruitment-at-age 2 (Figures 6.18, 6.21) imply recruitment failure for the year classes 1996 to 2003 and indicate a return to high levels of recruitment. The estimates of year-class strength for recent years are uncertain due to limited age data from the winter and ecosystem surveys. Modelled spawning-stock biomass (SSB) increased from 1992 to 2007 (Table 6.21). In the late 2000s the total-stock biomass (TSB) consisted of a larger proportion of mature fish than in the 1990s. This is reversing as individuals from new successful year classes, but still immature, are growing. TSB has increased from about 1.0 to slightly below 1.5 million tonnes in the last 10 years (Table 6.21 and Figures 6.21–6.22). The concurrent decline in SSB from 2007 to 2014 can be attributed to the weak year classes (1996–2003) entering the mature stock. This trend has levelled off, and SSB has increased every year after 2017. SSB at the start of 2022 is estimated at 1 074 827 t.
The patterns of fleet selectivity-at-age indicate that most of the fish captured by the demersal fleet as well as the pelagic fleet in 2023 are of age 15 and older (Tables 6.20a,b and Figure 6.19). Model results at the benchmark workshop did show a gradual shift in the demersal selectivity towards older ages, a shift that was not observed after the 2015 catch-at-age data were incorporated in the model. This shift towards older ages is now again visible in the data from 2017 onwards, similar to what was observed in 2014. In 2023 F19+ is estimated at 0.08 (Table 6.21), with 0.077 for the demersal and 0.0002 for the pelagic fleets (Table 6.20a), respectively.
Survey selectivity patterns (Figure 6.20)
Winter and ecosystem surveys selectivity at age are very similar and show reduced selectivity for age 8 years and older, which is consistent with the known geographical distribution of different life stages of S. mentella (Figure 6.20). Conversely, the Russian survey shows a reduced selectivity for age 7 years and younger. This is believed to result from gear selectivity.
Residual patterns (Figure 6.23)
Residual patterns in catch and survey indices are presented in Figure 6.23a-e. There is generally no visible trend in the residuals for the Russian groundfish survey neither by age nor by year. Trends in residuals are visible in recent years for winter and ecosystem surveys and will need to be investigated further. Alternative methods for the estimation of the survey selectivity patterns will be investigated in the benchmark assessment planned for 2026 and could resolve the issue. Residual patterns for the demersal fleet indicate a similar fit of the model compared to AFWG 2018, when a time varying selectivity-at-age for this fleet was introduced.
Retrospective patterns (Figure 6.24)
The historical and analytical retrospective patterns for the years 2007 to 2016 are presented in Figures 6.24 and 6.25. All model parameters were estimated in each individual run. The most recent model run (last year of data 2023) is consistent with previous runs. As observed in previous assessments, the SSB time-series is smoother than before, due to fixed weight-at-age for every year. New data led to an increase in estimated SSB, up to >26% in the early years and around 2% to 4% in later years. The benchmark run stands out and this is due to the unavailability of recent catch-at-age data during the benchmark assessment (see section 6.2.2). The analytical retrospectives back to 2022 showed similar or up to ca. 7% upwards revision in SSB. The analytical retrospectives showed a consistent pattern for F12-18 until 2018 after which it started to deviate. Likewise, the pattern for F19+ was very similar in the analytical retrospectives, with small deviations from 2018 onwards.
Projections
FMSY at age 19+ is approximated using F0.1 and estimated at 0.084 (section 1.4 of the WKREBMSE report, ICES 2018b).
The estimated fishing mortality in 2023 is: F19+ = 0.077.
If the fishing mortality is maintained, this is expected to lead to a catch of 64 029 t in 2024, more than 6 000 t less than the advised TAC for 2024. This would lead to a SSB of 1 094 860 t in early 2025, catches of 67 191 t in 2025 and a SSB of 1 105 628 t in 2026. Zero catch in 2025 and 2026 would lead to SSB values of 1 168 451 t in 2026 and 1 246 963 t in 2027.
These projections assume that the selectivity patterns of the demersal and pelagic fleets are identical with those estimated for 2023. It is also assumed that the ratio of fishing mortality between these two fleets remains unchanged.
Additional considerations
Historical fluctuations in the recruitment-at-age 2 (Figures 6.18 and 6.21) are consistent with the 0-group survey index (Figure 6.16), although the 0-group survey index is not used as an input to the SCAA.
The population age structure derived from the model outputs for the old individuals (beyond 19+, Figure 6.22) is consistent with the age structure reported from the slope surveys although these are not yet used as input to the model.
Recent recruitment levels estimated with SCAA are highly uncertain since they rely on only a few years of observations and since the age readings from winter survey were not available for most of the recent years (i.e., not available in 2012, 2014-2017, 2019 or 2021-2023). The use of the autoregressive model for recruitment (random effects in the SCAA) which was introduced in 2018 allows for a projection of the recruitment in recent years, despite the current lack of age data.
Assessment summary (Table 6.21, Figure 6.21)
The history of the stock as described by the SCAA model for the period 1992–2023 is summarized in Table 6.21 and Figure 6.21. The key elements are as follows:
upward trend in Total-stock biomass from 1992 to 2006 followed by stabilization until 2011 and a new upward trend until the present,
upward trend in spawning-stock biomass from 1992 to 2007 followed by stabilization (or slight decline) until 2014 and subsequent increase,
recruitment failure for year classes 1996–2003 (2y old fish in 1998–2005),
good (although uncertain) recruitment for year classes born after 2005. Age data for recruits (at age 2y) after 2014 is limited.
Annual fishing mortality for the 19+ group throughout the assessment period varied between 0.002 and 0.085.
Comments to the assessment
Currently, the survey series used in the SCAA do not appropriately cover the geographical distribution of the adult population. Data from the pelagic survey in the Norwegian Sea has been reviewed in the last benchmark and is now included in the assessment model. Priority should be given to including additional data from the slope surveys that include older age groups, in analytical assessments in future (WD 5 in 2016).
The SCAA model relies on the availability of reliable age data in surveys and in the catch, and it requires a continuous effort to keep these data at an appropriate level.
Biological reference points
The proposed reference points estimated during the workshop on the management plan for S. mentella in (ICES 2018b) were:
Reference point
Value
Blim
227 000 t
Bpa
315 000 t
FMSY19+= F0.1
0.084
Which are revised from those set during the benchmark in the same year (ICES 2018a) which were Bpa = 450 kt, Blim = 324 kt and FMSY19+ = F0.1 = 0.08.
Management advice
The present report updates the assessment and advises that when the status quo approach is applied, catches in 2025 should be no more than 67 191 tonnes, and catches in 2026 should be no more than 69 177 tonnes. This would correspond to a fishing mortality of F19+ = 0.077, whilst fishing pressure across the fishable age-classes would remain nearly constant.
Possible future development of the assessment
Many developments suggested in earlier years were presented and evaluated at the benchmark in January 2018. These include integrating a stochastic process model i) for recruitment-at-age 2, ii) for the annual component of fishing mortalities, and iii) to account for annual changes in fleet selectivities-at-age. In addition, iv) a right trapezoid population matrix, v) coding of older ages into flexible predefined age-blocks, and vi) integrating of data from pelagic surveys in the Norwegian Sea were implemented. The purpose of these new features was to reduce the number of parameters to estimate (i, ii), include new data on the older age fraction of the population (iv, v, vi) and account for possible temporal changes in selectivity linked to changes in the national and international fisheries and their regulations (iii).
A new benchmark on S. mentella will be conducted early 2026, where a new assessment model will be implemented. In preparation of this benchmark, age reading of S. mentella has been prioritized. A key feature of the new model should be a flexible index combining the partial coverage of the surveyed during current bottom trawl survey programs (Vihtakari et al., in prep). Also, the model should support the possibility to combine age and length data in catches, to mitigate the challenge of reading a sufficiently high number of otoliths. A pre-screening suggests that the new version of GADGET (GADGET 3) would constitute an appropriate choice of model system.
References
Charnov, E.L., Gislason, H., and Pope, J.G. 2013. Evolutionary assembly rules for fish life histories. Fish Fish. 14(2): 213-224.
Hamel, O.S. 2014. A method for calculating a meta-analytical prior for the natural mortality rate using multiple life history correlates. ICES J. Mar. Sci. 72(1): 62-69.
Höffle H. and Tranang C. A. 2020. Use of RstoX for recalculating numbers at age of Sebastes mentella from the joint NOR-RUS Barents Sea Ecosystem Survey in summer and autumn. WD18 - ICES AFWG2020.
Höffle H. and Planque B. (2023). Natural mortality estimations for beaked redfish (Sebastes mentella) - a long-lived ovoviviparous species of the Northeast Arctic. Fisheries Research 260: 106581.
Hoenig, J. M. 1983. Empirical use of longevity data to estimate mortality rates. Fisheries Bulletin U.S. 81:898-903.
ICES 2013. Report of the Arctic Fisheries Working Group, Copenhagen, 18-24 April 2013. ICES C.M. 2013/ACOM:05, 726 pp.
ICES 2016. Final Report of the Working Group on International Deep Pelagic Ecosystem Surveys (WGIDEEPS). ICES CM, ICES CM 2016/SSGIEOM:02: 21pp.
ICES. 2018a. Report of the Benchmark Workshop on Redfish Stocks (WKREDFISH), 29 January-2 February 2018, Copenhagen, Denmark. ICES CM 2018/ACOM:34. 174 pp.
ICES. 2018b. Report of the Workshop on the evaluation of harvest control rules for Sebastes mentella in ICES areas 1 and 2 (WKREBMSE), June–August 2018, by correspondence. ICES CM 2018/ACOM:52. 32 pp.
Jakobsen, T., Korsbrekke, K., Mehl, S., and Nakken, O. 1997. Norwegian combined acoustic and bottom trawl surveys for demersal fish in the Barents Sea during winter. ICES CM 1997/Y:17.
Kenchington, T.J. Natural mortality estimators for information‐limited fisheries. Fish and Fisheries, 2014, 15.4: 533-562.
Planque, B. 2015. S. mentella assessment - handling the +group.: WD03 - ICES AFWG2015. 8 pp.
Planque, B. 2016. Possible use of the Pelagic and slope surveys in the analytical assessment of Sebastes mentella in ICES areas 1 and 2.: WD05 - ICES AFWG2016. 6 pp.
Planque, B., Vollen, T., Höffle, H., Harbitz A., 2018. Use of StoX for estimating numbers@age of Sebastes mentella from the international deep pelagic ecosystem survey in the Norwegian Sea.: WD07 - ICES AFWG2018. 38 pp.
Then, A. Y., Hoenig, J. M., Hall, N. G., and Hewitt, D. A. 2018. Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. ICES Journal of Marine Science, 75: 1509–1509. https://doi.org/10.1093/icesjms/fsx199 (Accessed 18 January 2021).
Tranang C. A., Vollen T. and Höffle H. 2020. Use of StoX for recalculating numbers at age and numbers at length of Sebastes norvegicus from the Barents Sea NOR-RUS demersal fish cruise in winter.: WD17 - ICES AFWG2020. 60 pp.
Tables and figures
Year
Faroe Islands
France
Germany2
Greenland
Latvia
Lithuania
Norway
Portugal
Russia3
Spain
UK4
Others
Total
1993
13
50
35
1
-
-
5182
963
6260
5
293
12
12 814
1994
4
74
18
1
-
-
6511
895
5021
30
136
31
12 721
1995
3
16
176
2
-
-
2646
927
6346
67
97
4
10 284
1996
4
75
119
3
-
-
6053
467
925
328
99
2
8 075
1997
4
37
81
16
-
-
4657
474
2972
272
78
7
8 598
1998
20
73
100
14
-
-
9733
125
3646
177
134
22
14 044
1999
73
26
202
50
-
-
7884
65
2731
29
140
9
11 209
2000
50
12
62
29
-
-
6020
115
3519
87
130
51
10 075
2001
74
16
198
17
-
-
13 937
179
3775
90
120
12
18 418
2002
75
58
99
18
-
-
2152
242
3904
190
188
68
6 994
2003
64
22
32
8
-
-
1210
44
952
47
124
17
2 520
2004
588
13
10
4
-
-
1375
235
2879
257
76
56
5 493
2005
1147
46
33
39
-
-
1760
140
5023
163
95
20
8 466
2006
3808
215
2483
63
341
845
4710
1804
11 413
710
1027
5842
33 261
2007
2197
234
520
29
349
785
3209
1483
5660
2181
202
3369
20 218
2008
1849
187
16
25
267
117
2220
713
7117
463
83
39
13 096
2009
1343
15
42
-
-
-
2677
806
3843
177
80
1263
10 246
2010
979
175
21
12
243
457
2065
293
6414
1184
79
2
11 924
2011
984
175
835
-
536
565
2471
613
5037
1678
55
13
12 962
2012
259
-
517
-
447
449
2114
1038
4101
1780
-
354
11 059
2013
697
-
80
21
280
262
1750
1078
3677
1459
-
85
9389
2014
743
215
446
15
215
167
13 149
505
1704
1162
-
106
18 427
2015
657
49
242
48
537
192
19 433
678
1142
2529
52
11
25 570
2016
502
134
493
74
1243
1065
18 191
1066
8419
3213
122
232
34 754
2017
443
45
763
66
562
790
17 077
1060
6593
2838
436
109
30 782
2018
425
67
2473
82
1020
1010
18 594
699
10 497
2457
63
659
38 046
2019
156
370
1599
615
-
653
23 844
1422
13 444
2222
590
725
45 640
2020
149
163
1807
67
-
1081
32 950
889
13 874
744
437
1496
53 657
2021
290
218
1166
85
-
1379
43 794
381
14 887
615
655
9
63 479
2022
235
221
1758
39
-
990
40 715
464
16717
278
114
663
62 194
20231
154
128
626
109
-
-
44 544
358
13976
295
152
45
60 387
20241
2038
4
458
149
1
-
47 224
467
16235
105
-
84
66 765
Table 6.1. S. mentella in subareas 1 and 2. Nominal catch (t) by countries in Subarea 1, divisions 2.a and 2.b combined.
1 - Provisional figures.
2 - Includes former GDR prior to 1991.
3 - USSR prior to 1991.
4 - UK(E&W) + UK(Scot.)
Year
Faroe Islands
France
Germany
Greenland
Norway
Russia
Spain
Others
Total
1993
2
-
-
-
16
588
-
-
606
1994
2
-
2
-
36
308
-
-
348
1995
2
-
-
-
20
203
-
-
225
1996
-
-
-
-
5
101
-
-
106
1997
-
-
-
3
12
174
-
1
190
1998
20
-
-
-
26
378
-
-
424
1999
69
-
-
-
69
489
-
-
627
2000
-
-
-
-
47
406
-
48
501
2001
-
-
-
-
8
296
-
3
307
2002
-
-
-
-
4
587
-
-
591
2003
-
-
-
-
6
292
-
-
298
2004
-
-
-
-
2
355
-
-
357
2005
-
-
-
-
3
327
-
-
330
2006
2
-
-
-
12
460
-
2
476
2007
-
-
-
-
11
210
-
28
249
2008
-
-
-
-
5
155
-
2
162
2009
-
-
-
-
3
80
-
8
91
2010
-
-
-
-
20
10
-
-
30
2011
-
-
-
-
48
13
-
-
61
2012
-
-
-
-
34
17
-
-
51
2013
-
-
-
-
64
27
-
-
91
2014
-
-
-
-
159
63
-
-
222
2015
-
-
-
18
138
125
-
1
282
2016
-
-
-
-
225
229
342
1
797
2017
-
-
-
12
207
196
-
3
418
2018
-
-
19
26
255
376
-
3
679
2019
83
4
-
13
369
206
19
22
716
2020
35
12
6
21
335
118
1
12
540
2021
87
31
-
14
195
367
1
4
699
2022
91
2
3
20
508
88
1
-
713
20231
56
8
31
17
1 333
145
69
5
1 664
20241
125
4
33
4
1023
327
6
11
1 533
Table 6. 2 . S. mentella in subareas 1 and 2. Nominal catch (t) by countries in Subarea 1.
1 - Provisional figures.
Year
Faroe Islands
France
Germany
Greenland
Latvia
Lithuania
Norway
Portugal
Russia
Spain
UK
Others
Total
1993
11
15
35
1
-
-
5029
648
5328
-
2
-
11 069
1994
2
33
16
1
-
-
6119
687
4692
8
4
2
11 564
1995
1
16
176
2
-
-
2251
715
5916
65
43
2
9 187
1996
-
75
119
3
-
-
5895
429
677
5
61
-
7 264
1997
-
37
77
12
-
-
4422
410
2341
9
55
2
7 365
1998
-
73
58
14
-
-
9186
118
2626
55
106
6
12 242
1999
-
16
160
50
-
-
7358
56
1340
14
120
3
9 117
2000
50
11
35
29
-
-
5892
98
2167
18
103
-
8 403
2001
63
12
161
17
-
-
13 636
105
2716
18
95
4
16 827
2002
37
54
59
18
-
-
1937
124
2615
8
157
45
5 054
2003
58
18
17
8
-
-
1014
17
448
8
102
10
1 700
2004
555
8
4
4
-
-
987
86
2081
7
18
14
3 764
2005
1101
36
17
38
-
-
1083
71
3307
20
15
6
5 694
2006
3793
199
2475
52
-
845
4010
1731
10 110
589
958
5 812
30 574
2007
2157
226
519
29
349
785
3043
1395
5061
2159
120
3 358
19 201
2008
1821
179
9
24
267
117
1952
666
6442
430
62
32
12 001
2009
1316
7
23
-
-
-
2208
764
3305
137
62
1 252
9 074
2010
961
175
13
12
243
457
1705
246
5903
1183
55
2
10 955
2011
932
175
697
-
536
561
1682
599
4326
1656
19
2
11 185
2012
259
-
469
-
447
449
1500
1038
3478
1770
-
343
9 753
2013
675
-
24
21
280
262
871
1055
3293
1435
-
69
7 985
2014
728
209
411
15
215
167
4089
505
1334
1159
-
102
8 934
2015
657
49
236
25
537
192
11 410
678
480
2508
47
9
16 828
2016
495
107
493
61
1243
1065
8887
1052
3949
2862
71
207
20 492
2017
425
38
763
44
562
790
7348
1059
3922
2813
429
97
18 290
2018
400
47
2440
51
876
1010
14 057
699
4721
2435
62
653
27 451
2019
73
363
1599
59
-
652
17 741
1421
7366
2184
569
709
32 736
2020
112
146
1797
42
-
1081
22 854
880
6085
737
403
1490
35 627
2021
151
182
1128
70
-
1379
35 798
377
6008
535
552
6
46 186
2022
112
187
1693
16
-
990
28 666
441
7793
92
11
663
40 664
20231
73
37
518
92
-
-
37 437
329
2089
213
62
11
40 861
20241
1906
-
382
8
-
-
38635
461
4357
50
76
45 875
Table 6. 3 . S. mentella in subareas 1 and 2. Nominal catch (t) by countries in Division 2.a (including landings from the pelagic trawl fishery in the international waters).
1 - Provisional figures.
Year
Faroe Islands
France
Germany
Greenland
Norway
Poland
Portugal
Russia
Spain
UK
Others
Total
1993
-
35
-
-
137
-
315
344
57
291
12
1 191
1994
-
41
-
-
356
-
208
21
22
132
29
809
1995
-
-
-
-
375
-
212
227
2
54
2
872
1996
4
-
-
-
153
-
38
147
323
38
2
705
1997
4
-
3
1
223
1
64
457
263
22
4
1 042
1998
-
-
42
-
521
13
7
642
122
29
3
1 379
1999
4
10
42
-
457
6
9
902
15
20
-
1 465
2000
-
1
27
-
82
2
17
946
69
27
1
1 172
2001
11
4
37
-
293
5
74
763
72
25
-
1 284
2002
38
4
40
-
210
8
118
702
182
31
15
1 348
2003
6
4
15
-
190
7
27
212
39
22
-
522
2004
33
5
6
-
386
42
149
443
250
58
-
1 372
2005
46
10
17
1
673
-
69
1389
143
80
14
2 442
2006
13
16
8
11
688
29
73
843
121
67
1
1 870
2007
40
8
1
-
155
2
88
389
22
62
1
768
2008
28
8
7
1
263
6
47
520
33
19
-
932
2009
27
8
19
-
466
1
42
458
41
17
6
1 085
2010
18
0
8
-
339
-
47
501
1
24
-
938
2011
52
0
139
-
741
11
14
698
23
36
4
1 718
2012
0
0
48
-
581
7
-
606
10
-
4
1 256
2013
22
0
56
-
815
16
23
357
23
-
-
1 312
2014
15
6
34
-
8901
3
-
307
3
-
1
9 270
2015
-
-
6
5
7885
1
-
536
21
5
-
8 459
2016
7
27
0
14
9078
24
14
4241
9
50
-
13 464
2017
18
7
1
10
9522
5
1
2476
25
7
4
12 076
2018
25
20
14
6
4281
3
-
5400
22
1
144
9 916
2019
-
4
-
543
5734
-
-
5873
19
17
-
12 190
2020
2
5
4
4
9760
-
-
7671
6
34
-
17 486
2021
52
6
38
1
7801
2
-
8512
79
103
1
16 595
2022
32
32
62
3
11 541
-
23
8836
185
104
-
20 818
20231
25
83
78
-
5774
-
24
11 742
12
89
33
17 860
20241
7
-
43
137
7566
-
3
11 551
48
-
1
19 356
Table 6. 4 . S. mentella in subareas 1 and 2. Nominal catch (t) by countries in Division 2.b.
1 - Provisional figures.
Year
Faroe Islands
Germany
Iceland
Latvia
Lithuania
Netherland
Norway
Poland
Portugal
Russia
Spain
Other
Total
2002
-
9
-
-
-
-
-
-
-
-
-
-
9
2003
-
40
-
-
-
-
-
-
-
-
-
-
40
2004
500
2
-
-
-
-
-
-
-
1510
-
-
2 012
2005
1083
20
-
-
-
-
-
-
-
3299
-
-
4 402
2006
3766
2475
2510
341
845
-
2862
2447
1697
9390
575
1862
28 770
2007
1968
497
1579
349
785
-
1813
1079
1377
3645
2155
910
16 157
2008
1797
-
-
267
117
-
330
-
641
4901
390
-
8 443
2009
1253
-
-
-
-
-
337
701
1975
135
889
5 290
2010
912
-
-
243
457
-
450
-
244
5103
820
-
8 229
2011
740
693
-
536
561
-
342
-
595
3621
1648
175
8 911
2012
259
469
31
447
449
-
-
311
1038
2714
1768
-
7 486
2013
675
-
-
280
262
-
1
68
1078
2720
1435
8
6 527
2014
697
409
-
215
167
-
-
100
505
795
1146
-
4 034
2015
606
231
-
537
192
-
-
-
678
0
2508
-
4 752
2016
393
493
-
1243
1065
-
9
-
821
512
2862
-
7 398
2017
296
761
-
562
790
-
-
14
791
1014
2624
-
6 852
2018
400
2192
-
876
1010
374
-
116
372
-
2399
-
7 739
2019
-
1157
-
-
652
244
1
364
1096
117
1908
521
6 060
2020
-
1380
-
-
1081
1366
-
-
480
25
737
400
5 469
2021
-
514
-
-
1379
-
-
-
84
498
280
117
2 872
2022
-
938
-
-
990
586
-
-
88
-
-
78
2 680
20231
-
-
-
-
-
-
-
-
-
-
-
5
5
20241
1682
-
-
-
-
-
-
-
-
-
-
11
1 693
Table 6. 5 . S. mentella in subareas 1 and 2. Nominal catch (t) by countries of the pelagic fishery in international waters of the Norwegian Sea (see text for further details).
1 - Provisional figures.
Year
Faroe Islands
France
Germany2
Greenland
Latvia
Lithuania
Norway
Portugal
Russia3
Spain
UK
Others
Total
1984
-
2 970
7 457
-
-
-
18 650
1806
69 689
25
716
-
101 313
1985
-
3 326
6 566
-
-
-
20 456
2056
59 943
38
167
-
92 552
1986
29
2 719
4 884
-
-
-
23 255
1591
20 694
-
143
-
53 315
1987
450
1 611
5 829
-
-
-
18 051
1175
7 215
25
239
-
34 595
1988
973
3 349
2 355
-
-
-
24 662
500
9 139
26
470
-
41 474
1989
338
1 849
4 245
-
-
-
25 295
340
14 344
5
272
-
46 688
1990
386
1 821
6 741
-
-
-
34 090
830
18 918
-
333
37
63 156
1991
639
791
981
-
-
-
49 463
166
15 354
1
349
23
67 767
1992
58
1 301
530
614
-
-
23 451
977
4 335
16
482
9
31 773
1993
152
921
685
15
-
-
18 319
1 040
7 573
13
735
12
29 465
1994
26
771
1 026
6
-
-
21 466
985
6 220
34
272
35
30 841
1995
30
748
693
7
-
-
16 162
936
6 985
67
265
7
25 900
1996
42
746
618
37
-
-
21 675
522
1 641
409
426
2
26 118
1997
7
1 011
538
39
-
-
18 839
535
4 556
308
264
12
26 109
1998
98
567
231
47
-
-
26 273
131
5 278
228
305
41
33 199
1999
108
61
430
97
-
-
24 634
68
4 422
36
309
30
30 195
2000
67
25
222
51
-
-
19 052
131
4 631
87
203
67
24 536
2001
111
46
436
34
-
-
23 071
186
4 738
91
239
13
28 965
2002
135
89
141
49
-
-
10 713
276
4 736
193
234
71
16 637
2003
173
30
154
44
-
-
8 063
50
1 431
47
258
110
10 360
2004
607
17
78
24
-
-
7 608
240
3 601
260
145
119
12 699
2005
1 194
56
105
75
-
-
7 845
196
5 637
171
147
76
15 502
2006
3 919
223
2 518
107
341
845
11 015
1 873
12 126
719
1 066
5 897
40 649
2007
2 343
249
587
113
349
785
8 993
1 708
6 550
2 186
257
3 470
27 590
2008
2 123
250
46
96
267
117
7 436
785
7 866
467
168
74
19 695
2009
1 413
16
100
81
-
-
8 128
836
4 541
177
111
1 330
16 733
2010
1 150
226
52
84
243
457
8 059
321
6 979
1 187
123
25
18 906
2011
1 008
228
844
51
536
565
7 152
638
5 956
1 684
68
84
18 814
2012
346
182
588
58
447
449
6 361
1 055
4 782
1 780
100
428
16 576
2013
780
353
81
66
280
262
5 586
1 114
4 474
1 459
493
114
15 062
2014
810
434
452
35
215
167
16 589
510
2 510
1 162
211
157
23 252
2015
733
102
266
259
537
192
22 166
678
1 806
2 531
109
64
29 443
2016
685
164
497
161
1243
1065
22 322
1 066
9 283
3 213
198
320
40 217
2017
566
62
782
127
562
790
20 644
1 150
7 890
2 882
596
203
36 254
2018
571
104
2 539
159
1 020
1 010
23 555
766
12 331
2 469
100
763
45 387
2019
392
395
1 692
671
-
656
29 795
1 495
15 373
2 287
615
828
54 199
2020
315
164
1 895
166
-
1 081
39 453
969
16 489
750
456
1 558
63 296
2021
613
224
1 242
177
-
1 379
51 497
441
16 624
623
751
103
73 674
2022
546
241
1 818
200
-
990
48 268
537
19 257
282
122
883
73 144
20231
345
164
744
255
-
-
52 226
459
16 248
325
168
233
71 167
20241
2 228
8
532
320
1
-
54 859
496
18 304
117
-
271
77 136
Table 6. 6 . REDFISH in subareas 1 and 2. Nominal catch (t) by countries in Subarea 1, divisions 2.a and 2.b combined for both S. mentella and S. norvegicus.
1 - Provisional figures.
2 - Includes former GDR prior to 1991.
3 - USSR prior to 1991.
Year
Belgium
Denmark
Faroe Islands
France
Germany
Ireland
Netherlands
Norway
Portugal
UK
Others
Total
1998
2
27
12
570
370
4
21
1 113
749
0
2 868
1999
3
52
1
0
58
39
16
862
532
0
1 563
2000
5
41
0
224
19
28
19
443
618
0
1 397
2001
4
96
-
272
13
19
-
421
-
538
-
1 363
2002
2
40
2
98
11
7
-
241
-
524
-
925
2003
1
71
2
26
2
-
-
474
-
463
-
1 039
2004
-
42
3
26
1
-
-
287
-
214
-
573
2005
2
34
-
10
1
-
-
84
-
28
-
159
2006
1
49
1
12
3
-
-
163
33
79
-
341
2007
-
27
-
8
1
-
-
116
-
77
1
230
2008
-
3
-
8
1
-
-
77
-
54
1
144
2009
-
4
1
38
-
-
-
119
-
86
-
248
2010
-
5
-
3
-
-
-
62
-
150
-
220
2011
-
9
-
90
1
-
-
66
-
71
-
237
2012
-
10
-
19
-
-
-
71
-
87
-
187
2013
-
7
-
40
-
-
-
54
-
176
-
277
2014
-
-
-
32
1
-
-
146
-
93
-
272
2015
-
1
-
14
1
-
-
157
-
61
-
234
2016
-
3
-
11
-
-
-
180
-
22
-
216
2017
-
3
-
10
-
-
-
168
-
38
-
219
2018
-
10
-
4
-
-
-
71
-
29
-
114
2019
-
7
-
10
-
-
-
62
-
10
-
89
2020
-
9
-
4
-
-
-
54
-
28
-
95
2020
-
9
-
4
-
-
-
54
-
28
-
95
2021
-
4
-
11
-
-
-
30
-
123
-
168
2022
-
3
3
11
-
-
-
40
-
24
-
85
20231
0
1
0
5
0
0
0
57
0
51
0
114
20241
0
6
1
4
0
0
0
44
0
22
0
77
Table 6. 7 . REDFISH in Subarea 4 (North Sea). Nominal catch (t) by countries as officially reported to ICES.
1 - Provisional figures.
Year/Age
6
7
8
9
10
11
12
13
14
15
16
17
18
+gp
Total No.
Tonnes Land.
1992
1 873
2 498
1 898
1 622
1 780
1 531
2 108
2 288
2 258
2 506
2 137
1 512
677
9 258
33 946
15 590
1993
159
159
174
512
2 094
3 139
2 631
2 308
2 987
1 875
1 514
1 053
527
6 022
25 154
12 814
1994
738
730
722
992
2 561
2 734
3 060
1 535
2 253
2 182
3 336
1 284
734
3 257
26 118
12 721
1995
662
941
1 279
719
740
1 230
2 013
4 297
3 300
2 162
1 454
757
794
2 404
22 752
10 284
1996
223
634
1 699
1 554
1 236
1 078
1 146
1 413
1 865
880
621
498
700
2 247
15 794
8 075
1997
125
533
1 287
1 247
1 297
1 244
876
1 416
1 784
1 217
537
1 177
342
3 568
16 650
8 598
1998
37
882
2 904
4 236
3 995
2 741
1 877
1 373
1 277
1 595
1 117
784
786
6 241
29 845
14 044
1999
9
83
441
1 511
2 250
3 262
1 867
1 454
1 447
1 557
1 418
1 317
658
3 919
21 193
11 209
2000
1
24
390
1 235
2 460
2 149
1 816
1 205
1 001
993
932
505
596
5 705
19 012
10 075
2001
117
372
542
976
925
1 712
2 651
2 660
1 911
1 773
1 220
714
814
16 234
32 621
18 418
2002
2
40
252
572
709
532
1 382
1 893
1 617
855
629
163
237
4 082
12 965
6 994
2003
6
37
103
93
132
220
384
391
434
466
513
199
231
1 193
4 402
2 520
2004
7
16
70
96
278
429
611
433
1 063
813
830
841
607
3 076
9 170
5 493
2005
2
20
57
155
244
262
295
754
783
1 896
817
1 087
1 023
6 065
13 460
8 466
2006
0
4
3
38
64
121
423
1 461
1 356
2 835
4 271
3 487
3 969
32 084
50 116
33 261
2007
0
1
3
22
33
86
235
631
2 194
2 825
3 657
4 359
3 540
15 824
33 410
20 218
2008
0
0
1
10
46
100
197
469
612
1 502
1 384
894
1 886
11 906
19 007
13 096
2009
0
1
16
22
42
39
254
258
577
364
823
692
1 856
11 706
16 650
10 246
2010
10
4
6
19
34
55
61
241
267
390
566
655
667
13 879
16 854
11 924
2011
4
4
4
25
55
114
11
103
286
394
408
479
567
15 223
17 677
12 962
2012
4
24
29
24
26
66
69
78
80
279
387
365
409
13 332
15 172
11 059
2013
0
3
19
101
90
44
41
42
9
177
146
185
317
12 826
14 000
9 389
2014
14
27
338
95
114
92
147
54
108
68
248
287
193
23 101
24 886
18 427
2015
43
41
134
565
843
1 355
1 245
717
385
945
289
595
871
29 441
37 469
25 570
2016
40
0
977
667
3 350
2 579
2 983
1 995
1 964
1 269
1 342
1 256
1 108
36 719
56 249
34 754
2017
36
187
403
461
1 042
1 431
1 226
1 370
1 222
1 648
1 462
1 272
1 786
32 989
46 535
30 782
2018
50
319
611
822
1 363
2 481
2 663
2 825
2 816
2 872
2 623
1 804
2 353
41 030
64 632
38 046
2019
129
447
809
1 257
2 122
2 225
2 024
2 238
2 394
3 141
2 814
1 982
2 511
45 497
69 590
45 640
2020
5
14
616
239
2 368
1 948
2 085
3 541
2 861
2 882
3 974
3 454
3 136
53 208
80 331
53 657
2021
79
470
1 007
1 325
2 294
3 165
2 878
3 137
3 417
4 492
4 266
3 007
3 752
62 816
96 105
63 479
2022
0
0
0
263
667
1 600
4 071
6 377
7 329
7 367
8 715
4 173
4 529
51 317
96 408
62 194
2023
0
0
0
0
270
656
1 573
3 967
6 119
7 083
7 140
8 388
3 955
51 956
91 107
60 466
2024
Not available
Table 6. 8 . S. mentella in subareas 1 and 2. Catch numbers-at-age 6 to 18 and 19+ (in thousands) and total landings (in tonnes). For the periods 2014–2015, 2017-2018, 2020-2021 and 2023, age data are missing from the pelagic fishery. For the years 2017, 2019 and 2021, age data are missing from the demersal fishery fisheries. The numbers-at-age have been estimated following the method outlined in section 6.2.2.
Age
YEAR
7
8
9
10
11
12
13
14
15
16
17
18
19+
2006
0
0
0
0
23
93
1 083
323
1 563
3 628
2 514
3 756
29 704
2007
0
0
9
18
25
154
444
1 642
2 302
3 021
3 394
3 156
12 684
2008
0
0
0
0
28
146
115
143
214
594
752
753
13 258
2009
0
0
0
0
9
1 314
294
471
889
999
869
1 150
2 981
2010
0
0
0
0
0
0
155
74
135
224
356
458
12 497
2011
0
0
0
0
0
223
83
83
168
136
166
136
13 182
20121
0
0
0
0
0
0
0
0
227
90
139
206
10 087
20132
0
0
78
27
28
0
0
0
94
28
104
168
9 473
20143
0
0
0
74
24
25
0
0
0
58
16
57
4 920
20153
0
0
0
0
170
54
51
0
0
0
84
22
6 343
20163
0
0
154
307
271
276
134
90
107
239
445
229
10 499
20173
0
0
0
238
462
390
370
165
100
109
226
402
8 349
20183
0
0
0
0
691
1 281
1 008
874
352
195
198
393
12 659
2019
25
5
200
400
220
242
197
279
183
155
135
161
6 696
20203
0
44
8
345
672
353
362
270
345
206
163
136
5 496
20213
0
0
45
8
339
631
309
290
195
228
127
96
2 380
2022
0
0
7
14
12
48
165
135
114
194
155
84
2 931
20233
0
0
0
0
0
0
0
0
0
0
0
0
5
2024
Not available
Table 6.9. Pelagic S. mentella in the Norwegian Sea (outside the EEZ). Catch numbers-at-age in thousands.
1 - No age data in 2012, catch numbers-at-age are estimated from proportions at age in 2011 and in 2013.
2 - No age data from the catches in 2013. Age readings from the research survey conducted in September 2013 are used to derive catch numbers-at-age.
3 - No age data in 2014 – 2018, 2020-2021 and 2023, catch numbers-at-age are estimated from previous year according to protocol described in section 6.2.2.
Year
Length group
18–20
20–22
22–24
24–26
26–28
28–30
30–32
32–34
34–36
36–38
38–40
40–42
42–44
44–46
46–48
48–50
50–52
2011
0
12
0
0
1
8
249
2544
6481
6528
3620
829
95
18
1
0
0
2012
0
0
23
19
26
28
41
287
1898
5030
5385
1911
451
197
43
23
0
2013
0
0
4
32
154
137
90
69
1382
4214
4480
1633
497
197
0
0
0
2014
0
5
0
25
29
235
660
697
3358
7667
8544
3808
787
34
0
0
0
2015-2024
Data not available at the time of the working group
Table 6. 10 . S. mentella in subareas 1 and 2. Total catch numbers-at-length, in thousands, for 2011–2014.
Length group
Year
18–20
20–22
22–24
24–26
26–28
28–30
30–32
32–34
34–36
36–38
38–40
40–42
42–44
44–46
46–48
48–50
50–52
2011
0
0
0
0
1
8
244
2562
5887
4425
1537
287
13
0
1
0
0
2012
0
0
0
0
0
0
106
2014
5092
3681
952
48
0
0
0
0
0
2013
0
0
0
0
0
0
75
1352
4791
2967
730
87
6
0
0
0
0
2014
0
0
0
0
0
3
14
349
2408
2454
827
80
6
1
0
0
0
2015-2024
Data not available at the time of the working group
Table 6.11. S. mentella in subareas 1 and 2. Catch numbers-at-length, in thousands, in the pelagic fishery for 2011–2021.
Year/Age
6
7
8
9
10
11
12
13
14
15
16
17
18
19+
1992
0.167
0.164
0.211
0.241
0.309
0.324
0.378
0.366
0.428
0.454
0.487
0.529
0.571
0.805
1993
0.141
0.181
0.217
0.254
0.306
0.357
0.349
0.4
0.45
0.436
0.46
0.499
0.462
0.846
1994
0.174
0.188
0.235
0.298
0.361
0.396
0.415
0.48
0.492
0.562
0.642
0.636
0.72
0.846
1995
0.158
0.185
0.226
0.261
0.324
0.36
0.432
0.468
0.496
0.519
0.566
0.573
0.621
0.758
1996
0.175
0.189
0.224
0.272
0.323
0.337
0.377
0.518
0.536
0.603
0.69
0.8
0.683
0.958
1997
0.152
0.191
0.228
0.28
0.324
0.367
0.435
0.492
0.521
0.615
0.601
0.611
0.671
0.911
1998
0.12
0.148
0.192
0.261
0.326
0.373
0.427
0.496
0.537
0.566
0.587
0.625
0.658
0.809
1999
0.133
0.17
0.226
0.286
0.343
0.382
0.441
0.483
0.537
0.565
0.62
0.644
0.672
0.757
2000
0.109
0.144
0.199
0.276
0.332
0.392
0.437
0.49
0.54
0.585
0.631
0.65
0.671
0.872
2001
0.115
0.137
0.183
0.262
0.31
0.356
0.4
0.434
0.484
0.534
0.581
0.615
0.624
0.819
2002
0.114
0.139
0.182
0.253
0.329
0.372
0.392
0.434
0.476
0.52
0.545
0.587
0.601
0.833
2003
0.109
0.124
0.196
0.245
0.312
0.371
0.422
0.434
0.477
0.516
0.551
0.591
0.623
0.817
2004
0.104
0.129
0.18
0.264
0.308
0.376
0.413
0.444
0.478
0.521
0.579
0.614
0.688
0.835
2005
0.104
0.136
0.196
0.263
0.322
0.37
0.408
0.451
0.478
0.523
0.55
0.551
0.64
0.797
2006
0.107
0.143
0.2
0.266
0.314
0.374
0.419
0.462
0.489
0.527
0.57
0.602
0.59
0.796
2007
0.115
0.131
0.18
0.252
0.305
0.364
0.409
0.449
0.485
0.513
0.523
0.554
0.569
0.737
2008
0
0.158
0.177
0.242
0.304
0.402
0.465
0.486
0.511
0.546
0.6
0.596
0.635
0.803
2009
0.129
0.179
0.206
0.249
0.326
0.394
0.51
0.55
0.542
0.583
0.609
0.594
0.595
0.809
2010
0.129
0.128
0.175
0.263
0.375
0.447
0.501
0.541
0.582
0.602
0.593
0.608
0.592
0.706
2011
0.136
0.156
0.183
0.261
0.316
0.435
0.512
0.604
0.655
0.609
0.671
0.647
0.677
0.795
2012
0.135
0.178
0.225
0.246
0.249
0.356
0.474
0.582
0.53
0.626
0.654
0.73
0.699
0.833
2013
0.129
0.145
0.189
0.23
0.27
0.282
0.345
0.384
0.534
0.559
0.634
0.627
0.661
0.72
2014
0.193
0.172
0.221
0.167
0.192
0.239
0.333
0.277
0.364
0.516
0.713
0.78
0.797
0.882
2015
0.167
0.168
0.232
0.294
0.346
0.383
0.457
0.436
0.474
0.538
0.665
0.69
0.724
0.824
2016
0.11
0
0.331
0.356
0.401
0.392
0.434
0.486
0.543
0.579
0.74
0.591
0.598
0.776
2017
0.154
0.196
0.254
0.27
0.306
0.413
0.425
0.458
0.533
0.472
0.562
0.65
0.692
0.796
2018
0
0.233
0.135
0.371
0.323
0.28
0.379
0.452
0.524
0.633
0.483
0.589
0.457
0.821
2019
0.118
0.38
0.341
0.47
0.538
0.523
0.539
0.565
0.572
0.62
0.656
0.601
0.633
0.744
Modelled
0.141
0.188
0.237
0.286
0.334
0.381
0.424
0.465
0.503
0.537
0.569
0.597
0.623
0.755
Table 6. 12 . S. mentella in subareas 1 and 2. Observed mean weights-at-age (kg) from the Norwegian data (Catches and surveys combined). Weights-at-age used in the statistical catch-at-age model are identical for every year and given at the bottom line of the table.
Year/ Age
11
12
13
14
15
16
17
18
19+
2006
0.44
0.44
0.52
0.44
0.49
0.55
0.53
0.56
0.61
2007
0.39
0.43
0.41
0.48
0.50
0.52
0.55
0.57
0.64
2008
0.36
0.47
0.56
0.50
0.56
0.54
0.56
0.55
0.64
2009
0.38
0.44
0.45
0.48
0.54
0.59
0.64
0.58
0.69
2010
-
-
0.62
0.56
0.54
0.59
0.59
0.56
0.61
2011
-
0.48
0.54
0.54
0.64
0.59
0.54
0.59
0.59
2012
No data
-
-
-
-
-
-
-
-
20131
0.31
-
-
-
0.56
0.62
0.60
0.62
0.68
2014-2024
No data
-
-
-
-
-
-
-
-
Table 6. 13 . Pelagic S. mentella in the Norwegian Sea (outside the EEZ). Catch weights-at-age (kg).
1 - As observed in the research survey in the Norwegian Sea in September 2013.
year/Age
6
7
8
9
10
11
12
13
14
15
16
17
18
19+
1992
0.00
0.01
0.02
0.04
0.07
0.14
0.26
0.42
0.53
0.59
0.65
0.70
0.75
1.00
1993
0.01
0.02
0.04
0.08
0.15
0.28
0.44
0.55
0.61
0.67
0.72
0.77
0.82
1.00
1994
0.02
0.04
0.08
0.15
0.28
0.44
0.59
0.72
0.81
0.88
0.93
0.96
0.98
1.00
1995
0.03
0.07
0.13
0.24
0.39
0.57
0.71
0.83
0.90
0.95
0.97
0.98
0.99
1.00
1996
0.01
0.01
0.02
0.05
0.10
0.19
0.33
0.50
0.59
0.66
0.73
0.79
0.84
1.00
1997
0.02
0.04
0.08
0.16
0.29
0.46
0.55
0.61
0.66
0.71
0.76
0.80
0.84
1.00
1998
0.02
0.04
0.08
0.15
0.26
0.43
0.56
0.65
0.73
0.80
0.85
0.90
0.93
1.00
1999
0.03
0.05
0.10
0.20
0.34
0.51
0.57
0.64
0.70
0.75
0.80
0.84
0.87
1.00
2000
0.03
0.06
0.11
0.21
0.36
0.52
0.63
0.73
0.81
0.87
0.91
0.94
0.96
1.00
2001
0.01
0.02
0.04
0.09
0.17
0.30
0.47
0.56
0.62
0.68
0.74
0.79
0.83
1.00
2002
0.02
0.05
0.10
0.19
0.33
0.50
0.54
0.59
0.63
0.67
0.70
0.74
0.77
1.00
2003
0.03
0.06
0.12
0.21
0.36
0.51
0.57
0.63
0.69
0.73
0.78
0.82
0.85
1.00
2004
0.03
0.06
0.12
0.22
0.37
0.51
0.55
0.59
0.63
0.67
0.70
0.73
0.76
1.00
2005
0.02
0.05
0.09
0.18
0.31
0.49
0.55
0.61
0.66
0.71
0.75
0.79
0.83
1.00
2006
0.01
0.02
0.03
0.07
0.13
0.24
0.39
0.53
0.59
0.64
0.70
0.75
0.79
1.00
2007
0.02
0.04
0.09
0.17
0.30
0.47
0.64
0.77
0.87
0.93
0.96
0.98
0.99
1.00
20081
0.02
0.04
0.08
0.15
0.27
0.43
0.55
0.62
0.68
0.74
0.79
0.83
0.87
1.00
2009
0.02
0.04
0.09
0.17
0.30
0.47
0.60
0.71
0.80
0.87
0.92
0.95
0.97
1.00
2010
0.02
0.04
0.08
0.16
0.28
0.45
0.54
0.60
0.66
0.71
0.76
0.80
0.83
1.00
20111
0.02
0.04
0.08
0.15
0.27
0.43
0.55
0.62
0.68
0.74
0.79
0.83
0.87
1.00
2012
0.02
0.05
0.10
0.19
0.32
0.50
0.59
0.68
0.75
0.81
0.86
0.90
0.93
1.00
2013
0.00
0.01
0.02
0.04
0.08
0.15
0.28
0.45
0.62
0.77
0.87
0.93
0.97
1.00
2014
0.00
0.00
0.01
0.02
0.03
0.06
0.12
0.23
0.38
0.53
0.61
0.68
0.74
1.00
2015
0.01
0.02
0.05
0.09
0.17
0.31
0.48
0.54
0.58
0.63
0.67
0.71
0.74
1.00
2016
0.03
0.06
0.12
0.22
0.38
0.52
0.56
0.61
0.66
0.70
0.74
0.77
0.81
1.00
20171
0.02
0.04
0.08
0.15
0.27
0.43
0.55
0.62
0.68
0.74
0.79
0.83
0.87
1.00
20181
0.02
0.04
0.08
0.15
0.27
0.43
0.55
0.62
0.68
0.74
0.79
0.83
0.87
1.00
20191
0.02
0.04
0.08
0.15
0.27
0.43
0.55
0.62
0.68
0.74
0.79
0.83
0.87
1.00
20201
0.02
0.04
0.08
0.15
0.27
0.43
0.55
0.62
0.68
0.74
0.79
0.83
0.87
1.00
20211
0.02
0.04
0.08
0.15
0.27
0.43
0.55
0.62
0.68
0.74
0.79
0.83
0.87
1.00
20221
0.02
0.05
0.09
0.17
0.30
0.46
0.80
0.96
0.99
1.00
1.00
1.00
1.00
1.00
20231
0.02
0.04
0.08
0.14
0.22
0.30
0.45
0.56
0.63
0.69
0.73
0.76
0.79
1.00
Model input
0.02
0.04
0.08
0.14
0.24
0.37
0.49
0.58
0.66
0.73
0.77
0.81
0.85
1.00
Table 6. 14 . Proportion of maturity-at-age 6–19+ in S. mentella in subareas 1 and 2 derived from Norwegian commercial and survey data. The proportions were derived from samples with at least 5 individuals. a50 w1 and w2 are the annual coefficients for modelled maturity ogives using a double half sigmoid of the form 0.5 ((1+tanh(age- a50)/w1)) for age < a50 and 0.5 (1+tanh((age- a50)/w2) for age > a50. a50 equals the age at 50% maturity. Since JRN-AFWG 2024 maturity-at-age used in the statistical catch-at-age model are identical for every year and given at the bottom line of the table.
1 - Model parameter estimates were unrealistic and replaced by average parameter values.
Year class
0
1
2
3
4
5
6
7
8
9
10
11
1974
-
-
4.8
-
4.9
22.8
4.8
4.8
-
-
-
3
1975
-
7.4
-
1.7
6.4
2.4
3.5
5
-
-
4
-
1976
7
-
8.1
1.2
2.5
6.8
4.9
5
1
13
-
-
1977
-
0.2
0.2
0.2
0.9
5.1
3.7
1
19
2
-
-
1978
0.8
0.02
0.9
1
5
3.8
2
20
6
-
-
-
1979
-
1.9
1.4
3.6
2.3
9
11
16
1
-
-
0.1
1980
0.3
0.4
2
2.5
16
6
11
25
2
-
1.5
2
1981
-
2.2
3.9
20
6
12
47
18
6.3
1.6
0.5
1
1982
19.8
13.2
13
15
34
44
39
32.6
4.3
3.1
4.9
+
1983
12.5
3
5
6
31
34
32.3
13.3
4
4.2
0.6
1.1
1984
-
10
2
-
5
18.3
19
2.2
2.4
0.2
1.7
2.4
1985
107
7
-
1
5.2
16.2
1.7
1.7
0.6
2.8
3.8
0.3
1986
2
-
1
1.8
8.4
3.6
2.1
1.2
5.6
8.2
0.9
0.7
1987
-
3
37.9
1.3
8
4.1
2
10.6
9.6
1.4
2
1.3
1988
4
58.1
4.3
13.3
25.8
3.9
8.6
11.2
2.8
4.2
3
4.7
1989
8.7
9
17
23.4
4.6
5.4
4
6.6
6.6
4.1
7.7
5.3
1990
2.5
6.3
6.1
1
4.3
1.7
11.5
6.5
5.5
6.7
7.4
3.6
1991
0.3
1
0.5
1.5
1.2
11.3
3.9
3.3
4.6
5.8
2.7
1.9
1992
0.6
+
0.2
0.1
4.3
1.3
2
2.3
4.9
2.3
1
4.1
19931
-
+
1.5
1.8
1
1.2
3
4.2
2.6
2
3.2
2.1
1994
0.3
3.5
1.7
1.7
0.9
3.6
5.2
4.3
3.1
3.3
1.8
1.2
1995
2.8
1
1.1
0.4
2.2
2.6
3.5
3.4
2.9
1.2
1
8.5
19962
+
0.1
0.1
0.4
0.7
1.1
1
1.4
1
0.8
3.7
0.6
1997
-
-
+
0.4
0.5
0.3
0.9
0.6
1
1.1
0.5
0.4
1998
-
0.1
0.2
0.3
0.2
1.1
0.5
0.7
1
0.4
0.4
0.7
1999
0.1
-
0.1
+
0.1
0.3
0.5
0.8
0.5
0.2
0.4
0.6
2000
-
0.6
0.1
0.5
0.3
0.3
0.6
0.4
0.1
0.1
0.7
0.3
2001
-
0.1
0.4
-
0.1
0.2
0.2
0.3
0.2
0.8
0.1
1
20023
0.1
0.5
0.1
-
-
0.1
0.5
0.4
1.5
0.5
1
1.1
2003
-
-
0.1
-
0.3
1.0
0.5
4.8
2.1
3.7
1.3
1.9
2004
-
0.2
0.3
0.5
1.5
0.9
4.4
3.7
7.5
4.1
3.1
3.3
2005
-
-
1.4
1.9
1.4
2.3
3.9
7.2
6.1
6.8
3.1
20064
0.1
1.8
1.2
1.1
0.8
2.1
4.1
3.0
6.1
5.9
2007
2.5
0.4
0.1
1.2
1.7
2.4
3.6
4.3
7.4
2008
0.1
0.1
1.6
1.8
4.1
2.9
5.8
5.5
2009
1.6
1.9
1.1
4.4
4.8
2.9
4.8
2010
7.5
0.7
1.2
1.5
1.9
1.6
2011
0.1
0.3
0.6
1.6
1.6
2012
0.2
0.7
0.5
0.3
2013
0.1
0.1
0.4
2014
3.6
1.0
2015
6.6
Table 6. 15 . S. mentella. Average catch (numbers of specimens) per hour trawling of different ages of S. mentella in the Russian groundfish survey in the Barents Sea and Svalbard areas (1976–1983 published in Annales Biologiques). The survey was not conducted in 2016 took place in 2017 with insufficient coverage and was terminated after that year.
1 - Not complete area coverage of Division 2.b.
2 - Area surveyed restricted to Subarea 1 and Division 2.a only.
3 - Area surveyed restricted to Subarea 1 and Division 2.b only.
4 - Area surveyed restricted to divisions 2.a and 2.b onl
Year
Length group (cm)
5.0-9.9
10.0-14.9
15.0-19.9
20.0-24.9
25.0-29.9
30.0-34.9
35.0-39.9
40.0-44.5
>45
Tot
19862
6
101
192
17
10
5
2
4
0
337
19872
20
14
140
19
6
2
1
2
0
204
19882
33
23
82
77
7
3
2
2
0
229
1989
556
225
24
72
17
2
2
8
4
910
1990
184
820
59
65
111
23
15
7
3
1287
1991
1 533
1 426
563
55
138
38
30
7
1
3791
1992
149
446
268
43
22
15
4
7
4
958
1993
9
320
272
89
16
13
3
1
0
723
1994
4
284
613
242
10
9
2
2
1
1167
1995
33
33
417
349
77
18
5
1
0
933
1996
56
69
139
310
97
8
4
1
1
685
1997
3
44
13
65
57
9
5
0
0
195
1998
0
37
35
28
132
73
45
2
0
352
1999
3
3
124
62
260
169
42
1
0
664
2000
0
10
30
59
126
143
21
1
0
391
2001
1
5
3
32
57
227
50
3
0
378
2002
1
4
6
21
62
266
47
4
0
410
2003
1
5
7
10
49
243
45
1
361
2004
0
2
8
7
14
81
52
2
0
166
2005
22
1
4
4
10
68
46
1
0
156
2006
84
6
5
7
43
198
107
3
0
453
2007
73
39
1
4
9
91
102
3
0
322
2008
125
46
22
3
8
24
78
3
-
309
2009
9
122
88
14
3
27
219
5
-
487
2010
96
18
44
37
2
20
91
7
-
315
2011
126
91
81
48
10
7
67
5
1
436
2012
28
74
68
81
47
8
94
10
-
410
2013
33
43
127
106
67
19
85
13
-
493
20143
3
10
59
49
38
24
66
20
0
269
2015
89
8
29
159
116
66
69
25
-
561
2016
244
33
44
205
138
139
142
48
0
993
2017
41
38
8
20
59
76
57
17
0
316
2018
66
62
55
35
100
65
80
26
-
489
2019
3
27
89
32
59
83
74
26
1
394
2020
107
8
58
40
40
115
98
17
-
483
2021
498
136
15
39
16
58
88
18
-
868
2022
15
102
6
23
27
51
109
24
0
357
2023
5
65
90
20
68
42
87
23
0
400
2024
5
79
642
102
76
52
83
16
0
1055
Table 6.16a. S. mentella1 in Division 2.b. Abundance indices (on length) from the bottom-trawl survey in the Svalbard area (Division 2.b) in summer/fall 1986–2024 (numbers in millions).
1 Includes some unidentified Sebastes specimens mostly less than 15 cm.
2 Old trawl equipment (bobbins gear and 80 m sweep length).
3 Poor survey coverage in 2014.
Age
Year
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Total
1992
283
419
484
131
58
45
14
8
5
2
7
2
1
3
1 462
1993
2
527
117
202
142
8
23
6
13
1
7
1
1
0
1 050
1994
7
280
290
202
235
42
94
1
1
3
4
1
1
0
1 161
1995
4
50
365
237
132
61
19
17
11
0
1
3
0
0
900
1996
13
32
10
36
103
135
78
16
50
28
32
8
21
2
565
1997
8
43
6
7
38
18
29
19
6
2
0
2
1
1
181
1998
0
25
27
13
10
12
61
52
41
15
0
5
13
0
276
1999
3
16
108
25
28
39
106
59
54
26
35
14
18
12
543
2000
4
6
5
13
30
21
28
44
66
48
21
19
9
6
321
2001
1
4
2
0
12
15
18
36
28
46
45
80
53
14
354
2002
3
2
4
1
5
22
34
23
90
35
54
65
17
22
377
2003
0
3
4
3
5
4
27
26
26
28
13
132
50
21
342
2004
1
1
4
4
2
4
2
10
4
15
18
18
19
15
117
2005
18
1
1
3
1
3
3
8
5
5
14
8
29
21
120
2006
35
1
3
3
2
6
5
36
3
19
46
68
8
19
254
2007
23
24
1
0
2
1
4
4
5
3
3
8
28
17
123
2008
8
25
19
11
2
2
2
4
3
3
3
3
7
8
100
2009
11
74
54
30
25
30
8
1
1
1
4
19
10
8
276
2010
No age reading
2011
119
43
58
42
12
47
35
4
1
0
2
0
0
1
364
2012
27
52
31
23
32
50
27
33
17
9
0
1
0
-
302
2013
30
4
30
37
7
102
75
44
41
8
8
3
3
3
395
20142
0
3
2
6
23
41
12
23
5
30
13
11
3
1
173
2015
72
5
11
58
34
60
35
102
34
23
13
3
6
3
459
2016
102
13
11
88
34
102
66
31
13
80
37
2
12
30
621
2017
38
28
10
15
15
20
39
16
28
8
6
19
1
23
266
2018
44
52
14
23
88
14
4
20
27
18
16
9
14
1
344
2019
25
50
56
4
17
44
13
17
13
1
3
16
23
0
282
2020
43
9
23
27
30
13
17
20
39
7
13
17
11
8
277
2021
393
68
24
29
7
26
12
22
5
9
8
16
15
5
639
2022
12
55
35
5
6
10
7
19
12
6
5
16
5
16
209
2023
24
88
33
20
29
13
21
18
4
5
4
6
22
25
312
2024
64
15
324
263
143
2
24
54
25
10
3
31
16
3
977
Table 6.16b. S. mentella1 in Division 2.b. Norwegian bottom-trawl survey indices (on age) in the Svalbard area (Division 2.b) in summer/fall 1992–2024 (numbers in millions).
1 Includes some unidentified Sebastes specimens mostly less than 15 cm.
2 Poor survey coverage in 2014.
Age
year
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16+
Tot N
Tot B3
1996
146
113
22
54
166
182
109
43
65
41
38
20
29
11
17
1056
171
1997
63
131
12
23
74
56
77
83
18
14
1
2
2
1
9
565
73
1998
0
79
86
40
26
23
85
100
54
24
11
7
15
1
25
577
105
1999
5
23
117
48
42
77
129
73
58
65
50
14
18
12
25
756
155
2000
6
23
14
20
53
68
84
78
100
72
71
37
17
21
27
690
178
2001
5
7
11
1
20
26
37
52
44
62
50
86
54
16
32
501
162
2002
9
7
7
4
9
28
47
64
103
50
76
72
25
37
35
574
181
2003
3
7
8
3
8
8
42
62
55
38
61
137
98
37
28
595
257
2004
8
16
11
8
4
8
7
16
11
54
27
23
27
28
65
312
91
2005
32
5
5
5
4
6
7
13
6
6
17
29
34
31
49
250
101
2006
125
5
7
7
4
8
7
38
4
23
50
69
15
37
160
560
199
2007
264
147
13
4
10
3
7
9
12
5
4
9
56
19
221
783
199
2008
56
209
137
31
7
3
3
6
6
3
3
6
8
10
108
598
84
2009
116
186
237
82
105
48
17
3
6
3
5
22
11
9
324
1173
260
2010
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2011
387
320
206
61
57
75
51
13
3
2
3
1
0
3
100
1282
120
2012
335
239
365
169
127
78
60
41
20
12
4
1
2
3
145
1599
184
2013
286
173
174
181
149
178
115
95
88
15
12
9
3
3
137
1618
271
20142
2
21
35
81
55
96
99
62
36
55
42
18
19
3
166
790
239
2015
414
81
55
99
54
115
49
135
77
27
20
6
6
3
121
1262
207
2016
715
136
56
133
93
129
88
61
19
92
39
13
28
31
235
1866
not updated
2017
540
251
211
210
36
46
61
63
35
34
40
38
11
34
77
1687
213
2018
162
234
153
64
124
34
29
25
86
64
31
35
24
1
129
1197
not updated
2019
85
109
114
89
38
69
28
24
22
129
33
20
40
3
189
993
211
2020
157
42
46
70
51
33
49
44
62
15
30
37
29
22
231
920
not updated
2021
957
209
108
64
25
42
28
35
21
22
10
23
23
14
154
1734
not updated
2022
55
187
220
64
16
17
35
55
16
13
24
26
10
20
237
994
not updated
2023
197
333
152
44
44
39
37
23
11
20
10
22
42
35
161
1170
not updated
2024
132
88
492
347
162
27
55
79
36
47
11
57
21
22
84
1659
not updated
Table 6.17. S. mentella1 in subareas 1 and 2. Abundance indices (on age) from the Ecosystem survey in August-September 1996–2024 covering the Norwegian Economic Zone (NEZ) and Svalbard incl. the area north and east of Spitsbergen (numbers in millions and total biomass in thousand tonnes) and the continental slope down to 1000 m.
1 Includes some unidentified Sebastes specimens mostly less than 15 cm.
2 Poor survey coverage in 2014.
3 Calculated using modelled weight-at-age.
Year
Length group (cm)
5.0–9.9
10.0–14.9
15.0–19.9
20.0–24.9
25.0–29.9
30.0–34.9
35.0–39.9
40.0–44.9
>45
Total
1986
81
152
205
88
169
130
88
24
14
950
1987
72
25
227
56
35
11
5
1
0
433
1988
587
25
133
182
40
50
48
4
0
1068
1989
623
55
28
177
58
9
8
2
0
961
1990
324
305
36
56
80
13
13
2
0
828
1991
395
449
86
39
96
35
24
3
0
1127
1992
139
367
227
35
55
34
8
2
1
867
1993
31
593
320
116
24
25
6
1
0
1117
1994
5
191
345
366
55
69
23
3
0
1057
1995
301
83
516
345
75
50
22
2
0
1394
1996
211
103
197
342
136
42
18
0
0
1049
19972
59
130
27
273
254
63
37
4
0
847
19982
0
85
62
101
200
40
12
1
0
501
1999
0
6
68
36
172
73
21
3
0
379
2000
7
12
39
77
143
96
27
6
1
408
2001
9
21
7
55
79
75
9
0
0
255
2002
15
6
17
36
95
116
24
1
0
310
2003
4
4
10
12
76
221
51
6
0
384
2004
0
1
8
17
32
85
31
1
0
175
2005
0
5
8
10
27
153
86
2
0
291
20063
98
1
8
13
23
103
81
1
1
329
20072
372
121
1
5
12
132
139
6
0
788
2008
857
359
26
3
10
105
166
5
0
1531
2009
95
323
135
5
9
67
163
5
0
802
2010
652
276
217
64
7
72
190
6
0
1484
2011
501
237
219
152
13
44
156
6
0
1328
20122
127
279
86
124
47
13
154
17
0
847
2013
249
225
243
157
142
35
194
26
0
1271
2014
109
182
261
119
127
53
117
14
0
982
2015
185
114
222
312
303
220
172
19
0
1547
2016
670
108
150
336
215
167
125
13
0
1784
20172
646
197
70
212
294
319
236
11
0
1985
2018
239
328
85
110
195
277
223
23
1
1481
2019
52
304
276
92
157
256
213
18
0
1368
20202
206
122
207
93
120
236
213
24
0
1221
20212
995
129
143
130
84
201
182
22
0
1886
2022
637
1035
53
112
76
92
163
20
0
2188
2023
51
1104
369
105
152
132
196
31
1
2141
2024
34
199
689
69
205
134
156
27
0
1513
2025
47
76
554
331
122
139
198
27
0
1494
Table 6.18a. S. mentella1. Abundance indices (on length) from the bottom-trawl survey in the Barents Sea in winter 1986–2025 (numbers in millions). The area coverage was extended from 1993 onwards and from 2014 and onwards. Numbers from 1994 onwards were recalculated while numbers for 1986–1993 are as in previous reports.
1 Includes some unidentified Sebastes specimens mostly less than 15 cm.
2 Indices not raised to represent uncovered parts of the Russian EEZ
3 Not complete coverage in southeast due to restrictions, strata 7 area set to default and strata 13 as in 2005.
Year
Age
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Total
1992
351
252
132
56
14
11
3
9
18
16
12
11
2
5
892
1993
38
473
192
242
62
45
19
22
13
11
10
4
2
3
1 136
1994
5
96
315
160
342
269
97
55
4
28
13
14
26
5
1 430
1995
312
66
178
255
329
223
73
21
7
13
20
9
10
9
1 525
1996
205
124
136
236
199
189
144
71
24
27
13
6
10
4
1 388
19972
66
158
33
58
112
95
125
103
38
46
26
24
7
7
898
19982
0
74
48
26
10
53
109
110
37
18
6
6
3
3
503
1999
0
0
35
41
29
28
52
62
53
32
14
5
6
1
358
2000
19
0
5
31
36
22
29
72
77
50
24
14
10
3
392
2001
0
19
9
2
6
26
37
31
42
18
21
29
5
2
247
2002
18
4
11
6
1
10
45
60
28
17
37
20
40
14
311
2003
0
3
2
3
5
5
15
39
27
23
58
39
68
36
323
2004
0
0
5
2
5
11
11
13
15
13
14
23
24
14
150
2005
0
3
3
2
6
5
6
15
21
9
18
30
41
60
219
2006
77
25
5
3
6
6
11
12
6
15
15
10
43
29
263
2007
285
73
3
0
2
1
3
7
9
5
7
21
43
71
530
2008
746
190
103
13
0
1
4
7
2
5
3
24
23
33
1 154
2009
109
112
96
89
66
32
20
13
4
5
21
0
24
7
598
2010
162
265
179
172
92
71
26
21
2
9
4
7
11
17
1 038
2011
377
233
135
130
107
70
40
22
2
5
1
1
1
23
1 147
20122
No age reading
2013
0
178
252
144
143
122
117
13
31
12
4
24
38
12
1 090
2014-2017
No age reading
2018
195
270
126
39
25
38
44
53
48
56
61
62
87
50
1 154
2019
No age reading
20202
17
123
108
111
22
44
92
129
64
80
64
7
0
5
866
2021-2025
No age reading
Table 6.18b. S. mentella 1 in subareas 1 and 2. Norwegian bottom-trawl indices (on age) from the annual Barents Sea survey in February 1992–2024 (numbers in millions). The area coverage was extended from 1993 onwards and from 2014 and onwards. Numbers recalculated.
1 Includes some unidentified Sebastes specimens mostly less than 15 cm.
2 Indices not raised to represent uncovered parts of the Russian EEZ
2008
2009
2013
2016
2019
2022
mean length (cm) All/M/F1
37.0/36.4/37.5
36.6/36.0/37.1
37.5/37.0/38.1
37.7/37.0/38.3
37.6/37.2/38.0
37.4/37.2/38.5
mean length (cm) S/DSL/D2
37.2/36.8/39.1
37.2/36.5/38.3
37.1/37.4/38.9
38.1/37.6/38.4
37.4/37.6/37.7
-
mean weight (g) All/M/F
619/585/648
625/609/666
659/625/706
656/619/694
683/644/724
687/673/743
Mean age (y) All/M/F
25 / 25 / 25
25 / 25 / 24
28 / 29 / 28
27 / 27 / 26
- / - / -
30/31/31
Sex ratio (M/F)
45% / 55%
45% / 55%
59% / 41%
50% / 50%
51% / 49%
53%/47%
Occurrence
96%
100%
95%
80%
99%
89%
Catch rates
3.80 t/NM2
3.94 t/NM2
3.47 t/NM2
1.01 t/NM2
3.40 t/NM2
-
mean sA
33 m2/NM2
34 m2/NM2
19 m2/NM2
5.2 m2/NM2
-
-
Total Area
53 720 NM2
69 520 NM2
69 520 NM2
67 150 NM2
73 364 NM2
-
Abundance (Acoustics)3
395 000 t
532 000 t
297 000 t
136 000 t
-
-
Abundance (Trawl)4
406 000 t
548 000 t
482 000 t
116 000 t
499 000 t
-
Table 6.19. Comparison of results on S. mentella from the Norwegian Sea pelagic surveys in 2008, 2009, 2013, 2016, and 2019. Acoustic results for the 2019 and 2022 survey were not available at the time of JRN-AFWG 2025.
1 - M = males only, F = females only.
2 - S = shallower than DSL, DSL = deep scattering layer, D = deeper than DSL.
3 - The abundance derived from hydroacoustics is calculated assuming a Length-dependent target strength equation of TS=20log(L)-68.0. In 2016 the TS equation used was TS=20log(L)-69.6 following recommendation from ICES-WKTAR (2010).
4 - Trawls: Gloria 2048 in 2008 and 2009 Gloria 2560 HO helix in 2013 and Gloria 1024 in 2016. Trawl catchability for redfish set to 0.5 for all trawls based on results from Bethke et al. (2010).
sa (demersal)
Varies over time
sa (pelagic)
0.000
0.000
0.000
0.000
0.000
0.014
0.024
0.039
0.063
0.100
0.155
0.234
0.337
0.458
0.584
0.699
0.795
1.000
Table 6.20a. S. mentella in subareas 1 and 2. Population matrix with numbers-at-age (in thousands) for each year and separable fishing mortality coefficients for the demersal and pelagic fleet by year (Fy) and selectivity at age for the pelagic fleet (Sa). Numbers are estimated from the statistical catch-at-age model.
Fy (deereral)
Fy (pelagic)
Year/ Age
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19+
0.042
0
1992
429 977
415 175
375 788
242 932
149 082
102 443
97 930
107 160
130 282
91 119
102 382
75 533
77 953
65 441
46 307
30 041
19 657
207 239
0.031
0
1993
289 490
409 094
395 010
357 537
229 100
140 310
96 194
91 724
100 097
121 356
84 641
94 849
69 802
71 879
60 224
42 545
27 562
207 147
0.027
0
1994
209 655
275 430
389 225
375 825
340 094
217 847
133 302
91 205
86 611
93 909
113 067
78 467
87 700
64 464
66 350
55 581
39 262
216 588
0.020
0
1995
200 014
199 472
262 053
370 321
357 293
323 028
206 534
125 963
85 766
81 007
87 447
104 994
72 756
81 258
59 709
61 447
51 470
236 914
0.014
0
1996
159 840
190 300
189 784
249 325
352 084
339 424
306 393
195 374
118 715
80 518
75 820
81 695
97 990
67 870
75 784
55 681
57 298
268 907
0.013
0
1997
111 468
152 077
181 057
180 567
237 151
334 736
322 328
290 270
184 453
111 726
75 637
71 165
76 655
91 934
63 673
71 096
52 236
306 023
0.019
0
1998
57 486
106 055
144 691
172 264
171 764
225 507
317 976
305 482
274 120
173 637
104 993
71 029
66 814
71 962
86 303
59 772
66 741
336 313
0.014
0
1999
46 459
54 694
100 904
137 664
163 884
163 356
214 155
300 527
286 693
256 314
162 197
98 055
66 333
62 395
67 203
80 596
55 820
376 399
0.011
0
2000
36 893
44 203
52 037
96 003
130 976
155 913
155 358
203 324
283 878
269 463
240 519
152 154
91 978
62 221
58 528
63 037
75 600
405 428
0.020
0
2001
35 692
35 101
42 056
49 510
91 340
124 613
148 320
147 606
192 108
267 188
253 477
226 238
143 119
86 516
58 527
55 052
59 294
452 464
0.007
0
2002
42 423
33 958
33 397
40 014
47 087
86 817
118 273
140 366
139 075
180 187
249 838
236 648
211 076
133 491
80 688
54 582
51 341
477 252
0.003
0
2003
45 546
40 363
32 309
31 775
38 069
44 796
82 571
112 379
133 073
131 549
170 266
236 016
223 541
199 383
126 095
76 217
51 558
499 306
0.006
0
2004
61 313
43 334
38 402
30 740
30 228
36 213
42 602
78 502
106 794
126 400
124 904
161 623
224 002
212 145
189 211
119 660
72 327
522 741
0.008
0
2005
117 600
58 335
41 229
36 537
29 244
28 753
34 436
40 491
74 546
101 302
119 777
118 275
152 984
211 986
200 748
179 037
113 224
563 055
0.005
0.037
2006
228 265
111 888
55 502
39 227
34 760
27 819
27 345
32 730
38 440
70 642
95 818
113 149
111 658
144 385
200 048
189 434
168 944
638 148
0.004
0.020
2007
341 155
217 179
106 454
52 806
37 321
33 071
26 451
25 987
31 075
36 434
66 788
90 308
106 262
104 428
134 410
185 341
174 743
737 346
0.005
0.013
2008
379 932
324 586
206 631
101 284
50 241
35 508
31 454
25 151
24 698
29 505
34 537
63 174
85 222
100 031
98 049
125 870
173 152
847 570
0.003
0.009
2009
381 522
361 480
308 821
196 595
96 365
47 801
33 776
29 915
23 910
23 452
27 954
32 655
59 643
80 340
94 145
92 123
118 077
954 101
0.004
0.010
2010
484 675
362 993
343 923
293 822
187 046
91 683
45 471
32 123
28 436
22 703
22 238
26 479
30 904
56 389
75 871
88 806
86 806
1 007 725
0.005
0.010
2011
585 041
461 135
345 363
327 220
279 549
177 957
87 211
43 244
30 535
27 005
21 532
21 063
25 050
29 202
53 217
71 514
83 612
1 027 695
0.005
0.008
2012
514 156
556 626
438 739
328 589
311 326
265 970
169 284
82 947
41 112
29 000
25 602
20 376
19 904
23 642
27 526
50 100
67 248
1 042 065
0.004
0.007
2013
277 390
489 184
529 592
417 430
312 628
296 200
253 008
161 008
78 865
39 063
27 523
24 261
19 278
18 805
22 309
25 944
47 172
1 041 939
0.015
0.008
2014
301 447
263 918
465 425
503 871
397 155
297 441
281 777
240 664
153 125
74 979
37 115
26 125
22 997
18 245
17 771
21 056
24 461
1 024 513
0.025
0.008
2015
287 730
286 806
251 100
442 821
479 386
377 845
282 934
267 988
228 814
145 502
71 175
35 174
24 697
21 669
17 132
16 636
19 665
975 718
0.035
0.009
2016
261 768
273 756
272 876
238 905
421 301
456 067
359 382
269 005
254 567
216 926
137 410
66 825
32 823
22 941
20 072
15 841
15 363
916 904
0.033
0.010
2017
267 611
249 055
260 460
259 623
227 286
400 768
433 666
341 476
255 168
240 609
203 731
127 978
61 766
30 181
21 027
18 359
14 468
848 894
0.044
0.010
2018
273 985
254 614
236 958
247 810
246 992
216 208
381 114
412 212
324 304
241 952
227 513
191 794
119 756
57 411
27 883
19 337
16 829
787 387
0.058
0.008
2019
277 225
260 678
242 247
225 450
235 726
234 909
205 540
362 080
391 193
307 191
228 487
213 861
179 152
111 032
52 830
25 493
17 593
725 368
0.078
0.007
2020
271 416
263 761
248 017
230 482
214 406
224 115
223 212
195 148
343 330
370 190
289 814
214 617
199 691
166 063
102 091
48 193
23 095
662 166
0.091
0.006
2021
265 735
258 234
250 951
235 971
219 279
203 975
213 173
212 261
185 485
326 027
350 907
273 802
201 556
185 740
152 417
92 321
43 018
599 005
Year/ Age
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
1992
0.000
0.000
0.000
0.212
0.261
0.316
0.377
0.442
0.509
0.576
0.640
0.699
0.753
0.799
0.839
0.872
0.899
1.000
1993
0.000
0.000
0.000
0.007
0.019
0.047
0.114
0.248
0.459
0.686
0.849
0.935
0.974
0.990
0.996
0.998
0.999
1.000
1994
0.000
0.000
0.000
0.029
0.063
0.131
0.252
0.432
0.631
0.793
0.896
0.951
0.978
0.990
0.995
0.998
0.999
1.000
1995
0.000
0.000
0.000
0.035
0.075
0.153
0.286
0.470
0.663
0.814
0.906
0.955
0.979
0.991
0.996
0.998
0.999
1.000
1996
0.000
0.000
0.000
0.019
0.053
0.135
0.303
0.549
0.773
0.905
0.964
0.987
0.995
0.998
0.999
1.000
1.000
1.000
1997
0.000
0.000
0.000
0.014
0.042
0.118
0.290
0.555
0.793
0.921
0.973
0.991
0.997
0.999
1.000
1.000
1.000
1.000
1998
0.000
0.000
0.000
0.004
0.022
0.100
0.357
0.735
0.933
0.986
0.997
0.999
1.000
1.000
1.000
1.000
1.000
1.000
1999
0.000
0.000
0.000
0.001
0.005
0.029
0.149
0.507
0.859
0.973
0.995
0.999
1.000
1.000
1.000
1.000
1.000
1.000
2000
0.000
0.000
0.000
0.000
0.001
0.012
0.123
0.609
0.945
0.995
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
2001
0.000
0.000
0.000
0.020
0.050
0.122
0.266
0.487
0.713
0.867
0.945
0.978
0.992
0.997
0.999
1.000
1.000
1.000
2002
0.000
0.000
0.000
0.003
0.012
0.049
0.184
0.495
0.810
0.949
0.988
0.997
0.999
1.000
1.000
1.000
1.000
1.000
2003
0.000
0.000
0.000
0.042
0.084
0.161
0.286
0.455
0.635
0.784
0.883
0.940
0.970
0.986
0.993
0.997
0.998
1.000
2004
0.000
0.000
0.000
0.020
0.044
0.094
0.190
0.348
0.547
0.732
0.861
0.934
0.970
0.986
0.994
0.997
0.999
1.000
2005
0.000
0.000
0.000
0.008
0.020
0.051
0.123
0.267
0.486
0.711
0.865
0.943
0.977
0.991
0.997
0.999
0.999
1.000
2006
0.000
0.000
0.000
0.003
0.008
0.022
0.057
0.140
0.306
0.543
0.763
0.897
0.959
0.985
0.994
0.998
0.999
1.000
2007
0.000
0.000
0.000
0.001
0.003
0.010
0.027
0.076
0.194
0.414
0.674
0.858
0.946
0.981
0.993
0.998
0.999
1.000
2008
0.000
0.000
0.000
0.000
0.001
0.003
0.013
0.060
0.241
0.613
0.887
0.975
0.995
0.999
1.000
1.000
1.000
1.000
2009
0.000
0.000
0.000
0.001
0.004
0.015
0.055
0.180
0.452
0.756
0.921
0.978
0.994
0.998
1.000
1.000
1.000
1.000
2010
0.000
0.000
0.000
0.003
0.007
0.020
0.056
0.146
0.328
0.582
0.800
0.919
0.970
0.989
0.996
0.999
1.000
1.000
2011
0.000
0.000
0.000
0.001
0.002
0.007
0.024
0.082
0.242
0.535
0.805
0.937
0.982
0.995
0.999
1.000
1.000
1.000
2012
0.000
0.000
0.000
0.002
0.005
0.012
0.031
0.076
0.178
0.363
0.599
0.797
0.911
0.964
0.986
0.995
0.998
1.000
2013
0.000
0.000
0.000
0.001
0.003
0.006
0.014
0.032
0.071
0.151
0.294
0.493
0.694
0.841
0.925
0.967
0.985
1.000
2014
0.000
0.000
0.000
0.002
0.004
0.007
0.014
0.027
0.053
0.101
0.183
0.308
0.471
0.639
0.780
0.876
0.934
1.000
2015
0.000
0.000
0.000
0.001
0.003
0.008
0.021
0.052
0.125
0.270
0.489
0.712
0.865
0.943
0.977
0.991
0.997
1.000
2016
0.000
0.000
0.000
0.002
0.005
0.013
0.032
0.077
0.174
0.348
0.575
0.774
0.897
0.956
0.982
0.993
0.997
1.000
2017
0.000
0.000
0.000
0.003
0.005
0.011
0.022
0.044
0.085
0.159
0.278
0.439
0.614
0.764
0.868
0.930
0.964
1.000
2018
0.000
0.000
0.000
0.005
0.008
0.015
0.028
0.050
0.087
0.149
0.242
0.368
0.516
0.661
0.781
0.867
0.922
1.000
2019
0.000
0.000
0.000
0.008
0.012
0.020
0.033
0.053
0.085
0.132
0.201
0.293
0.405
0.529
0.649
0.753
0.834
1.000
2020
0.000
0.000
0.000
0.001
0.001
0.002
0.005
0.009
0.019
0.039
0.077
0.146
0.260
0.419
0.598
0.754
0.863
1.000
2021
0.000
0.000
0.000
0.007
0.010
0.016
0.025
0.040
0.062
0.094
0.141
0.207
0.293
0.396
0.509
0.622
0.723
1.000
Table 6.20b. S. mentella in subareas 1 and 2. Fisheries selectivity at age for the demersal fleet by age (Sa). Numbers are estimated from the statistical catch-at-age model.
Year
Rec (age 2) in millions
Rec (age 6) in millions
Stock Biomass (tonnes)
SSB (tonnes)
F (12–18)
F(19+)
1992
430
149
578 519
272 832
0.033
0.042
1993
289
229
625 410
323 633
0.029
0.031
1994
210
340
683 984
408 052
0.026
0.027
1995
200
357
749 346
469 927
0.020
0.020
1996
160
352
815 427
388 973
0.014
0.014
1997
111
237
879 903
478 373
0.013
0.013
1998
57
172
939 166
540 768
0.019
0.019
1999
46
164
987 329
608 797
0.014
0.014
2000
37
131
1 028 157
705 479
0.011
0.011
2001
36
91
1 061 896
655 042
0.020
0.020
2002
42
47
1 076 158
738 944
0.007
0.007
2003
46
38
1 092 380
815 196
0.003
0.003
2004
61
30
1 105 589
821 177
0.005
0.006
2005
118
29
1 111 783
876 777
0.008
0.008
2006
228
35
1 114 129
863 053
0.022
0.042
2007
341
37
1 093 928
1 006 505
0.013
0.024
2008
380
50
1 087 883
943 961
0.011
0.018
2009
382
96
1 091 599
981 572
0.007
0.012
2010
485
187
1 104 151
934 873
0.008
0.013
2011
585
280
1 123 427
924 087
0.009
0.015
2012
514
311
1 151 950
918 287
0.008
0.013
2013
277
313
1 194 986
870 554
0.006
0.011
2014
301
397
1 253 060
818 776
0.013
0.023
2015
288
479
1 307 703
839 740
0.025
0.032
2016
262
421
1 350 509
896 320
0.035
0.044
2017
268
227
1 386 933
872 141
0.027
0.042
2018
274
247
1 427 869
892 107
0.032
0.054
2019
277
236
1 459 921
919 610
0.034
0.066
2020
271
214
1 483 445
950 770
0.038
0.085
2021
266
219
1 498 423
976 956
0.041
0.097
Table 6.21. Stock summary for S. mentella in subareas 1 and 2 as estimated by the statistical catch-at-age model. Stock biomass is for age 2 y+.
Figure 6. 1. S. mentella in subareas 1 and 2. Total international landings 1952–2024 (thousand tonnes).Figure 6.2. S. mentella in subareas 1 and 2. Left panel: Catch in tonnes reported by national fleets for the subareas 27.1 and 27.2 and in the NEAFC regulatory area. Right panel: Geographical location of the directed Norwegian fishery in 2021 within Norwegian Exclusive Economic Zone and bycatches by Norwegian vessels in all areas. Directed fishing with bottom trawl is not permitted to the east of the red line. Directed fishing with pelagic trawl is not permitted to the east of the blue line. Directed fishing is not permitted in the Fishery Protection Zone around Svalbard.Figure 6.3. Delineation of the geographical limits for directed fishing in the Norwegian Economic Zone in 2014–2024. Directed pelagic trawling is only allowed west of the blue line. Directed demersal trawling is only allowed between the blue and the red line. The area east of the stippled line inside NEZ south of Bear Island is only open for directed demersal trawling after 10 May. The other areas for directed fishing are also open during 1 January to last February. Due to high bycatch ratios of golden redfish 72°N was suggested as southern limit for directed demersal fishing marked by the red line along that latitude to the Norwegian directorate of fisheries in November 2018.Figure 6.4. S. mentella in subareas 1 and 2. Length-distributions of the commercial demersal catches by Norway
and Russia in 2019–2024. Norwegian data not available for 2024.Figure 6.5. S. mentella in subareas 1 and 2. Upper panels: Catch numbers-at-age for the demersal and pelagic fleets 1992–2021. Lower panel: Age composition of the commercial demersal catches by Norway and Russia in 2021 (calculated using ALK).Figure 6.6. Weight-at-age of S. mentella per year class in subareas 1 and 2 derived from Norwegian commercial and survey data (Table 6.7). The weights were derived from samples with at least five individuals and are expressed in grammes. The blue and purple lines show the fitted mixed-effect models.Figure 6.7. S. mentella in subareas 1 and 2. The upper panel shows weight-at-age 19+ as reported from catches (blue) or modelled from catches and survey observations (red) using a mixed effect model (Figure 6.5). AFWG 2017 was the last working group using the annual mixed effect model. The weights-at-age used in the assessment were based on the fixed effects model and are therefore the same for every year. These weights were updated in 2022 and differ only slightly from those estimated in the assessments since 2018. The bottom panel shows comparison of the observed Norwegian and Russian weight by age with the modelled one up to 2020.Figure 6.8. Proportion maturity-at-age of S. mentella in subareas 1 and 2 derived from Norwegian commercial and survey data (Table D7). The proportions were derived from samples with at least five individuals. The blue and purple lines show the fitted mixed-effect models. For 2008, 2011 and 2016–2019 the common model (fixed effects blue) was used for other years the annual models (random effects purple) were used. Available data for 2019 was insufficient at the time of the meeting and the fixed effect model was used and there was no age data available for 2020 or 2021.
Figure 6.10. Abundance of S. mentella (5–14 cm) during the winter survey (February) in the Barents Sea compared with the consumption of redfish (mainly S. mentella) by cod (See Section 1 Table 1.1).
Figure 6.9. Density distribution of natural mortality rates calculated with 30 of the 39 compared methods at the 2018 benchmark. The excluded methods are those based on certain taxa or areas. The broken red line indicates the currently used value; the broken red line indicates the currently used value; the broken green line the most frequent one and the black dotted lines indicate the beginning and end of the distribution’s peak.Figure 6.11. S. mentella in subareas 1 and 2. Age disaggregated abundance indices for bottom-trawl surveys 1992–2024 in the Barents Sea in winter (winter survey top) in summer (Ecosystem survey middle) and in autumn (Russian groundfish survey bottom).Figure 6.12. S. mentella in subareas 1 and 2. Abundance indices for individual trawl stations during the ecosystem survey in autumn 2024 (top) and winter survey 2024 bottom).
Figure 6.13. S. mentella in subareas 1 and 2. Left panel: Survey track of the Deep Pelagic Ecosystem Survey in 2022 and categorized trawls. Potential failures need further examination to determine their usability, whilst successful trawls can be used for the survey index without further consideration. Right panel: Catch rates in tonnes per square nautical mile for the surveyed depth layers (< = 300 m, 301–600 m and > 600 m) from the 2019 survey. The corresponding results for the 2022 survey are not available.
Figure 6.14. S. mentella in subareas 1 and 2. Proportions at age during the International Deep Pelagic Ecosystem Survey (WGIDEEPS) in the Norwegian Sea. Bars show proportions at age and dots shows the coefficient of variation for each age. Estimated with StoX
Figure 6.16. S. mentella in subareas 1 and 2. Abundance indices (in billions) of 0-group redfish (believed to be mostly S. mentella) in the international 0-group survey in the Barents Sea and Svalbard areas in August-September 1980–2023. Data not available from 2024-survey.
Figure 6.15. Map showing the specific pelagic 0-group trawl stations and the abundance of 0-group S. mentella during the joint Norwegian- Russian Ecosystem survey in the Barents Sea and Svalbard in 2023. Not updated in 2024.
Figure 6.17. S. mentella in subareas 1 and 2. Horizontal distribution of S. mentella hydroacoustic backscattering (sA) during the Norwegian slope survey in spring 2024. The circles are proportional to the sA assigned to redfish along the vessel track.
Figure 6.18. S. mentella in subareas 1 and 2. Results from the statistical catch-at-age assessment run showing the estimated recruitment-at-age 2 spawning-stock biomass from 1992 to 2023 and annual fishing mortality coefficients by year (Fy) from the demersal (blue) and pelagic (red) fleets. Error bars (top) and the coloured envelope (bottom) indicate 95% confidence limits.Figure 6.19. S. mentella in subareas 1 and 2. Results from the statistical catch-at-age assessment run showing the estimated annual fleet selectivity by age (Fa) from the pelagic (top panel) and demersal (lower panels) fleets. Colored envelopes indicate 95% confidence limits.
Figure 6.20. S. mentella in subareas 1 and 2. Results from the statistical catch-at-age assessment run showing the selectivity-at-age for winter (blue) ecosystem (grey) and Russian groundfish (red) surveys.
Figure 6.21. S. mentella in subareas 1 and 2. Results from the statistical catch-at-age model showing the evolution of total biomass (in tonnes light blue left axis) spawning-stock-biomass (in tonnes dark blue, left axis) and recruitment-at-age 2 (in numbers yellow, right axis) for the period 1992–2023 for S. mentella in subareas 1 and 2.
Figure 6.22. S. mentella in subareas 1 and 2. Modelled distribution of numbers (yellow bars right y-axis) biomass (light blue left y-axis) and spawning-stock-biomass (dark blue left y-axis) at age 2–45+ in 2023.
Figure 6.23a. Diagnostic plots for the demersal fleet catch-at-age data. Top-left: scatterplot of observed vs. fitted indices the dotted red line indicates 1:1 relationship. Top right: boxplot of residuals (observed-fitted) for each age. Bottom left: boxplot of residuals for each year. Bottom right: bubble plot of residuals for each age/year combination bubble size is proportional to mean residuals blue are positive and red are negative residuals.
Figure 6.23b. Diagnostic plots for the pelagic fleet catch-at-age data. See legend from Figure 6.23a.
Figure 6.23c. Diagnostic plots for winter survey data. See legend from Figure 6.23a.
Figure 6.23d. Diagnostic plots for Ecosystem survey data. See legend from Figure 6.23a.
Figure 6.23e. Diagnostic plots for the Russian groundfish survey data. See legend from Figure 6.23a.
Figure 6.24. The upper panel shows the retrospective patterns of the spawning-stock biomass of S. mentella estimated by the SCAA model for runs up to years 2007–2017 and the baseline model of the 2018 benchmark. The lower panel presents the analytical retrospectives for the current assessment and back to 2018. Confidence Intervals are shown for the latest assessment.
Figure 6.25. The upper panel shows the retrospective patterns of the fishing mortality for the age classes 12-18, estimated by the SCAA model for runs up to years 2018-2022. The lower panel presents fishing mortality for the age-19+ group for the same time period. Broken lines indicate the confidence intervals for the 2022 assessments.
Chapter 8. Greenland halibut in subareas 1 and 2 (Northeast Arctic)
Status of the fisheries
Landings prior to 2025 (Tables 8.1–8.8, Figures 8.1–8.3)
Nominal landings by country for subareas 1 and 2 combined are presented in Table 8.1. Tables 8.2 to 8.4 give the landings for subarea 1 and divisions 2.a and 2.b separately. Landings by gear type are presented in Table 8.5. Catch per unit effort is presented in Table 8.6 and total catch from 1935 to 2024 is presented in Table 8.7 and Figure 8.1.
The preliminary estimate of the total landings for 2024 is 22422 tonnes. This is 4814 tonnes less than the landings in 2023 and 6862 tonnes more than the JRN-AFWG advised maximum catch for 2024 (15560 tonnes). Compared to 2023, the catches from 3rd part countries remained stable, while catches from Norway and Russia were lower due to reduced quota. Commercial landings exceeded the quotas set by the Joint Norwegian-Russian Fisheries Commission for 2024 by 1172 tonnes (total TAC 21250 tonnes). Catches in the report include all landings in ICES 1 and 2 and thus include catches in UK waters in the southern part of ICES area 2.
Some fishing for Greenland halibut has taken place in the northern part of Division 4.a during the past 20–30 years, varying between a few tonnes and up to 2577 in 1999. Since 2000, total catch has ranged from 64 to 1330 tonnes, primarily taken by Norway, France, and the UK. Preliminary numbers show 966 tonnes in 2024 (Table 8.8, Figures 8.2 and 8.3). Although there is a continuous distribution of this species from the southern part of Division 2a along the continental slope towards the Shetland area, the stock structure is unclear in this area and these landings have therefore not been added to the total from subareas 1 and 2. Recent mark-recapture and genetic investigations indicate that the stock might have a more south and westward distribution than the current ICES definition of the stock boundaries (Albert and Vollen, 2015; Vihtakari et al. 2022; Lindegren et al. 2025; Westgaard et al., 2016).
JRN-AFWG advice applicable to 2025-2026
JRN-AFWG advised that when the precautionary approach is applied, catches in 2025 should be no more than 12431 tonnes. Catches in 2026 should be no more than 14891 tonnes. This corresponds to a harvest rate of 0.117 and 0.123, respectively. All catches are assumed to be landed.
Additional considerations
An ICES benchmark and data workshop process led to an agreed analytic assessment in 2023. The JRN-AFWG approved the use of this assessment method to generate advice in June the same year. The Greenland halibut is a long-lived species, and it is sufficient to give advice every other year. The next advice will be given in 2026, for catches in 2027 and 2028. The assessment is described in the benchmark report (ICES 2023).
Management
During the 38 th session of the Joint Norwegian-Russian Fisheries Commission (JNRFC) in 2009, the ban on targeted Greenland halibut fishery was lifted, and a Total Allowable Catch (TAC) of 15,000 tonnes was established for the years 2010 and 2011. From then on, the TAC gradually increased, reaching 27,000 tonnes in 2021. After that, there has been a slight reduction in the TAC, driven by a reduction in the advice given.
The TAC for NEA Greenland halibut set by JNRFC applies to catches in ICES areas 1, 2a and 2b, except the Jan Mayen EEZ and the part of the UK EEZ which is north of 62°N.
In 2024, 90 tonnes were reported in the Jan Mayen area (within ICES Subarea 2), where Greenland halibut fisheries are not regulated by TAC.
Previously, Norway had a quota for Greenland halibut in the EU EEZ, which could be fished in ICES areas 2a and 6. This TAC was partially within and partially outside the stock boundary. This area is now within the UK EEZ, and there was no agreement for a quota to Norway in this area for 2021. However, Norway and the UK agreed on a 600-tonne quota for Norway in areas 2a, 4, 5b, and 6 in 2022, with only longline fisheries permitted in area 6. The TAC allocated to Norway in the UK part of area 2a was 700 tonnes in 2023 and 600 tonnes in 2024. There is no separate ICES advice for the fishery in this area.
EU has sat a TAC of 2571 t for 2024 in area 6; United Kingdom and Union waters of 4; United Kingdom waters of 2a and United Kingdom and international waters of 5b.
For the Greenland halibut stock in area 1 and 2, the EU/UK TAC in the part of area 2a that is within UK EEZ is of most interest. Further investigations need to be conducted to reveal historical catches in this area.
Expected landings in 2025
Catches in 2024 were 22422 tonnes, which exceeded the TAC set by JRNFC and the official advice. The total Greenland halibut landings in the Barents Sea and adjacent waters (ICES Subarea 1 and divisions 2a and 2b) in 2025 may thus be higher than the JRNFC TAC of 19000 tonnes. Discards are not regarded as a problem.
The assessment uses data from the following surveys:
The Russian bottom-trawl surveys in October-December (ICES acronym: G5348) covered large parts of the total known distribution area of the Greenland halibut within 100–900 m depth. A working document with a revision of the Russian index was provided to the 2021 meeting (Russkikh et al. 2021, WD12). Revised and recalculated length distributions were implemented in the 2023 assessment. Survey biomass indices increased steeply from 2005 to 2011, decreased until 2015 after which the biomass level flattened out (Figures 8.4 and 8.5). Abundance indices by length are shown in Table 8.9.
The Norwegian autumn slope survey (G1165) covers the northern part of the continental slope off Norway and thereby the main spawning area. Biomass and abundance indices show a downward trend since 2010 and are now at their lowest in the time-series (Figures 8.4–8.6). The length distributions from this survey (Figure 8.7, and Tables 8.10 and 8.11) show modes that can be followed through the years and indicate new recruitment to the adult stock in 2007. Since then, no such large recruit events are apparent in the length distributions, and since 2009 abundance of fish in adult lengths has been declining as well. This survey was conducted every year during 1994–2009 and biennially since then.
The Joint Ecosystem Survey in autumn (A5216) covers a large part of the Barents Sea down to 500 m and covers areas with mainly juvenile and immature fish. Three indices for Greenland halibut are based on the Joint Ecosystem Survey in the Barents Sea, one for fish between 10-17 cm, denoted Eco_SI_1, (Figure 8.8), one for fish between 17-27 cm, denoted Eco_SI_2 (Figure 8.8) and on for fish between 28 and 65 cm, denoted EcoS (Figure 8.9). The juvenile indices (Eco_SI_1 and Eco_Si_2), indicate a highly variable recruitment success, with good year classes occurring sporadically. The EcoS index for both females and males shows large fluctuations, with a slightly positive trend the last four years.
The joint winter survey in the Barents Sea (A6996) has been run from 1986 to the present (jointly with Russia since 2000, except 2006 and 2007). The survey mainly covers depths of 100–500 m and does not cover the deeper slope areas. Spatially, the survey focuses on the central Barents Sea, and west of Svalbard for some years. The northward coverage is limited by sea ice in some years. It is conducted in February and can thus give information on the stock at a different time of the year, as the other surveys are run in autumn. The biomass index has shown an increasing trend since 2004 with large variations in recent years. From the winter survey, only catch distributions are used in the assessment model (Figure 8.10).
Norwegian Southern Deepwater slope survey (G6149) is a trawl acoustic survey conducted in 2009, 2012 and biennially since then, along the continental slope in Norwegian EEZ from 62–74°N (subareas 1 and 2). Only catch distributions are used in the assessment (Figure 8.10).
Commercial catch-per-unit-effort (Table 8.6)
The CPUE series (Table 8.6) for the stock was subject to the 2015 benchmark and associated data workshops (see reports from WKBUT 2013, DCWKNGHD 2014 and IBPHALI 2015, and working documents by Bakanev (WD14 WKBUT 2013) and Nedreaas (WD 2 DCWKNGHD 2014). An alternative CPUE series for the Russian fisheries for the years 2004–2015 was presented at the 2016 meeting (Mikhaylov, WD14 AFWG 2016). It shows some discrepancies compared to the previous CPUE series used for the Russian fisheries for the same years. In the CPUE series values before 1992, when the partial moratorium was implemented, are not comparable with values after 1992 due to reduced effort leading to increased catchability. See the Stock Annex for further comments. The CPUE series are not currently used in the assessment.
Age readings
Based on the scientific understanding that the species is slow growing and more vulnerable than the previous age readings suggest, the Norwegian age reading methods were changed in 2006. The new Norwegian age readings are not comparable with older data or the Russian age readings.
The report from Workshop on Age Reading of Greenland Halibut (WKARGH) 14–17 February 2011 (ICES CM 2011/ACOM:41) described and evaluated several age reading methods for Greenland halibut.
The different methods can be classified into two groups: A) Those that produce age–length relationships that broadly compare with the traditional methods described by the joint NAFO-ICES workshop in 1996 (ICES 1997/G:1); and B) Several recently developed techniques that show much higher longevity and approximately half the growth rate from 40–50 cm onwards compared to the traditional method.
A second workshop on age reading of Greenland halibut (WKARGH2) was conducted in August 2016 and worked on further validation on new age reading methods. The workshop recommended that two of the new methods can be used to provide age estimations for stock assessments. Further, recognizing some bias and low precision in methods, the WKARGH2 suggested that an aging error matrix or growth curve with error be provided for use in future stock assessments (WKARGH2 report, ICES 2017).
WKARGH2 recommends regular inter-lab calibration exercises to improve precision (i.e. exchange of digital images between readers for each method and between methods).
Russian and Norwegian scientists and age readers should meet to work out issues of disagreements on Greenland halibut aging.
Data used in the assessment
At the 2023 benchmark, all Norwegian input data were scrutinized and revised (Windsland et al. 2023, WD 2 ICES WKBNORTH). The Russian slope survey was revised by Russkikh et al. (WD 12 AFWG 2021), and implemented for the 2023 JRN-AFWG.
In the assessment, the catch data are split into five aggregated fleets by gear and countries. Longline/gillnet fleets include landings from gillnet, longline, and handline. Trawl fleets include landings from bottom trawl, purse-seine (very minor catches, can be bycatch or misreporting) and Danish seine. Catch in tonnes and length distributions per quarter per fleet and sex from 1992–2020 are used in the assessment. Fleets are split between Norwegian catches, Russian catches, and catches from 3rd countries. Selectivities are allowed to vary by sex to account for sexual dimorphism influencing vulnerability to fishing. Catches are aggregated into following fleets:
Russian trawl and minor gears
Russian gillnet and longline
Norwegian trawl and minor gears
Norwegian gillnet and longline
3rd countries
No survey covers the whole stock distribution area. The model uses length distributions and biomass indices from three surveys. From these surveys the following indices go into the current assessment:
EggaN_S - based on the Norwegian slope survey.
Eco_SI_1 and Eco_SI_2 - juvenile indices based on 10-17 cm and 18-27 cm fish in the Joint Ecosystem survey.
EcoS_SI - an index for fish 28-65 cm, based on data from the Joint Ecosystem survey.
RussianS_SI - Russian bottom-trawl survey in the Barents Sea in autumn.
In addition, catch length distributions from the Norwegian Southern Deepwater slope survey and the Joint Winter Survey are used in the assessment.
Age data from the Norwegian autumn slope survey were used in the tuning. The age data were provided using the frozen whole right otolith method recommended by WKARGH2 (ICES 2017).
No CPUE indices are used in the tuning.
Methods used in the assessment (Table 8.13)
A new assessment method with a revised length and age-based GADGET model was benchmarked in 2023 (ICES 2023).
At the JRN_AFWG meeting in 2023, the revision of the Russian Slope Survey was implemented in the assessment. This required recalculation of reference points that are given in table 8.13.
Advice for the stock is given biennially. Next advice will be given in 2026.
Model settings
Model used: Gadget3 (Lentin et al. 2022)
Start year 1980.
One year time-step.
Single area model, with variable distributions handled through fleet selectivity (“fleets as areas” approach)
Two sexes, split into mature and immature stock components
Logistic maturity estimated for each sex
1 cm length classes and 1-year age classes
Lengths: females; immature 1-100 cm, mature 1-120 cm - males; immature 1-65 cm, mature 1-90 cm
Age: immature 1-25+, mature 3-25+
Von Bertanlanffy growth estimated separately for males and females, with Linf for males fixed to 68 cm. Length at age one fixed.
Natural mortality set to 0.12 for females and 0.16 for males
Initial size of recruits fixed at 14 cm (model has proved unable to estimate this)
Recruitment modeled as annual numbers, no relationship with SSB (estimated directly), assumed equal recruitment of male and female
Initial population follows a simplifying assumption of constant recruitment, M and F, giving an exponential decay by age. A fixed maturity ogive is used to split immature and mature proportions. Standard deviations of lengths at age is externally fixed.
Fisheries and surveys are modeled with fixed catch in tonnes per fleet, and sex-specific selectivity estimated using length distribution data and sex-at-length data.
Five aggregated commercial fleets (as described above), each with sex-specific logistic selectivity
Three surveys used for indices (EcoS, EggaN and RussianS), with logistic selectivity (but with a min:max length range to avoid bias in indices on fish suspected to be poorly selected)
Only length distributions used from Winter and EggaS surveys
More detailed model description, as well as outputs and diagnostics are shown in Vihtakari et al. 2023 (WD 17, WKBNORTH).
Results of the last assessment (Figure 8.11-8.14)
As this is not an advice year, the following results are from last year’s assessment. Model results, retrospective pattern, jitter, and short-term projections from the 2024 assessment are shown in Figures 8.11-8.15. Reference points and catch scenarios are shown in Table 8.12-8.14. The stock biomass is presented for the total 45+ cm (minimum legal landing size) population and the female spawning stock (Figure 8.11).
The biomass peaked around 2013–2014 and shows a clear downward trend since then. This trend is broadly in line with all three tuning series (Figures 8.4, 8.7 and 8.9). SSB went below B PA in 2024. The harvest rate has been steadily increasing since 2009 and is now above HR PA and HR MSY . The retrospective analysis for model biomass has negative Mohn’s rho values (Figure 8.12).
The retrospective patterns by year show a clear structure with pairs of lines being similar and then a jump to the next pair. This is caused by the availability of survey data, with the Norwegian autumn slope survey run every other year and missing years in the Russian autumn survey. As a result of this pattern, it is recommended that the assessment be run every other year rather than annually. There is a retrospective trend to increase the stock estimate over time. Peaks in recruitment were most likely exaggerated in the assessment model used before the benchmark, while in the present model they are probably underestimated. Large uncertainties in the age reading probably smooth out the peaks, distributing the recruitment over multiple years. Even though the assessment most likely smooths out the recruitment, the modelled peaks show reasonably good agreement to the data from the juvenile survey indices. This stock is dominated by sporadic recruitment events, and the model does a reasonable job of capturing this.
Biological reference points
Estimates of trends and biomass levels in stock dynamics are stable in the revised assessment. Therefore, the suggested reference points are for ICES category 1 stock (ICES, 2021).
The HR TARGET is set to HR MSY which equals 0.139. As recommended at the recent Benchmark (ICES 2023), this value was calculated during the present meeting following the revision of the Russian survey index (Russkikh et al. WD12, AFWG 2021). The fishable biomass is taken to be the 45+ cm biomass. The B TRIGGER in the ICES Advice Rule is set to be B PA , which equals 46747 t. B MSY has not been calculated.
Exploratory assessments; surplus production models and TSVPA.
Results of the assessment of the Barents Sea Greenland halibut stock based on a Bayesian surplus production model was provided by Bakanev in 2013, (WKBUT WD 14). Different sets of abundance indices were used for tuning the model. The analysis of model run results has shown that K is estimated within the range of 810 to 1139 kt, B MSY of 405 to 570 kt and MSY of 23 to 47 kt. However, the model was sensitive to the choice of prior on K. Taking into consideration a high probability of the stock size being at the level, which was quite a bit above B MSY , the risk of the biomass being below this optimal one was very small in 2002–2012 (<1%). The risk analysis of the stock size in the prediction years (2013–2020) under the catch of 0 to 30 kt indicated that the probability of the stock size being under the threshold levels (B MSY , B LIM ) was also minor (less than 1%). It was concluded that further work was needed on the historical CPUE series. Based on scrutiny of the CPUE series it was recommended to examine runs with the surplus production model for the period 1964-1991 and 1964-2005, in addition to runs for the whole 1964–2013 period. The CPUE series were considered less reliable to reflect stock dynamics than survey indices in the period after regulations of fishery were introduced in 1992. The Bayesian surplus model was not updated for presentation at the current meeting.
A production model was presented at the 2016 meeting (Mikhaylov, 2016, WD 14), although this model has not been reviewed at a benchmark, nor were biomass trends presented at this meeting. The model has been proposed as a possible method for the estimation of long-term reference points. An update was presented at the 2019 meeting (Mikhaylov 2019, AFWG 2019 WD21). In the current version, the MSY would be around 34 kt, the B MSY around 500 kt and F MSY on the level 0.069. It should be noted that these values are not directly transferable to a different model with different biomass levels and are in any case a long-term average. The WD concluded that, in general, the stock can withstand the fishing pressure in 2016, and the fishing regime was approaching optimum, indicating that the results of the exploratory surplus production model were in general alignment with the assessment.
F MSY is not appropriate to this stock given the recent extended run of poor recruitment, and such values have not been evaluated for precautionarity. In a plenary, it was concluded that it would be useful for further development of the production model to conduct separate exploratory runs for CPUE split into before and after 1992 and run with CPUE only before 1992 and survey data after 1992. This production model was not updated for presentation at the current meeting.
At the 2018 meeting, AFWG results from SPiCT production model were presented (ICES 2018). In the run that is presented in that report, all available data up to 2016 were used. For the run with default, priors applied K = 995 421 t and deterministic reference points were B MSY = 419 955 t, F = 0.07 and MSY = 29 742 t. Stochastic reference points for this run were in a similar range. Run with default priors deactivated gives similar MSY estimates but otherwise, rather different estimates; K = 2 504 006 t, B MSY = 609 410 t, F = 0.05 and MSY = 28 097 t. Further utilization of this approach demands closer scrutiny of model settings in relation to diagnostics. The SPiCT model can be a flexible tool to examine the production model approach to Greenland halibut, however, concerns highlighted below still apply.
In principle, a production model could be used in conjunction with the GADGET assessment model to extend the simulations back in time and provide better estimates for B LIM . However, the inability of production models to follow variable recruitment, and especially runs of above or below average recruitment, limits their ability to advise on this stock. In the benchmark report (IBPHALI 2015) Table 3.3 gives CPUE series and survey estimates that can be helpful for this task.
A working document (Bulatov et al. 2023, WD1 JNR-AFWG 2023) presents a comparison of two types of models: several different formulations of production models for Greenland halibut and age-structured TSVPA mode alongside a production model (the “combi” model) tuned to an index constructed from the TSVPA results. Tuning data for production model included catch in tonnes, Norwegian CPUE, Russian Survey and Winter survey indices. The biomass models showed F MSY (in a biomass model context) of around 0.05 to 0.07 and B MSY of 437-620 kt, giving long term MSY yields of between 32.3kt and 37.47kt. A TSVPA model was constructed, and the overall trend (with FMSY at age 9 at 0.14, and MSY yield of between 28.2kt and 31.5kt) was presented. A biomass model tuned to TSVPA as a relative index of abundance gave a F MSY (again in production model context) of 0.15 and long term MSY yield of 28.4kt. The use of TISVPA results allowed us to build a recruitment model (Beverton-Holt and “hockey stick” models) that predicts an approximately constant replenishment level (25 million at age 5), which justifies the assumptions accepted in new version of GADGET. However, given difficulties in the tuning indices noted below, the group does not feel that reliance can be placed on the absolute level of these results.
The group notes that there are two key problems in tuning data used in this WD, one is that the CPUE has an artificial step-change (increase) after the reduction in effort due to the partial moratorium in 1992 and will thus likely drive the hypothetical artificial fast rise in population from that point. The other is that the winter survey has had a trend to expand coverage area over time, and therefore the increasing trend in the swept area index is, at least partially, driven by this rather than any stock trends. Therefore, neither the full time series of CPUE nor the simple winter survey estimate should be used for model tuning. Furthermore, the new age reading methods imply considerably slower growth rate and increased longevity, compared to the traditional method used for age data in the TSVPA model (ICES WKARGH 2011, ICES WKARGH2 2016), and the old age readings should not be used in model tuning. It is also questionable if a biomass model can track the trends of this stock (where the population seems to be driven by variability in recruitment success).
In terms of trends, the TSVPA and the “Combi” biomass model tuned to a TSVPA-derived index were broadly similar to each other and to the new Gadget model. Key differences were that the TSVPA rose more steeply than Gadget after the 1992 low point, and the Combi model more steeply again. It seems likely that this could be explained using CPUE tuning data (with its artificial rise post 1992) in the Combi and TSVPA models. The other key point of difference is that the Gadget model shows a downturn starting in c. 2012, while the other models only turn down in 2021. One possible reason for this is that the Gadget model uses Ecosystem and Norwegian slope survey indices alongside the Russian index, while the models presented here use the Winter Survey (which has an artificial increasing trend due to increasing coverage).
The group felt that the TSVPA model was worth continuing developing, with a potential use as an auxiliary model (as for NEA cod and haddock), although its accuracy would continue to be hampered by the limited age reading on this species with new age reading methods. Using different tuning series and the more modern age reading method should result in a TSVPA model which could be used as an auxiliary model and could then be compared with the Gadget assessment. Effort should also be placed into continuing the age reading work, as an improved age data series would benefit both Gadget and age-based models such as TSVPA.
Comments to the last assessment
An overview of model exploration before, and at, the benchmark is given in the benchmark report (Vihtakari et al. WD 17, ICES 2023). At the JRN-AFWG in 2023 the assessment was updated by adding the revised Russian survey index. Between the end of the physical benchmark meeting and completion of the final model the following adjustments were made: Recalculation of data weighting, and flat top selectivity applied to all fleets. In addition, the Russian survey was revised as noted previously.
Within the fisheries in the Barents Sea and the associated continental slope, fish tend to move to the slope as they mature. This means that fisheries on the shelf tend to catch fewer of the large mature fish. The Barents Sea Greenland halibut Gadget model was designed to be a “fleets as areas model”, where fleet selectivity would take care of the issue of the larger fish moving out of the areas covered by some fleets and surveys. However, the dome shaped selectivity required for this was problematic. Dome-shaped selectivity increased the estimated biomass for mature females early on during the time-series but did not influence female SSB estimates toward the end of the time-series. This led to unrealistically pessimistic ratio between current stock status and recalculated Blim reducing the TAC estimate for 2025 to 7200 tonnes, which was deemed too low in the current situation by the experience and other model exploration using compiled survey indices. The model was therefore again run with logistic (flat-topped) selectivities, as in the 2023 assessment.
Prior to the 2024 assessment meeting it was experimented with changing the likelihood components weights as suggested in last year’s report. This did, however, not improve model stability any further.
The Greenland halibut population extends past the Joint Norwegian Russian Fisheries Commission (JNRFC) domain and surveys considered in the assessment do not cover the entire distribution (Albert & Vollen 2015, Westgaard et al. 2017, Vihtakari et al. 2022, Ubeda et al. 2023).
After the 2023 Benchmark, the procedures for data handling and calculations were improved, which led to minor changes in the length distributions compared to previous reports.
According to the jitter analysis, the model trends can be considered stable (Figure 8.13).
Future work
Efforts to improve stock assessment in the future should include:
Gather age data over more years.
Examine further Norwegian and joint Norwegian/Russian survey indices using VAST (mixed models) or similar statistical analysis.
Develop a harvest control rule.
Examine how to implement new evidence for south and westward extension of stock structure. Extensive work studying this extension as presented at the meeting.
Tables and figures
Year
Denmark
Estonia
Faroe Islands
Germany
France
Greenland
Iceland
Ireland
Latvia
Lithuania
Norway
Poland
Portugal
Russia
Spain
United Kingdom
Total
1984
0
0
0
2165
138
0
0
0
0
0
3540
0
0
15181
0
23
21047
1985
0
0
0
4000
239
0
0
0
0
0
5287
0
0
10237
0
5
19768
1986
0
0
42
2718
13
0
0
0
0
0
7783
0
0
12200
0
12
22768
1987
0
0
0
2024
13
0
0
0
0
0
6893
0
0
9733
0
81
18744
1988
0
0
186
744
67
0
0
0
0
0
8811
0
0
9430
0
84
19322
1989
0
0
67
600
31
0
0
0
0
0
8837
0
0
8812
0
6
18353
1990
0
0
163
954
49
0
0
0
0
0
16615
0
0
4764
0
10
22555
1991
11
2564
314
101
119
0
0
0
0
0
27585
0
0
2490
132
2
33318
1992
0
0
16
13
111
13
0
0
0
0
7668
0
31
718
23
10
8603
1993
2
0
61
22
80
8
56
0
0
30
10379
0
43
1235
0
16
11932
1994
4
0
18
296
55
3
15
5
0
4
8428
0
36
283
1
78
9226
1995
0
0
12
35
174
12
25
2
0
0
9368
0
84
794
1106
122
11734
1996
0
0
2
81
219
123
70
0
0
0
11623
0
79
1576
200
374
14347
1997
0
0
27
56
253
0
62
2
0
0
7661
12
50
1038
157
92
9410
1998
0
0
57
34
67
0
23
2
0
0
8435
31
99
2659
259
227
11893
1999
0
0
94
34
0
38
7
2
0
0
15004
8
49
3823
319
139
19517
2000
0
0
0
15
45
0
16
1
0
0
9083
3
37
4568
375
154
14297
2001
0
0
0
58
122
0
18
1
0
0
10896
2
35
4694
418
130
16374
2002
0
219
0
42
7
22
4
6
0
0
7143
5
14
5584
178
69
13293
2003
0
0
459
18
2
14
0
1
0
0
8215
5
19
4384
230
99
13446
2004
0
0
0
9
0
0
10
0
0
0
13939
1
50
4662
186
43
18900
2005
0
170
0
8
32
0
0
0
0
0
13011
0
23
4883
660
47
18834
2006
0
0
204
8
46
0
8
0
0
196
11118
201
26
6055
2
12
17876
2007
0
0
203
8
40
198
15
0
0
0
8230
200
50
6484
11
19
15458
2008
0
0
663
5
41
0
28
0
0
0
7393
201
46
5294
112
26
13809
2009
0
0
422
19
16
16
15
2
0
0
8446
204
237
3335
202
68
12982
2010
0
0
272
14
102
15
16
0
0
0
7700
3
11
6888
188
26
15235
2011
0
0
538
80
46
4
7
0
0
234
8348
169
21
7053
144
40
16684
2012
0
0
563
40
40
12
13
0
0
0
9331
22
1
10041
186
35
20284
2013
0
0
783
49
168
22
106
1
0
0
10404
30
7
10306
12
92
21980
2014
0
0
887
33
269
24
86
0
0
0
10997
19
0
10061
23
212
22611
2015
0
0
724
33
230
16
98
0
0
0
10874
13
1
12953
25
114
25081
2016
2
353
1078
9
229
18
75
0
0
0
12932
26
19
10561
27
56
25385
2017
0
523
993
21
177
26
10
0
3
72
13741
26
13
10713
36
83
26437
2018
2
574
401
50
150
20
24
0
0
206
14875
27
6
12071
60
134
28600
2019
0
588
350
44
105
23
10
0
0
348
14867
122
8
12196
87
75
28823
2020
1
579
514
73
39
48
19
0
0
261
14526
97
9
12265
96
45
28572
2021
1
382
749
88
137
14
0
0
0
125
14008
14
0
12396
125
177
28216
2022
0
253
1052
94
86
50
0
0
0
136
13800
0
0
11746
163
114
27494
2023*
2
99
1020
85
63
17
33
0
85
77
14198
0
100
11317
75
65
27236
2024*
0
172
1062
0
83
16
13
0
69
0
11292
0
44
9581
56
34
22422
Table 8.1. Greenland halibut in subareas 1 and 2. Nominal Catch (t) by countries (Subarea 1, divisions 2a, and 2b combined) as officially reported to ICES.
* Preliminary figures.
Year
Denmark
Estonia
Faroe Islands
Germany
France
Greenland
Iceland
Ireland
Latvia
Lithuania
Norway
Poland
Portugal
Russia
Spain
United Kingdom
Total
1984
0
0
0
0
0
0
0
0
0
0
398
0
0
81
0
17
496
1985
0
0
0
0
0
0
0
0
0
0
524
0
0
122
0
1
647
1986
0
0
0
1
0
0
0
0
0
0
538
0
0
615
0
6
1160
1987
0
0
0
2
0
0
0
0
0
0
771
0
0
259
0
10
1042
1988
0
0
9
4
0
0
0
0
0
0
901
0
0
420
0
7
1341
1989
0
0
0
0
0
0
0
0
0
0
2038
0
0
482
0
0
2520
1990
0
0
7
0
0
0
0
0
0
0
1304
0
0
321
0
0
1632
1991
0
164
0
0
0
0
0
0
0
0
2027
0
0
522
0
0
2713
1992
0
0
0
0
0
0
0
0
0
0
2349
0
0
467
0
0
2816
1993
0
0
32
0
0
0
56
0
0
0
1754
0
0
867
0
0
2709
1994
0
0
17
217
0
0
15
0
0
0
1165
0
0
175
0
0
1589
1995
0
0
12
0
0
0
25
0
0
0
1352
0
0
270
84
0
1743
1996
0
0
2
0
0
0
70
0
0
0
911
0
0
198
0
0
1181
1997
0
0
15
0
0
0
62
0
0
0
610
0
0
170
0
0
857
1998
0
0
47
0
0
0
23
0
0
0
859
0
0
491
0
2
1422
1999
0
0
91
0
0
13
7
0
0
0
1101
0
0
1203
0
0
2415
2000
0
0
0
0
0
0
16
0
0
0
1021
0
0
1169
0
0
2206
2001
0
0
0
0
0
0
9
0
0
0
858
0
0
951
0
2
1820
2002
0
0
0
3
0
0
0
0
0
0
834
0
0
1167
0
0
2004
2003
0
0
48
0
0
2
0
1
0
0
962
1
0
887
0
1
1902
2004
0
0
0
0
0
0
1
0
0
0
866
0
0
633
0
3
1503
2005
0
0
0
0
1
0
0
0
0
0
572
0
0
595
0
3
1171
2006
0
0
17
1
0
0
1
0
0
0
575
0
0
626
0
2
1222
2007
0
0
18
0
1
198
3
0
0
0
514
0
3
438
0
4
1179
2008
0
0
13
0
1
0
5
0
0
0
599
0
0
390
0
0
1008
2009
0
0
33
0
0
16
5
0
0
0
734
0
0
483
0
0
1271
2010
0
0
15
0
0
0
16
0
0
0
659
0
0
708
0
0
1398
2011
0
0
63
0
0
0
6
0
0
0
862
0
0
782
0
0
1713
2012
0
0
8
5
0
0
7
0
0
0
921
0
0
1368
0
7
2316
2013
0
0
39
1
8
0
100
0
0
0
1055
4
0
1440
2
8
2657
2014
0
0
143
8
11
19
38
0
0
0
1036
7
0
1261
1
14
2538
2015
0
0
108
14
5
14
47
0
0
0
1091
5
0
1681
8
10
2983
2016
0
353
88
2
3
3
38
0
0
0
1265
12
0
1171
0
20
2955
2017
0
519
133
4
4
2
8
0
3
72
1389
9
1
1125
3
21
3293
2018
0
574
104
9
16
2
20
0
0
199
1008
4
1
1083
2
97
3119
2019
0
588
116
27
9
6
6
0
0
348
939
119
0
932
16
49
3155
2020
0
579
123
37
3
15
18
0
0
258
1389
96
0
788
36
2
3344
2021
0
382
200
17
1
10
0
0
0
125
1617
9
0
713
14
11
3099
2022
0
253
117
21
24
6
0
0
0
136
1151
0
0
494
18
0
2220
2023*
0
99
178
7
12
6
0
0
85
75
978
0
27
611
29
0
2107
2024*
0
172
73
0
7
13
0
0
63
0
632
0
3
991
7
0
1961
Table 8. 2 . Greenland halibut in subareas 1 and 2. Nominal catch (t) by countries in Subarea 1 as officially reported to ICES.
* Preliminary figures.
Year
Denmark
Estonia
Faroe Islands
Germany
France
Greenland
Iceland
Ireland
Latvia
Lithuania
Norway
Poland
Portugal
Russia
Spain
United Kingdom
Total
1984
0
0
0
265
138
0
0
0
0
0
3062
0
0
5459
0
1
8925
1985
0
0
0
254
239
0
0
0
0
0
4691
0
0
6894
0
2
12080
1986
0
0
6
97
13
0
0
0
0
0
6302
0
0
5553
0
6
11977
1987
0
0
0
75
13
0
0
0
0
0
5550
0
0
4739
0
54
10431
1988
0
0
177
150
67
0
0
0
0
0
7671
0
0
4002
0
58
12125
1989
0
0
67
104
31
0
0
0
0
0
6265
0
0
4964
0
6
11437
1990
0
0
133
12
49
0
0
0
0
0
7605
0
0
1246
0
1
9046
1991
0
1400
314
21
119
0
0
0
0
0
11189
0
0
305
0
1
13349
1992
0
0
16
1
108
13
0
0
0
0
3586
0
15
58
0
1
3798
1993
0
0
29
14
78
8
0
0
0
0
7977
0
17
210
0
2
8335
1994
0
0
0
33
47
3
0
4
0
0
6382
0
26
67
0
14
6576
1995
0
0
0
30
174
12
0
2
0
0
6354
0
60
227
0
85
6944
1996
0
0
0
34
219
123
0
0
0
0
9508
0
55
466
4
335
10744
1997
0
0
0
23
253
0
0
0
0
0
5702
0
41
334
1
46
6400
1998
0
0
0
16
67
0
0
1
0
0
6661
0
80
530
5
115
7475
1999
0
0
0
20
0
25
0
2
0
0
13064
0
33
734
1
108
13987
2000
0
0
0
10
43
0
0
0
0
0
7536
0
18
690
1
108
8406
2001
0
0
0
49
122
0
9
1
0
0
8935
0
13
726
5
86
9946
2002
0
0
0
9
7
22
4
0
0
0
5877
0
3
849
0
40
6811
2003
0
0
390
5
2
12
0
0
0
0
6713
0
10
1762
14
63
8971
2004
0
0
0
4
0
0
9
0
0
0
11704
0
24
810
4
1
12556
2005
0
0
0
3
31
0
0
0
0
0
11216
0
11
1406
0
23
12690
2006
0
0
175
0
38
0
7
0
0
0
8897
0
6
950
0
8
10081
2007
0
0
162
2
37
0
12
0
0
0
6761
0
2
489
0
10
7475
2008
0
0
646
4
38
0
23
0
0
0
5566
1
1
1170
3
16
7468
2009
0
0
379
0
13
0
10
0
0
0
6456
0
9
1531
0
60
8458
2010
0
0
255
0
102
15
0
0
0
0
6426
0
0
4757
0
22
11577
2011
0
0
467
0
45
4
1
0
0
0
7080
0
0
3643
0
4
11244
2012
0
0
553
0
37
12
6
0
0
0
7934
0
0
3878
0
14
12434
2013
0
0
739
0
150
22
6
0
0
0
8213
0
2
4144
0
75
13351
2014
0
0
741
0
255
1
48
0
0
0
8640
0
0
4800
0
184
14669
2015
0
0
614
2
221
2
51
0
0
0
8742
0
1
3691
0
79
13403
2016
0
0
986
6
216
14
37
0
0
0
10073
6
7
1797
0
19
13161
2017
0
0
841
0
161
21
2
0
0
0
10126
0
7
1853
0
16
13027
2018
0
0
296
1
104
9
4
0
0
1
11255
2
5
1398
0
6
13081
2019
0
0
232
15
95
16
4
0
0
0
12143
3
7
2754
3
12
15284
2020
0
0
385
21
34
28
1
0
0
0
11430
0
8
2690
0
3
14600
2021
0
0
530
20
123
4
0
0
0
0
9647
0
0
842
5
109
11280
2022
0
0
888
10
27
4
0
0
0
0
9814
0
0
740
0
25
11508
2023*
0
0
771
21
14
6
33
0
0
0
11421
0
36
1248
5
25
13580
2024*
0
0
969
0
35
2
13
0
0
0
8886
0
21
1101
1
5
11033
Table 8.3 . Greenland halibut in subareas 1 and 2. Nominal catch (t) by countries in Division 2a as officially reported to ICES.
* Preliminary figures.
Year
Denmark
Estonia
Faroe Islands
Germany
France
Greenland
Iceland
Ireland
Latvia
Lithuania
Norway
Poland
Portugal
Russia
Spain
United Kingdom
Total
1984
0
0
0
1900
0
0
0
0
0
0
80
0
0
9641
0
5
11626
1985
0
0
0
3746
0
0
0
0
0
0
71
0
0
3221
0
2
7040
1986
0
0
36
2620
0
0
0
0
0
0
944
0
0
6032
0
0
9632
1987
0
0
0
1947
0
0
0
0
0
0
572
0
0
4735
0
17
7271
1988
0
0
0
590
0
0
0
0
0
0
239
0
0
5008
0
19
5856
1989
0
0
0
496
0
0
0
0
0
0
533
0
0
3366
0
0
4395
1990
0
0
23
942
0
0
0
0
0
0
7706
0
0
3197
0
9
11877
1991
11
1000
0
80
0
0
0
0
0
0
14369
0
0
1663
132
1
17256
1992
0
0
0
12
3
0
0
0
0
0
1732
0
16
193
23
9
1988
1993
2
0
0
8
2
0
0
0
0
30
649
0
26
158
0
14
889
1994
4
0
1
46
8
0
0
1
0
4
881
0
10
41
1
64
1061
1995
0
0
0
5
0
0
0
0
0
0
1662
0
24
297
1022
37
3047
1996
0
0
0
47
0
0
0
0
0
0
1204
0
24
912
196
39
2422
1997
0
0
12
33
0
0
0
2
0
0
1349
12
9
534
156
46
2153
1998
0
0
10
18
0
0
0
1
0
0
915
31
19
1638
254
110
2996
1999
0
0
3
14
0
0
0
0
0
0
839
8
16
1886
318
31
3115
2000
0
0
0
5
2
0
0
1
0
0
526
3
19
2709
374
46
3685
2001
0
0
0
9
0
0
0
0
0
0
1103
2
22
3017
413
42
4608
2002
0
219
0
30
0
0
0
6
0
0
432
5
11
3568
178
29
4478
2003
0
0
21
13
0
0
0
0
0
0
541
4
9
1735
216
35
2574
2004
0
0
0
5
0
0
0
0
0
0
1369
1
26
3219
182
39
4841
2005
0
170
0
5
0
0
0
0
0
0
1223
0
12
2882
660
21
4973
2006
0
0
12
7
8
0
0
0
0
196
1647
201
20
4479
2
2
6574
2007
0
0
23
6
2
0
0
0
0
0
955
200
45
5557
11
5
6804
2008
0
0
4
1
2
0
0
0
0
0
1229
200
45
3734
109
10
5334
2009
0
0
10
19
3
0
0
2
0
0
1256
204
228
1321
202
8
3253
2010
0
0
2
14
0
0
0
0
0
0
615
3
11
1423
188
4
2260
2011
0
0
8
80
1
0
0
0
0
234
406
169
21
2628
144
36
3727
2012
0
0
2
35
3
0
0
0
0
0
476
22
1
4795
186
14
5534
2013
0
0
5
48
10
0
0
1
0
0
1136
26
5
4724
10
9
5974
2014
0
0
3
25
3
4
0
0
0
0
1321
12
0
4000
22
14
5404
2015
0
0
2
17
4
0
0
0
0
0
1042
8
0
7581
17
25
8696
2016
2
0
4
1
10
1
0
0
0
0
1594
8
12
7593
27
17
9269
2017
0
4
19
17
12
3
0
0
0
0
2226
17
5
7737
33
46
10119
2018
2
0
1
40
30
9
0
0
0
6
2611
21
0
9590
58
31
12399
2019
0
0
2
2
1
1
0
0
0
0
1784
0
1
8512
68
14
10385
2020
1
0
6
15
2
5
0
0
0
3
1707
1
1
8788
60
40
10629
2021
1
0
19
51
13
0
0
0
0
0
2744
5
0
10839
106
57
13835
2022
0
0
47
63
35
40
0
0
0
0
2835
0
0
10512
145
89
13766
2023*
2
0
71
57
37
5
0
0
0
2
1800
0
37
9458
41
40
11550
2024*
0
0
20
0
41
1
0
0
6
0
1774
0
20
7489
48
29
9428
Table 8.4 . Greenland halibut in subareas 1 and 2. Nominal catch (t) by countries in Division 2b as officially reported to ICES.
* Preliminary figures.
Year
Gillnet
Longline
Trawl
Danish seine
Other
1984
1198
3760
16072
9
7
1985
1668
2484
15532
2
83
1986
1637
2626
18501
4
0
1987
2021
2198
14456
7
61
1988
2691
2381
14226
21
3
1989
1282
1738
15304
NA
29
1990
1264
2322
18539
0
430
1991
1904
4652
26698
53
10
1992
1598
1913
5030
33
28
1993
1497
3047
7359
29
NA
1994
1548
2319
5330
29
0
1995
1588
4167
5902
68
8
1996
1495
4582
8123
87
60
1997
998
3388
4984
15
25
1998
1327
3834
6660
25
46
1999
2570
6842
9970
75
61
2000
1765
4972
7431
62
67
2001
2111
6239
7832
124
67
2002
1737
5273
6120
117
46
2003
2049
5330
5791
242
34
2004
2384
7126
8766
614
9
2005
1842
7512
9014
441
24
2006
1503
6137
10023
205
10
2007
998
4500
9836
120
4
2008
901
3574
9318
9
8
2009
1409
4954
6567
34
17
2010
1449
5440
8166
170
10
2011
1583
5040
9807
239
15
2012
1929
5601
12337
413
5
2013
2397
5808
13600
176
0
2014
2647
6146
13628
183
8
2015
2508
6287
15778
489
18
2016
2646
7288
14771
650
30
2017
2677
7223
15832
681
27
2018
3021
7302
17423
842
11
2019
3343
7029
17335
1118
0
2020
2976
6984
17542
1055
17
2021
2930
7382
16985
884
33
2022
2996
6426
17067
990
16
2023*
3397
6244
16288
1293
15
2024*
2750
4754
13748
1154
16
Table 8.5 . Greenland halibut in subareas 1 and 2. Landings by gear (t).
* Preliminary figures.
Year
USSR catch/hour trawling (t)
Norway10 catch/hour trawling (t)
Average CPUE
Total effort (in 1000 hrs trawling)5
CPUE 7+6
GDR7 (catch/day tonnage (kg))
RT1
PST2
A8
B9
A3
B4
1965
0.80
-
-
-
0.80
-
-
-
-
1966
0.77
-
-
-
0.77
-
-
-
-
1967
0.70
-
-
-
0.70
-
-
-
-
1968
0.65
-
-
-
0.65
-
-
-
-
1969
0.53
-
-
-
0.53
-
-
-
-
1970
0.53
-
-
-
0.53
-
169
0.50
-
1971
0.46
-
-
-
0.46
-
172
0.43
-
1972
0.37
-
-
-
0.37
-
116
0.33
-
1973
0.37
-
0.34
-
0.36
-
83
0.36
-
1974
0.40
-
0.36
-
0.38
-
100
0.36
-
1975
0.39
0.51
0.38
-
0.39
0.45
99
0.37
-
1976
0.40
0.56
0.33
-
0.37
0.45
100
0.34
-
1977
0.27
0.41
0.33
-
0.30
0.37
96
0.26
-
1978
0.21
0.32
0.21
-
0.21
0.27
123
0.17
-
1979
0.23
0.35
0.28
-
0.26
0.32
67
0.19
-
1980
0.24
0.33
0.32
-
0.28
0.33
47
0.25
-
1981
0.30
0.36
0.36
-
0.33
0.36
42
0.28
-
1982
0.26
0.45
0.41
-
0.34
0.43
39
0.37
-
1983
0.26
0.40
0.35
-
0.31
0.38
58
0.32
-
1984
0.27
0.41
0.32
-
0.30
0.37
59
0.30
-
1985
0.28
0.52
0.37
-
0.33
0.45
44
0.37
-
1986
0.23
0.42
0.37
-
0.30
0.40
57
0.32
-
1987
0.25
0.50
0.35
-
0.30
0.43
44
0.35
-
1988
0.20
0.30
0.31
-
0.26
0.31
63
0.26
4.26
1989
0.20
0.30
0.26
-
0.23
0.28
73
0.19
2.95
1990
-
0.20
0.27
-
-
0.24
95
0.16
1.66
1991
-
-
0.24
-
-
-
134
0.18
-
1992
-
-
0.46
0.72
-
-
20
0.29
-
1993
-
-
0.79
1.22
-
-
15
0.65
-
1994
-
-
0.77
1.27
-
-
11
0.70
-
1995
-
-
1.03
1.48
-
-
-
-
-
1996
-
-
1.45
1.82
-
-
-
-
-
1997
0.71
-
1.23
1.60
-
-
-
-
-
1998
0.71
-
0.98
1.35
-
-
-
-
-
1999
0.84
-
0.82
1.77
-
-
-
-
-
2000
0.94
-
1.38
1.92
-
-
-
-
-
2001
0.82
11
-
1.18
1.57
-
-
-
-
-
2002
0.85
-
1.07
1.82
-
-
-
-
-
2003
0.97
12
-
0.86
2.45
-
-
-
-
-
2004
0.63
13
-
1.16
1.79
-
-
-
-
-
2005
0.61
12
-
1.30
2.29
-
-
-
-
-
2006
0.57
12
-
0.96
2.09
-
-
-
-
-
2007
0.64
12
-
-
-
-
-
-
-
-
2008
0.48
12
-
-
-
-
-
-
-
-
2009
0.77
13
-
-
-
-
-
-
-
-
2010
1.57
12
-
-
-
-
-
-
-
2011
2.32
12
2012
2.06
12
2013
2.25
12
2014
2.52
12
Table 8. 6 . Greenland halibut in subareas 1 and 2. Catch per unit effort and total effort.
1 Side trawlers, 800–1000 hp. From 1983 onwards, stern trawlers (SRTM), 1000 hp. From 1997 based on research fishing.
2 Stern trawlers, up to 2000 HP.
3 Arithmetic average of CPUE from USSR RT (or SRTM trawlers) and Norwegian trawlers.
4 Arithmetic average of CPUE from USSR PST and Norwegian trawlers.
5 For the years 1981–1990, based on average CPUE type B. For 1991–1993, based on the Norwegian CPUE, type A.
6 Total catch (t) of seven years and older fish divided by total effort.
7 For the years 1988–1989, frost-trawlers 995 BRT (FAO Code 095). For 1990, factory trawlers S IV, 1943 BRT (FAO Code 090).
10 From 1992 based on research fishing. 1992–1993: two weeks in May/June and October; 1994–1995: 10 days in May/June
11 Based on fishery from April-October only, a period with relatively low CPUE. In previous years fishery was carried out throughout the whole year.
12 Based on fishery from October-December only, a period with relatively high CPUE.
13 Based on fishery from October-November only.
Year
Norway
Russia
Other
Total
Year
Norway
Russia
Other
Total
1935
1534
1534
1980
2528
7670
2457
12655
1936
830
830
1981
3648
9276
1541
14465
1937
616
616
1982
2997
12394
1189
16580
1938
329
329
1983
4509
15152
2112
21773
1939
459
459
1984
3540
15181
2326
21047
1940
846
846
1985
5287
10237
4244
19768
1941
1663
1663
1986
7783
12200
2785
22768
1942
955
955
1987
6893
9733
2118
18744
1943
824
824
1988
8811
9430
1081
19322
1944
678
678
1989
8837
8812
704
18353
1945
1148
1148
1990
16615
4764
1176
22555
1946
1337
25
1362
1991
27585
2490
3243
33318
1947
1409
28
1437
1992
7668
718
217
8603
1948
1877
110
1987
1993
10379
1235
318
11932
1949
198
177
375
1994
8428
283
515
9226
1950
1853
221
2074
1995
9368
794
1572
11734
1951
2438
423
2861
1996
11623
1576
1148
14347
1952
2576
377
2953
1997
7661
1038
711
9410
1953
2208
393
2601
1998
8435
2659
799
11893
1954
3674
416
4090
1999
15004
3823
690
19517
1955
3010
290
3300
2000
9083
4568
646
14297
1956
3493
446
3939
2001
10896
4694
784
16374
1957
4130
505
4635
2002
7143
5584
566
13293
1958
2931
1261
4192
2003
8215
4384
847
13446
1959
4307
3632
7939
2004
13939
4662
299
18900
1960
6662
4299
10961
2005
13011
4883
940
18834
1961
7977
3836
11813
2006
11118
6055
703
17876
1962
11600
1760
13360
2007
8230
6484
744
15458
1963
11300
3240
14540
2008
7393
5294
1122
13809
1964
14200
26191
40391
2009
8446
3335
1201
12982
1965
18000
16682
34682
2010
7700
6888
647
15235
1966
16434
9768
119
26321
2011
8348
7053
1283
16684
1967
17528
5737
1002
24267
2012
9331
10041
912
20284
1968
22514
3397
257
26168
2013
10404
10306
1270
21980
1969
14856
19760
9173
43789
2014
10997
10061
1553
22611
1970
15871
35578
38035
89484
2015
10874
12953
1254
25081
1971
9466
54339
15229
79034
2016
12932
10561
1892
25385
1972
15983
16193
10872
43048
2017
13741
10713
1983
26437
1973
13989
8561
7349
29899
2018
14875
12071
1654
28600
1974
8791
16958
11972
37721
2019
14867
12196
1760
28823
1975
4858
20372
12914
38144
2020
14526
12265
1781
28572
1976
6005
16580
13469
36054
2021
14008
12396
1812
28216
1977
3017
15045
9613
27675
2022
13800
11746
1948
27494
1978
2980
14651
5884
23515
2023*
14198
11317
1721
27236
1979
2314
10311
4088
16713
2024*
11292
9581
1549
22422
Table 8.7 . Greenland halibut in subareas 1 and 2. Catch history back to 1935.
* Provisional figures.
Year
Denmark
Faroe Islands
France
Germany
Greenland
Ireland
Norway
Russia
United Kingdom
Netherlands
Belgium
Iceland
Portugal
Total
1973
0
0
0
4
0
0
9
8
28
0
0
0
0
49
1974
0
0
0
2
0
0
2
0
30
0
0
0
0
34
1975
0
0
0
1
0
0
4
0
12
0
0
0
0
17
1976
0
0
0
1
0
0
2
0
18
0
0
0
0
21
1977
0
0
0
2
0
0
2
0
8
0
0
0
0
12
1978
0
0
2
30
0
0
0
0
1
0
0
0
0
33
1979
0
0
2
16
0
0
2
0
1
0
0
0
0
21
1980
0
177
0
34
0
0
5
0
0
0
0
0
0
216
1981
0
0
0
0
0
0
7
0
0
0
0
0
0
7
1982
0
0
2
26
0
0
17
0
0
0
0
0
0
45
1983
0
0
1
64
0
0
89
0
0
0
0
0
0
154
1984
0
0
3
50
0
0
32
0
0
0
0
0
0
85
1985
0
1
2
49
0
0
12
0
0
0
0
0
0
64
1986
0
0
30
2
0
0
34
0
0
0
0
0
0
66
1987
0
28
16
1
0
0
35
0
0
0
0
0
0
80
1988
0
71
62
3
0
0
19
0
1
0
0
0
0
156
1989
0
21
14
1
0
0
197
0
5
0
0
0
0
238
1990
0
10
30
3
0
0
29
0
4
0
0
0
0
76
1991
0
48
291
1
0
0
216
0
2
0
0
0
0
558
1992
1
15
416
3
0
0
626
0
1
0
0
0
0
1062
1993
1
0
78
1
0
0
858
0
10
0
0
0
0
948
1994
0
103
84
4
0
0
724
0
6
0
0
0
0
921
1995
0
706
165
2
0
0
460
0
335
0
0
0
0
1668
1996
0
0
249
1
0
0
1496
0
264
0
0
0
0
2010
1997
0
0
316
3
0
0
873
0
163
0
0
0
0
1355
1998
0
0
71
10
0
10
804
0
470
0
0
0
0
1365
1999
0
0
0
1
0
18
2157
0
401
0
0
0
0
2577
2000
0
0
41
10
0
19
498
0
259
0
0
0
0
827
2001
0
0
43
0
0
10
470
0
324
0
0
0
0
847
2002
0
0
8
0
0
2
200
0
256
0
0
0
0
466
2003
0
0
1
0
0
0
453
0
122
0
0
0
0
576
2004
0
0
0
0
0
0
413
0
90
0
0
0
0
503
2005
0
0
2
0
0
0
58
0
4
0
0
0
0
64
2006
0
0
3
0
0
0
90
0
7
0
0
0
1
101
2007
0
1
0
0
0
0
133
0
7
0
0
0
0
141
2008
0
0
0
0
0
0
15
0
22
0
0
0
0
37
2009
0
9
23
0
0
0
5
0
129
0
0
0
0
166
2010
0
1
38
0
0
0
10
0
49
0
0
1
0
99
2011
0
1
39
0
0
0
95
0
44
0
0
0
0
178
2012
0
0
14
0
0
0
788
0
43
0
0
0
0
844
2013
0
0
25
0
0
0
377
0
174
0
0
0
0
577
2014
0
2
27
0
0
0
723
0
104
0
0
0
0
856
2015
0
0
34
1
0
0
1151
0
127
0
0
0
0
1313
2016
0
0
31
0
0
0
983
0
120
0
0
0
0
1133
2017
0
0
20
0
0
0
753
0
73
0
0
0
0
847
2018
0
1
15
0
0
0
472
0
42
2
0
0
0
532
2019
0
0
21
0
0
0
241
0
14
4
0
0
0
281
2020
0
0
10
0
0
0
663
0
45
4
0
0
0
722
2021
0
4
19
0
0
0
0
0
121
0
0
0
0
143
2022
0
207
9
0
0
0
522
0
150
0
0
0
0
888
2023
0
58
7
0
0
0
473
0
168
0
0
0
0
705
2024
0
44
6
0
125
0
739
0
52
0
0
0
0
966
Table 8.8 . Greenland halibut in ICES Division 4.a (North Sea). Nominal catch (t) by countries as officially reported to ICES. Not included in the assessment.
* Preliminary figures.
Year
(0,30]
(30,35]
(35,40]
(40,45]
(45,50]
(50,55]
(55,60]
(60,65]
(65,70]
(70,75]
(75,80]
80+
Total
1984
1138
2975
5319
9159
7185
5597
2256
1731
1539
1033
536
246
38713
1985
5606
2581
5506
7348
6676
3978
2038
1279
1154
834
414
173
37587
1986
2273
3488
6409
8074
7712
6427
2596
1263
1335
918
398
142
41034
1987
1666
2857
4025
4357
3065
1670
696
505
357
162
105
31
19496
1988
1194
1975
2647
2007
1599
1179
270
282
181
69
118
77
11599
1989
419
2180
5852
6088
3742
1990
804
490
448
233
43
30
22318
1990
254
1601
4303
3911
3608
2729
915
309
204
191
41
40
18106
1991
306
1026
3632
5059
3590
2257
639
544
153
128
56
27
17417
1992
36
879
9184
16058
12586
10043
4542
2209
1322
380
173
53
57464
1993
0
72
1456
6016
9200
5377
1954
1324
991
574
145
122
27231
1994
107
87
725
5931
6872
5827
2262
927
602
314
40
41
23736
1995
0
14
1024
10123
12263
5162
1722
1063
640
371
101
32
32516
1996
0
21
1451
17480
30966
17523
5763
1852
1029
576
151
32
76844
1997
70
121
1056
7606
16561
10309
3292
1116
943
436
107
36
41653
1998
26
166
1559
7456
19972
15019
5668
1851
869
285
105
43
53018
1999
236
131
766
5583
16452
15352
6263
2966
1435
446
194
78
49902
2000
755
708
2266
8003
17910
17443
8610
3513
2125
791
221
101
62448
2001
427
1335
4399
11113
23242
20938
9356
4117
2607
1201
518
299
79553
2002
310
1407
3845
7322
9536
5214
2657
1262
678
174
64
25
32494
2003
122
1162
3339
6484
9135
5230
3218
2948
2557
722
301
187
35403
2004
266
1529
6759
9240
13358
11174
7596
5329
3867
1819
674
506
62117
2005
136
1680
4136
8258
8866
8399
4791
3777
2361
852
293
464
44013
2006
73
1565
14827
25958
25724
18234
9501
4934
3461
1506
565
504
106850
2007
678
2394
12640
14752
15438
12187
7122
3749
2186
799
273
152
72369
2008
338
2444
10242
17093
21842
24209
18308
8870
7414
3776
1657
850
117044
2009
80
3270
22312
31713
28283
24096
16933
5995
3994
2158
706
590
140130
2010
144
3998
30662
51444
39762
32576
16815
7180
6761
3539
1334
1259
195474
2011
200
1001
18079
42924
55212
46426
38215
15612
8480
6278
3031
864
236322
2012
10
524
8728
39585
41830
33768
23212
9040
5025
3093
1598
835
167248
2013
-
-
-
-
-
-
-
-
-
-
-
-
-
2014
16
1319
8446
30085
37787
26980
16527
5917
3299
1657
571
360
132964
2015
39
1119
9310
29876
34420
24963
12575
6904
2702
820
506
183
123416
2016
-
-
-
-
-
-
-
-
-
-
-
-
-
2017
7
1270
5064
14951
24982
29977
17329
7054
3473
1502
343
387
106339
2018
-
-
-
-
-
-
-
-
-
-
-
-
-
2019
144
2186
13500
27130
28572
22536
13943
5825
3080
1654
707
466
119742
Table 8.9 . Abundance indices (in thousands) of different length groups in Russian autumn survey.
Year
(0,30]
(30,35]
(35,40]
(40,45]
(45,50]
(50,55]
(55,60]
(60,65]
(65,70]
(70,75]
(75,80]
(80,200]
Sum
1996
2
29
1009
10692
20030
11244
3760
1536
1014
411
133
58
49918
1997
1
80
1421
10690
19311
10802
3807
1837
1052
484
184
95
49764
1998
3
74
957
5763
14474
12658
5265
2243
1309
523
192
115
43577
1999
3
57
550
4629
13893
15236
6684
3356
2305
922
393
176
48203
2000
8
169
1121
4495
9538
11646
5816
2590
1347
590
220
111
37650
2001
22
355
1955
5980
11835
12829
6680
3084
1863
694
317
131
45746
2002
43
449
1897
5234
9620
11161
6319
2987
1571
636
239
126
40281
2003
23
748
3515
6958
10931
13029
8279
4769
2547
928
469
222
52419
2004
22
1014
3674
5504
8941
11044
6255
4019
2176
968
402
232
44251
2005
110
2128
5859
8307
8145
6792
4108
2866
1724
670
294
199
41202
2006
35
1214
5140
7416
8448
8047
5092
3315
2022
809
370
253
42162
2007
144
4034
18450
16416
10410
6954
4086
2026
1125
414
163
110
64331
2008
458
6041
12820
11714
7884
5978
3023
1743
1110
440
149
176
51538
2009
54
2645
13536
16751
11332
8344
4747
2413
1823
711
284
211
62851
2011
0
377
5536
14368
13765
10668
5352
1793
1612
881
440
330
55123
2013
4
134
2420
11053
12859
7408
3880
1389
688
357
213
115
40520
2015
9
774
3982
13688
15619
9195
4165
1859
867
440
194
151
50943
2017
18
342
2259
6006
9796
8924
5035
1841
832
259
132
125
35570
2019
0
677
4192
8117
9053
5738
3064
1215
570
222
73
84
33005
2021
86
1644
4635
10264
12302
9064
4643
2445
917
275
112
32
46418
2023
362
2698
3624
5179
6120
5472
2881
1388
557
183
44
63
28571
Table 8.10 . Abundance indices of different length groups in Norwegian autumn slope survey (in thousands).
Year
(0,30]
(30,35]
(35,40]
(40,45]
(45,50]
(50,55]
(55,60]
(60,65]
(65,70]
(70,75]
(75,80]
(80,200]
Sum
1996
0
11
334
2127
4277
2893
1893
1347
942
404
133
58
14420
1997
0
42
657
2052
3711
2902
1897
1643
1008
484
182
95
14671
1998
2
26
353
1037
2785
3986
2864
2050
1281
521
192
115
15210
1999
1
11
207
880
2367
4214
3510
2996
2235
906
385
176
17889
2000
5
64
435
1083
1377
2012
2428
2109
1292
589
220
111
11725
2001
11
159
758
1407
1648
1905
2556
2595
1838
694
317
131
14020
2002
29
207
733
1243
1297
1749
2297
2352
1528
632
239
126
12434
2003
18
345
1649
2009
1670
2340
3434
4121
2493
925
469
222
19695
2004
9
445
1534
1550
1436
2113
3029
3675
2145
950
401
232
17517
2005
35
737
1910
1925
1254
1341
2093
2576
1703
668
294
199
14735
2006
19
542
2096
2163
1789
1587
2158
2890
1971
801
369
249
16634
2007
85
2111
8639
6230
2667
1620
1897
1735
1106
405
163
107
26766
2008
249
3159
5536
3703
2137
1456
1463
1577
1095
440
149
175
21137
2009
28
1052
5223
5459
3072
2176
2155
2038
1736
700
268
200
24107
2011
0
149
1623
2757
2367
1578
1063
1354
1553
875
440
330
14088
2013
0
35
492
1632
2023
1421
1004
1035
679
354
213
115
9003
2015
5
308
1385
1954
2623
2502
1694
1374
854
440
194
151
13484
2017
15
169
864
1435
1863
1725
1908
1270
820
259
132
125
10587
2019
0
321
1714
2004
1867
1530
1379
952
531
222
73
84
10678
2021
40
851
1775
1793
2203
1798
2152
2066
880
275
112
32
13976
2023
164
1284
1578
1298
1390
1338
1318
1187
546
183
44
63
10392
Table 8.11 . Abundance indices of females of different length groups in Norwegian autumn slope survey (in thousands).
Framework
Reference point
Value
Technical basis
MSY approach
MSY
19142 t
Maximum sustainable yield
HR MSY
0.139
HR (>=45cm) leading to MSY
Precautionary approach
B lim
33391 t
Lowest modelled mature female substock biomass
B pa
46747 t
B lim x 1.4
B trigger
46747 t
B pa
HR lim
0.165
HR (>=45cm) leading to P(SSB<B lim )=0.5
HR pa
0.145
HR(>=45cm), when ICES AR is applied, leading to P(SSB > Blim) = 0.05
Table 8. 12 . Reference points, values, and their technical basis for NEA G. halibut.
Basis
Total catch (2025)
HR(2025)
SSB(2026)
% Biomass change *
% TAC change **
% Advice change ***
ICES advice basis
MSY approach: HRMSY x SSB2025/Bpa
12 431
0.117
41 231
4.5
-42
-20
Other scenarios
HRMSY
14 726
0.139
40 214
1.9
-31
-5.4
HR=0
0
0
46 739
18
-100
-100
Assumed catch in 2024
23 050
0.217
35 756
-9.4
8.5
48
Table 8.13 . Greenland halibut in ICES subareas 1 and 2 (Northeast Arctic). Annual catch scenarios for 2025. All weights are in tonnes. The advice basis using HRMSY and three other scenarios are listed in the first column. Columns thereafter: total allowable catch
* SSB start of 2026 relative to end of 2024.
** Advice value for 2025 relative to the TAC value in 2024 (21 250 tonnes).
*** Advice value for 202 5 relative to the advice value for 202 4 (15 560 tonnes) .
Basis
Total catch (2026)
HR(2026)
SSB(2027)
% Biomass change *
% TAC change **
% Advice change ***
ICES advice basis
MSY approach: HRMSY x SSB2026/Bpa
14 891
0.123
43 042
9.1
-30
-4.3
Other scenarios
HRMSY
16 538
0.139
41 278
4.6
-22
6.3
HR=0
0
0
55 330
40
-100
-100
Assumed catch in 2024
23 050
0.209
33 330
-16
8.5
48
Table 8.14 . Greenland halibut in ICES subareas 1 and 2 (Northeast Arctic). Annual catch scenarios for 2026. All weights are in tonnes. The advice basis using HRMSY and three other scenarios are listed in the first column. Columns thereafter: total allowable catch
* SSB start of 2027 relative to end of 2024, i.e the cumulative change over the 2-year advice period.
** Advice value for 2026 relative to the TAC value in 2024 (21 250 tonnes).
*** Advice value for 202 6 relative to the advice value for 202 4 (15 560 tonnes) .
Figure 8.1. NEA Greenland halibut landings. Historical landings (Nedreaas and Smirnov 2003 and AFWG).
Figure 8.2. Spatial distribution of Greenland halibut catches in 2024 according to Norwegian electronic logbooks, in all registered fisheries including bycatch (A), and catches where Greenland halibut make more than 50% of the total catches (B).
Figure 8.3. Spatial distribution of catches where Greenland halibut make more than 50% of the total catches, according to Norwegian electronic logbooks from 2024. Bubble area is proportional to the size of single catches expressed in metric tonnes.
Figure 8.4 . NEA Greenland halibut. Biomass estimates from Russian autumn survey and the Norwegian slope survey (for females (top panel) and sexes combined (bottom panel)). Note that the Norwegian survey is run every other year since 2009.
Figure 8.5 . Greenland halibut abundance by sex for Russian autumn survey (Russkikh and Smirnov, WD16 AFWG 2016) and Norwegian slope survey. Russian data from 1992 and onwards are revised in 2021 (Russkikh WD12).
Figure 8. 6 . Estimated Greenland halibut abundance (upper panel) and biomass (lower panel), by sex, from the Norwegian autumn slope survey.
Figure 8.7 . Length frequency distribution in the EggaN abundance index. Note biennial surveys after 2009.
Figure 8.8 . Total juvenile biomass indices Eco_SI_1 (10-17cm) and Eco_SI_2(18-27cm) (sex distribution is assumed 50/50 in the juvenile area) for Greenland halibut based on the Barents Sea Ecosystem Survey (A5216).
Figure 8.9 . EcoS biomass index for Greenland halibut in the Barents Sea Ecosystem Survey (A5216).
Figure 8.10 . Length distributions (in cm) from survey data: EggaS (left) and WinterS (right).
Figure 8.11 . From top left to bottom right: Catch (1000 tonnes), recruitment estimate (in millions) for 2-year-olds, harvest rate and Spawning stock biomass (SSB) and total stock biomass (TSB) for Greenland halibut as estimated by the GADGET model.
Figure 8.12 . Retrospective analysis using model biomass for each modelled stock component and total biomass. Colors are scaled to the number of years removed.
Figure 8.13 . Jitter results for the model. Negative log-likelihood scores of jitter runs are shown on the left together with standard deviation and CV (in percentage). Total biomass, harvest rate and recruitment are on top of each other on the right. Colour indicates the run number and is standardized across all panels.
Figure 8.14. Harvest rates of short-term projection scenarios. Harvest rates are influenced by Bpa.
Albert, O.T. and Vollen, T., 2015. A major nursery area around the Svalbard archipelago provides recruits for the stocks in both Greenland halibut management areas in the Northeast Atlantic. ICES Journal of Marine Science: Journal du Conseil, 72(3): 872-879.
Bakanev, S 2013. Assessment of the Barents Sea Greenland halibut stock using the stochastic version of the production model. WD14, Report of the Benchmark Workshop on Greenland Halibut Stocks (WKBUT), 26–29 November 2013, Copenhagen, Denmark. ICES CM 2013/ ACOM:44 367 pp.
Bulatov, O.A., Russkikh, A. A., Mikhaylov, A.I., Vasilyev, D. A, 2023. The estimation of reference points of Greenland halibut stock in the Barents Sea based on production and cohort models. WD, JNR-AFWG 2023
ICES 1997. Report of the ICES/NAFO workshop on Greenland halibut age determination. ICES CM 1997/G:1, 53 p.
ICES. 2011. Report of the Workshop on Age Reading of Greenland Halibut (WKARGH), 14-17 February 2011, Vigo, Spain. ICES CM 2011/ACOM:41. 39 pp.
ICES 2017. Report of the Workshop on age reading of Greenland halibut 2 (WKARGH2), 22-26 August, Reykjavik, Iceland. ICES CM 2016/SSGIEOM:16. 36 pp.
ICES. 2018. Report of the Arctic Fisheries Working Group (AFWG), 18–24 April 2018, Ispra, Italy. ICES CM 2018/ACOM:06. 859 pp. https://doi.org/10.17895/ices.pub.5608
ICES. 2023. Benchmark workshop on Greenland halibut and redfish stocks (WKBNORTH). ICES Scientific Reports. 5:33. 408 pp. https://doi.org/10.17895/ices.pub.22304638
M. Lindegren, M. Thorlacius, J. T. Thorson, B. Þ. Elvarsson, D. Gonzalez-Troncoso, H. P. Benoît, et al. ICES Journal of Marine Science 2025 Vol. 82 Issue 5. DOI: 10.1093/icesjms/fsaf068
Lentin J., Elvarsson B.Þ., and Butler W. 2022. gadget3: Globally-Applicable Area Disaggregated General Ecosystem Toolbox V3. https://gadget-framework.github.io/gadget3/, https://github.com/gadget-framework/gadget3/.
Mikhaylov, A. 2016. Long-term HCR-parameters estimation for Greenland halibut based on production model. Working paper, no 14. in: Report of the Arctic Fisheries Working Group (AFWG), Dates 19-25 April 2016, ICES HQ, Copenhagen, Denmark. ICES CM 2016/ACOM:06. 621 pp.
Mikhaylov, A. 2019. Update referent point estimation for Greenland halibut based on production model. Working paper, no. 21 in: Report of the Arctic fisheries Working Group (AFWG), April 2019.
Nedreaas, K. 2014. Review of historic commercial catch-per-unit-of-effort (cpue) series previously used in stock evaluation of Greenland halibut ( Reinhardtius hippoglossoides ) in ICES Subareas I and II. Are such cpue series appropriate to use in future Greenland halibut stock assessments? Working document, no 2. in: Report of the Data Compilation Workshop on Northeast Arctic Greenland Halibut and Assessment Methods (DCWKNGHD), 10–12 November 2014, Murmansk, Russia. ICES CM 2014/ACOM:65. 56 pp.
Russkikh A.A., Kovalev Yu A., Tchetyrkin A.A. Revision of Russian survey indices used for Greenland halibut stock assessment. WD12, AFWG 2021
Úbeda, J., Nogueira, A., Tolimieri, N., Vihtakari, M., Elvarsson, B., Treble, M., and Boje, J. 2023. Using multivariate autoregressive state‐space models to examine stock structure of Greenland halibut in the North Atlantic. Fisheries Management and Ecology: doi/10.1111/fme.12639.
Vihtakari, M., Elvarsson, B. Þ., Treble, M., Nogueira, A., Hedges, K., Hussey, N. E., Wheeland, L., et al. 2022. Migration patterns of Greenland halibut in the North Atlantic revealed by a compiled mark–recapture dataset. ICES Journal of Marine Science, 79: 1902–1917.
Vihtakari, M., Butler, W., Howell, D., Hallfredsson, E.H., Windsland, K.,Elvarsson, B., 2023. Assessment model for the Northeast Atlantic Greenland halibut stock (ghl.27.1-2). WD 17, ICES WKBNORTH.
Westgaard, J.-I., Saha, A., Kent, M.P., Hansen, H.H., Knutsen, H., Hauser, L., Cadrin, S.X., Albert, O.T. and Johansen, T., 2016. Genetic population structure in Greenland halibut ( Reinhardtius hippoglossoides ) and its relevance to fishery management. Canadian Journal of Fisheries and Aquatic Sciences, 74:475-485.
Windsland, K., Vihtakari, M., Hallfredsson, E. H., Howell, D. 2023. Data revision for the Northeast Atlantic Greenland halibut stock (ghl.27.1-2). WD2, ICES WKBNORTH 2023
Chapter 9. Evaluation of risk thresholds in escapement rule for capelin in the Barents Sea ( subareas 1 and 2, excluding division 2.a west of 5°W )
Background
An evaluation of harvest control rules (HCRs) for Barents Sea capelin was conducted in 2024 (Trochta et al. 2024). The results of this analysis were presented during the meeting of the Joint Norwegian-Russian Fisheries Commission in autumn 2024 where it was requested (main protocol section 16.3) that lower values of the risk threshold in the capelin escapement rule be evaluated. The existing escapement rule states that the capelin TAC shall not be set higher that that with 95% probability of allowing 200,000 tonnes (now called B escapement ) to spawn, with 95% being the risk threshold currently used in practice. The 2024 HCR evaluation simulation tested the performance of alternative values for B escapement and fixed minimum quotas with the existing 95% risk threshold. A follow-up HCR evaluation was conducted for a set of combinations of alternative risk threshold values (90%, 85%, 80%, and 75%) and B escapement values (100,000, 150,000, and 200,000 tonnes) for JRN-AFWG 2025. The results of this analysis are presented below.
Results
The same simulation modelling framework and assumptions used in the 2024 analysis were used to obtain the results shown here (methods described in Trochta et al. 2024). For each HCR in this analysis, 1000 simulations of 36 year projections were conducted and evaluated. The following performance metrics were calculated:
Maximum risk that April 1 SSB is below Blim (from 18 years with open fishery)
Median number of years that April 1 SSB is below Blim (from 18 years with open fishery)
Median number of years that the fishery closed (from the total 36 years)
Median catch (from 18 years with open fishery)
Median SSB (from 18 years with open fishery)
Most of these performance metrics were computed from a subset of years where the fishery opened in at least 5% of iterations under any HCR, and thus disregard when naturally lower recruitment caused SSB to fall below Blim. This ensures the same subset of years is represented in the performance metrics as done in the 2024 analysis (Trochta et al. 2024).
Performance metrics were calculated from simulations for a total of 13 alternative HCRs based on five potential risk threshold values and three potential B escapement values (Figure #.1). Simulations of HCRs with B escapement =100,000 tonnes and risk thresholds of 75% and 80% were not conducted because these would not have been precautionary (>5% maximum risk) based on results for HCRs with the same B escapement and higher risk threshold values (85% and greater).
Using lower risk thresholds in the escapement rules gradually increased the maximum risk of falling below Blim, where risk threshold values less than 90% were generally not precautionary across the alternative B escapement considered. Importantly, the number of years where SSB fell below B lim drastically increased with lower risk threshold values, going from 3 years with an 80% threshold to 12 years with a 75% threshold combined with B escapement =200,000 tonnes (and from 1 year with an 85% threshold to 11 years with an 80% threshold combined with B escapement =150,000 tonnes).
Amongst the other performance metrics, non-substantial differences were seen in the number of years with a closed fishery as well as an expected trade-off in increasing yield and decreasing SSB (and higher maximum risk) with lower HCR risk threshold values (Figure #.1). More generally, similar performance differences result from either changing only B escapement or the risk thresholds. In other words, one could attain similar if not identical HCR performance by changing only B escapement and keeping the same risk threshold (95%), compared to also changing the risk threshold.
This set of HCRs was also tested against a scenario where the absolute biomass survey that takes place in the autumn prior to the advice year (and is a crucial input for the calculation of the capelin TAC) is biased upward by 10% on average. This scenario was also simulated in the 2024 analysis for testing the robustness of HCR against a set of potentially critical yet plausible realities (Trochta et al. 2024). The performance of HCRs under this scenario clearly shows that risk thresholds less than the current value of 95% are not precautionary (Figure #.2). Additionally, most maximum risk values for thresholds less than 95% are substantially higher than 5% (the precautionary criterion). No substantial differences were seen in the trends of the other performance metrics across scenarios compared to Figure #.1. Overall, using a risk threshold lower than 95% not only increases the risk of SSB falling below Blim, but potentially by a substantial amount and especially against plausible uncertainties in the existing capelin advice process.
References
Trochta, John T, Bjarte Bogstad, Yury Kovalev, Dmitry Prozorkevich, Georg Skaret, Sindre Vatnehol, and Daniel Howell. 2024. “Report on evaluation of harvest rules for Barents Sea capelin in subareas 1 and 2 (Northeast Arctic), excluding division 2.a west of 5°W – full report“. IMR-PINRO report 2024-17. https://www.hi.no/templates/reporteditor/report-pdf?id=100338&51853545.
Tables and figures
Figure 9.1. Consequences of alternative configurations of the capelin escapement rule. Rows denote the specific consequence calculated (performance statistics), columns separate the Bescapement values, and colors denote alternative risk threshold values used in the HCR. Points represent either a percentage, number of years or a median where indicated. Lines represent the inner 90th quantile of the distributions if the statistic is not a percentage. Statistics are computed from 1,000 iterations.Figure 9.2. Consequences of different capelin escapement rules against a scenario where the autumn survey has a 10% upward bias on average. Rows denote the specific consequence calculated (performance statistics), columns separate the Bescapement values, and colors denote alternative risk threshold values used in the HCR. Points represent either a percentage, number of years or a median where indicated. Lines represent the inner 90th quantile of the distributions if the statistic is not a percentage. Statistics are computed from 1,000 iterations. Risk threshold values lower than 90% were not simulated with Bescapement=100,000 tonnes as these rules would not be precautionary.
1 The onshore and the at-sea sampling programs coordinated by the IEO were suspended in most of 2020, due notably to administrative problems and to a lesser extend to COVID-19. This affected all stocks. Both sampling programmes are hired by IEO through call for tenders addressed to specialized companies. The public tender launched in 2019 (to start in 2020) was declared void, having to be re-launched again. This second launch was delayed as a result of the paralysis of public activity during the state of alarm due to the COVID-19 pandemic and could only be reopened in June-July. Given that the process of awarding the contract by public tender takes three-four months under normal conditions, it was finally resolved in December 2020 and signed in January 2021. Since then, all activities have been resumed. The sampling to obtain the biological variables of the population (mainly reproduction and growth) is normally carried out in the IEO laboratories. This activity has also faced problems in 2020. On the one hand the administrative and financial difficulties of the IEO prevented the purchasing of samples in the market and on the other hand the three months closure of the labs (15 March to 21 June) due to COVID-19 did not allow for a normal activity.
2 Greenland halibut (Reinhardtius hippoglossoides) in subareas 1 and 2 (Northeast Arctic); ghl.27.1-2.