Gå til hovedinnhold

Evaluation of contaminants in wild-caught Norwegian seafood

— Prioritization of species for risk-based monitoring

Summary

Official monitoring and control of foods to ensure the health of consumers is regulated through EU and Norwegian law. According to these regulations, monitoring of wild-caught seafood from Norwegian marine areas should be performed on a risk basis. The aim of this work was to provide an overview of existing knowledge about contaminants in wild-caught fish and other seafood and conduct a risk-based prioritization of seafood species as a basis for risk-based control plans to be implemented by the Norwegian Food Safety Authority (NFSA) for wild-caught Norwegian seafood.

Contaminant data collected by the Institute of Marine Research in several different monitoring programs during 2006-2023 were compiled for a wide range of different seafood species, including well-documented contaminants and seafood species as well as contaminants and species for which data were lacking. A risk-based prioritization of seafood species to be included in control plans was performed based on these data, primarily data from the most recent years available. We considered several relevant potential risk factors, including potential for high exposure due to high consumption (high catch volumes), potential for exceeding maximum levels (high contaminant levels), potential for exceeding tolerably weekly intake (high contaminant levels), and potential risks due to knowledge gaps (insufficient data). A final evaluation and prioritization based on all risk factors combined was performed for a total of 43 seafood species, and the seafood species were prioritized as high, medium, lower or lowest priority for inclusion in risk-based control plans.

Species with high catch volumes, Atlantic herring, Atlantic mackerel, Atlantic cod, saithe and haddock, were assigned a high priority since they contribute significantly to the overall exposure of the population to contaminants from seafood. In addition, Atlantic bluefin tuna was assigned a high priority due to a high fraction of individual fish having contaminant levels above the maximum level (ML) for both mercury (Hg) and dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs).

Medium priority was assigned to Greenland halibut due to a (low) fraction of the individual fish exceeding the MLs for both Hg and dioxins and dl-PCB, and to Atlantic halibut due to a (low) fraction of the individual fish having contaminant levels in fillet above the MLs for Hg, dioxins and dl-PCB and sum 4PFAS. Medium priority was also assigned to tusk, anglerfish and blue ling due to a high fraction of individual fish having contaminant levels above the ML for Hg, but not for other contaminants. Brown meat of brown crab was assigned a medium priority due to risk of exceeding the tolerable weekly intake (TWI) for both Cd and dioxins and dl-PCB, whereas claw meat of brown crab was assigned a lower priority due to a (low) fraction of the individuals exceeding the ML for Cd.

A lower priority was assigned for ling, European plaice, pollack, Atlantic wolffish, Norway lobster and European lobster due to a fraction, albeit a low one, of the individuals exceeding the ML for a single contaminant (Hg or PFAS). Of these, Norway lobster and European lobster are also data deficient. A lower priority was also assigned to European plaice, European sprat, Atlantic horse mackerel, wild Atlantic salmon, European hake, greater argentine, spotted wolffish, and beaked redfish due to risk of exceeding TWI for a single contaminant group (i.e., dioxins and dl-PCB or PFAS). Of these, European sprat and Atlantic horse mackerel are also data deficient and for wild Atlantic salmon the data are old, which increases the need for further monitoring of these species.

The lowest priority was assigned for golden redfish and Northern shrimp, since no risks were identified for these species. For the remaining species that were evaluated, the data are insufficient to determine a priority level, and further monitoring is necessary for these species before potential risk can be evaluated.

Future monitoring should also focus on regions with high levels of contaminants in certain species, including fjords and coastal waters and data deficient areas. Even with limited commercial fishery in fjords and coastal areas, monitoring is important to assess the exposure of recreational and sustenance fishers. Data are also needed for all species on per- and polyfluoroalkyl substances (PFAS) and new contaminants including microplastic, which requires considerable efforts in method development.

A graphical abstract with a three-armed star illustrating that high catch volume, high contaminant concentrations and high knowledge gaps all lead to Monitoring need which is shown in the center of the star.
Summary of the outcome of the risk evaluation of contaminants in wild caught Norwegian seafood. Three different factors were identified contributing to a potential health risk, and hence increase the need for monitoring: 1) a high Catch volume which increases the risk of high contaminant exposure 2) high Contaminant concentrations which increase the risk of exceeding EU and Norwegian maximum levels or tolerable weekly intake. 3) Knowledge gaps caused by a low number of samples analyzed, outdated data, insufficient geographical coverage, contaminants of emerging/increasing concern and new food resources.

 

1 - Introduction

Official monitoring and control of foods to ensure the health of consumers is regulated through European Union (EU) and Norwegian law and is also important to ensure market access. The EU Regulation (EU) 2017/625, implemented in Norwegian law as FOR-2020-03-03-704, provides an obligation for member states to ensure that official controls are performed by competent authorities based on a multi-annual national control plan (MANCP). The obligation to include contaminants in wild caught seafood in a MANCP has recently been implemented in EU law through regulations (EU) 2022/931 and 2022/932. There, it is stated for unprocessed wild-caught fishery products as well as crustaceans and bivalve molluscs: “…the number of samples is to be determined by each Member State according to the level of production and the problems identified”.

Thus, control plans to be implemented by the NFSA for wild caught seafood must be risk-based, and an overview of present knowledge and an identification of risks is needed for the preparation of these control plans. Therefore, in 2022, the NFSA asked the Institute of Marine Research (IMR) to prepare an overview of current knowledge on undesirable substances in wild caught seafood species, identifying substances and species that may constitute a potential health risk, along with professional justification for each identified species.

The overview should contain aggregated information about:

  • Problematic contaminants in seafood
  • Which contaminants and seafood species that are well documented and which are data deficient
  • Geographical variation of contaminants in seafood

The knowledge gathered should be evaluated with regard to risk so that NFSA may use this information to prioritize which species and contaminant groups to analyse in the control plan.

The monitoring system for live bivalve molluscs (LBM) is not affected by the new regulations, since control of LBM are regulated by other EU regulations ((EU) 2019/627 and (EU) 2019/624 supplementing (EU) 2017/625), which are dealing with acute risks from microbiology and biotoxins and hence are more comprehensive than regulations for other types of seafood. Therefore, data from the LBM monitoring on behalf of the NFSA are not included in this evaluation.

1.1 - Monitoring of contaminants in wild fish

The production of wild caught Norwegian seafood is both larger and more diverse than that of farmed seafood, with a multitude of species captured over large geographical areas. The total volumes captured by commercial Norwegian fishing vessels were in recent years in the range of 2.3 – 2.4 million tons, excluding macroalgae. However, relatively few species account for most of the catch volume. Pelagic fish (Atlantic herring (Clupea harengus), Atlantic mackerel (Scomber scombrus), blue whiting (Micromesistius poutassou) and more), constitute about half of this volume, and the three cod fishes Atlantic cod (Gadus morhua), saithe (Pollachius virens) and haddock (Melanogrammus aeglefinus) approximately one third. The rest is a mixture of demersal fish, flatfishes, shellfish and an increasing volume of Antarctic krill (Euphausia superba), also included in the landing statistics of the Norwegian Directorate of Fisheries (Fangst fordelt på art (offisiell statistikk) | Fiskeridirektoratet).

A significant part of the total volume of wild capture production, including krill and several pelagic fish species (e.g. blue whiting, sandeel (Ammodytes spp.)), is primarily used for industrial production of fish meal and -oil, mainly as ingredients for feed for farmed fish. This is not evaluated in this report.

The control mechanisms for ensuring that levels of contaminants in seafood are within regulatory limits according to the European Commission Regulations (EC) No 1881/2006 and (EU) 2023/915, have until 2023 been regulated differently for wild caught seafood and farmed seafood. Farmed fish has, since the Council Directive (EU) 96/23/EC was implemented in 1996, been under a strict monitoring regime requiring a specific number of samples according to production volume for the analyses of veterinary products and contaminants. Before 2023, these regulations did not include wild-caught seafood. However, independent of regulations, surveillance and monitoring of contaminants in Norwegian wild-caught seafood have been carried out with the aim of obtaining an overview and documentation of the contents of different contaminants, to fulfil export requirements for the fishing industry and to ensure the protection of consumers.

The focus on contaminants and food safety increased greatly in the 1990s and a programme for systematic spot-check based monitoring of metals and PCBs in seafood was initiated by the Institute of Nutrition, Directorate of Fisheries. This institute became the National Institute of Nutrition and Seafood Research (NIFES) in 2003 and merged with the Institute of Marine Research (IMR) in 2018. As a consequence of several findings of contaminants in Norwegian fish above maximum levels (e.g., Hg in Greenland halibut in 2006 (Julshamn et al., 2006)), large systematic surveys, referred to as baseline studies, were initiated for selected species (see Table 1). The first species selected for baseline studies were chosen because of their large catch volumes, except Greenland halibut, which was chosen because of its risk of exceeding the ML for Hg. The baseline studies were designed, as far as possible, to cover the geographical areas where Norwegian fishery statistics showed that the respective species were captured, while also investigating seasonal variation. The number of samples in a baseline study ranged from about 800 to more than 2000 individual fish. After the initial comprehensive baseline studies with high numbers of samples of individual fish (Greenland halibut, herring, mackerel, cod, saithe, tusk and haddock), later baseline studies were mostly scaled down to fewer fish and/or a combination of individual fish and pooled samples (Table 1).

An important aim of the baseline studies was to establish a basis for continued knowledge-based monitoring of contaminants in our most important fish stocks. The baseline studies provided thorough documentation on a variety of factors influencing contaminant levels in the different species, including geographical catch area, season, age, size, and fat content of the fish. Based on this knowledge, more directed risk-based monitoring programs (“follow-up monitoring”) could be designed for each species. Such a follow-up monitoring program (“Oppfølging av basisundersøkelser”) was started in 2011. In the beginning, follow-up monitoring was performed for all the species where baseline studies had been completed (Table 1), i.e., Norwegian spring spawning herring (NSS-herring) and Greenland halibut from 2011, Atlantic mackerel from 2013 and North Sea herring, Atlantic cod and saithe from 2014. From 2019, tusk was also included in the follow-up monitoring, and haddock was included from 2024. The extent and frequency of follow-up monitoring for each species was determined based on both commercial importance of the species and risk of exceeding MLs. The remaining species for which baseline studies have been completed, have so far not been included in this program.

In parallel with the baseline studies and the follow-up monitoring program, spot-check monitoring was continued for species or areas with little data. Data from spot-check monitoring have also been used as basis for selection of new baseline studies. In the latest years, new resources (species expected to be of increasing interest as food and feed in coming decades or new species in Norwegian waters), and samples from fjords have been included in spot-check monitoring. Some wild bivalves with little data are included in the spot-check monitoring of new resources, and are used in this evaluation, even though the NFSA monitoring program for live bivalve molluscs (LBM) is not included here.

From the beginning in the 1990s and until now, sampling has been carried out via IMR’s research cruises, their reference fleet (fishing vessels on contract with the IMR), and other directly engaged fishermen. The samples were analysed for contaminants for which maximum levels were set, such as heavy metals, PCBs and dioxins, but also other substances of emerging concern such as brominated flame retardants for which MLs were not in place. In recent surveys, PFAS and chlorinated pesticides have also been included. The chemical analyses were mostly performed at IMR/NIFES laboratories accredited according to NS-EN ISO/IEC 17025:2017.

The baseline studies were initially funded through a combination of means from the Norwegian Seafood Research Fund, the Herring Fishermen’s Sales Organisation (Sildesalgslaget; for herring), the Ministry of Fisheries and Coastal Affairs (now Ministry of Trade, Industry and Fisheries), and the NFSA. Later baseline studies were mostly performed as a part of the NFSA’s monitoring portfolio, through 3–4-year programmes. An exception in later years is the haddock baseline study, which was funded directly from the Ministry of Trade, Industry and Fisheries, as is also the follow-up monitoring program. Table 1 gives an overview of the different baseline studies, resulting reports and peer-review publications, and follow-up monitoring.

Species Norwegian/English (Latin) Sampling years Number of fish (approx.) Report Publ. in international peer reviewed journals Follow-up monitoring
NVG-sild/ NSS herring (Clupea harengus) 2006-2007 800 Frantzen et al., 2009 Frantzen et al., 2011, Frantzen et al., 2015; Nøstbakken et al., 2018, Azad et al., 2019, Ho et al., 2021, Nøstbakken et al., 2021; Ho et al., 2021; Ho et al., 2023; Ho et al., 2024 Every third year
Blåkveite/ Greenland halibut (Reinhardtius hippoglossoides) 2006-2008 1300 Nilsen et al., 2010 Nøstbakken et al., 2018; Azad et al., 2019; Bank et al., 2021; Ho, Bank et al., 2021; Ho et al., 2024 Annual
Makrell/ Atlantic mackerel (Scomber scombrus) 2007-2009 1200 Frantzen et al., 2010 Nøstbakken et al., 2018; Azad et al., 2019; Nøstbakken et al., 2021; Ho, Bank et al., 2021; Ho, Frantzen et al., 2023; Frantzen et al., 2024a; Ho et al., 2024 Annual/every third year (depending on area)
Torsk/ Atlantic cod (Gadus morhua) 2009-2011 2100 Julshamn et al., 2012a Julshamn et al., 2013a; Julshamn et al., 2013b; Julshamn et al., 2013c; Nøstbakken et al., 2018; Azad et al., 2019; Ho, Bank et al., 2021; Ho, Frantzen et al., 2023; Bank et al., 2023a Annual
Nordsjøsild/ North Sea herring (Clupea harengus) 2009-2010 1000 Duinker et al., 2012 Nøstbakken et al., 2018; Azad et al., 2019; Nøstbakken et al., 2021; Ho, Bank et al., 2021; Ho, Frantzen et al., 2023; Ho et al., 2024 Every third year
Sei/ Saithe (Pollachius virens) 2010-2013 1600 Nilsen et al., 2012, Nilsen et al., 2013 Nøstbakken et al., 2018; Azad et al., 2019; Ho, Bank et al., 2021; Ho, Frantzen et al., 2023 Annual (every second year from 2023)
Taskekrabbe/ Brown crab (Cancer pagurus) 2011 400 Julshamn et al., 2012c   Irregular
Kongekrabbe/ Red king crab (Paralithodes camtschaticus) 2012 200 Julshamn et al., 2013d Julshamn et al., 2015 None
Brosme/ Tusk (Brosme brosme) 2013-2016 1400 Frantzen and Maage, 2016 Ho, Bank et al., 2021; Ho, Frantzen et al., 2023 Annual
Lange/ Ling (Molva molva) 2013-2016 800 Frantzen and Maage, 2016 Ho, Bank et al., 2021; Ho, Frantzen et al., 2023 None
Kveite/ Atlantic halibut (Hippoglossus hippoglossoides) 2013-2016 400 Nilsen et al., 2016 Nøstbakken et al., 2018; Ho, Bank et al., 2021; Ho, Frantzen et al., 2023 Irregular
Hyse/ Haddock (Melanogrammus aeglefinus) 2015-2019 1250 Kögel et al., 2021 Ho, Bank et al., 2021 Every second year from 2024
Rødspette/ Plaice (Pleuronectes platessoides) 2016-2018 450 Frantzen et al., 2020 Ho, Bank et al., 2021; Ho, Frantzen et al., 2023 None
Breiflabb/ Anglerfish (Lophius piscatorius) 2016-2019 300 Frantzen et al., 2020 Ho, Frantzen et al., 2023 None
Lyr/ Pollack (Pollachius pollachius) 2016-2019 300 Frantzen et al., 2020 Ho, Frantzen et al., 2023 None
Uer/ Golden redfish (Sebastes norvegicus) 2016-2018 200 Nilsen et al., 2020b Ho, Frantzen et al., 2023 None
Snabeluer/ Beaked redfish (Sebastes mentella) 2016-2018 500 Nilsen et al., 2020b Ho, Frantzen et al., 2023 None
Lysing/ European hake (Merluccius merluccius) 2019-2022 800 Bank et al., 2023b Zhu et al., 2025 None
Vassild/ Argentines (Argentinus spp.) 2019-2022 300 Wiech et al., 2023   None
Gråsteinbit/ Atlantic wolffish (Anarhichas lupus) 2019-2022 200 Wiech et al., 2023   None
Flekksteinbit/ Spotted wolffish (A. minor) 2019-2022 250 Wiech et al., 2023   None
Table 1. Overview of the species/fish stock for which baseline studies were performed. Sampling years, number of fish, references for reports and published scientific articles, and frequency of follow-up monitoring is given for each species.

Abbreviations: NVG-sild (norsk vårgytende sild), NSS herring (Norwegian spring spawning herring)


1.2 - Surveys of contaminants in seafood from polluted areas

Several marine areas in Norway are polluted with different contaminants potentially compromising seafood safety locally. Especially fjords, harbours, urban areas and generally areas close to known point sources of pollution have been identified as problematic. Often the contaminants were deposited in the bottom sediments years ago. In such areas, especially recreational fishermen and their families have a higher risk of critical exposure to contaminants from seafood. Some of these areas also have commercial fisheries. IMR has performed surveys of contaminants in fish from areas with known pollution, resulting in a series of reports addressing these challenges which threaten fish and/or population health as presented in Appendix Table A1. Data from these and other studies were used by the NFSA to issue necessary consumption advice to the public which are currently published at mattilsynet.no (Unngå fisk og skalldyr fra forurensede havner, fjorder og innsjøer | Mattilsynet).

1.3 - Data sharing

The data from the monitoring programs and surveys are freely available to users upon request, and much can be found in reports published at hi.no. Contaminant data are summarised online in Sjømatdata (Seafood data | hi.no), where annual mean, minimum and maximum values for each species and contaminant are presented and updated regularly. Data for the species defined as indicators in the Norwegian management plans (Meld. St. 20 (2019–2020) (regjeringen.no)) are reported regularly at miljostatus.no (Havindikatorer - indikatorer for tilstanden i havet (miljodirektoratet.no)), separately for each of the sea areas North Sea and Skagerrak, Norwegian Sea and Barents Sea. Data are submitted to scientific bodies that conduct comprehensive risk assessments and give advice on food safety, such as The Norwegian Scientific Committee for Food and Environment (VKM), The European Food Safety Authority (EFSA) and The Food and Agriculture Organization of the United Nations (FAO). The collected data on seafood is essential when new regulatory maximum levels in food and feed are being developed within the EU and is shared through the EFSA Call for data system.

1.4 - Contaminants found in fish and other seafood

A short description of important contaminants found in fish and other seafood is given in fact box 1.

For fish and other seafood, MLs have been set in EU and Norway (Commission regulation (EU) 2023/915; Forskrift om visse forurensende stoffer i næringsmidler, 2015) for Hg, Cd, lead (Pb), PFAS (perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA), perfluorohexanesulfonic acid (PFHxS) and the sum of these), sum dioxins (PCDD/F), sum dioxins and dl-PCBs (PCDD/F+dl-PCB), and sum non-dioxin-like PCBs (PCB6). MLs have also been set for benzo(a)pyrene (BaP) and sum 4 PAH (polyaromatic hydrocarbons), but for fish and crustaceans these MLs only apply to smoked products (Table 2).

TWI-values have been established for many contaminants based on their toxicity. TWI gives the amount of a substance that a person can consume weekly per kilogram of bodyweight over a lifetime without risk of adverse health effects. An overview of TWI for substances considered here is given in Table 3.

A fact box with text describing each of the contaminants mercury, lead, cadmium, arsenic, PFAS, dioxins and furans, PCBs and PAH, contaminants that are found in fish and other seafood.

Fact box 1. Description of important contaminants found in fish and other seafood


Contaminant Fish muscle Fish liver Bivalves Crustaceans*
Mercury (mg/kg ww) 0.3/0.5/1.0**   0.5 0.5
Cadmium (mg/kg ww) 0.05/0.1**   1.0 0.5
Lead (mg/kg ww) 0.30   1.5 0.5
Sum dioxins and furans (ng 2005-TEQ/kg ww) 3.5   3.5 3.5
Sum dioxins, furans and dl-PCBs (ng 2005-TEQ/kg ww) 6.5/ 10** 20 6.5 6.5
Sum non-dl- PCBs, PCB6 (µg/kg ww) 75/ 125/200/ 300** 200 75 75
PAH: Benzo(a)pyrene (µg/kg ww) 2.0/ 5.0** (smoked)   5.0 (6.0 smoked) 2.0 (smoked)
Sum 4 PAH (µg/kg ww) 12.0/ 30.0** (smoked)   30 (35 smoked) 12.0 (smoked)
Sum 4 PFAS (µg/kg ww) 2.0/8.0/45**   5.0 5.0
PFHxS (µg/kg ww) 0.20/1.5**   1.5 1.5
PFOS (µg/kg ww) 2.0/7.0/35**   3.0 3.0
PFOA (µg/kg ww) 0.20/1.0/8.0**   0.70 0.70
PFNA (µg/kg ww) 0.5/2.5/8.0**   1.0 1.0
Table 2. Maximum levels (MLs) for different contaminants in EU and Norway (Commission regulation (EU) 2023/915; Forskrift om visse forurensende stoffer i næringsmidler, 2015). Only MLs applying to species occurring in Norwegian waters are shown. MLs applicable in other countries, may be found in De Witte et al., 2022.

Abbreviations: ww (wet weight), TEQ (toxic equivalent)
*ML applies to muscle of legs and claws
**Depending on species

 

Contaminant   TWI   Reference  
Sum dioxins and dl-PCB   2 pg TEQ/kg bw   EFSA CONTAM Panel, 2018  
Methylmercury   1.3 µg/kg bw   EFSA CONTAM Panel, 2012  
Cadmium   2.5 µg/kg bw   EFSA CONTAM Panel, 2009  
Sum of PFOA, PFOS, PFNA, PFHxS   4.4 ng/kg bw   EFSA CONTAM Panel 2020  
Table 3. Tolerable Weekly Intake (TWI) for contaminants relevant for seafood.

Abbreviations: TEQ (toxic equivalent), bw (body weight)

1.5 - Aim of the work

The aim of this work was to prepare an overview of current knowledge about contaminants in wild-caught fish and other seafood and perform a risk-based prioritization of seafood species as a basis for preparation of risk-based control plans to be implemented by the NFSA for wild-caught Norwegian seafood.

Chemical contaminants in seafood may constitute a potential health risk. Therefore, we aimed to compile existing data for contaminants in various seafood species, including well-documented contaminants and seafood species as well as contaminants and species for which data are lacking. In addition, where available, information about geographical variation of contaminants in seafood was included in the compiled data.

Based on the aggregated existing knowledge, we aimed to identify and prioritize seafood species to be considered for risk-based monitoring. Risk factors included were the potential for high exposure (high catch volumes), potential for exceeding maximum levels (high contaminant levels), potential for exceeding tolerably weekly intake (high contaminant levels), and potential risks due to knowledge gaps (insufficient data).

2 - Method

We evaluated contaminants in wild-caught Norwegian seafood by using data obtained by IMR/NIFES in several baseline studies and other monitoring programs during the period 2006-2023. Contaminant data obtained by other institutions were not included in this report.

2.1 - Compilation of the contaminant data

Data from IMR’s monitoring during 2006-2023 was extracted from the IMR database LIMS (Laboratory Information Management System) and compiled in Appendix Tables A2-A8. Data for each of the contaminants Hg, Cd, and Pb, as well as sum of dioxins and furans (PCDD/F), sum of dioxins, furans and dioxin-like PCBs (PCDD/F+dl-PCB), sum of non-dioxin-like PCBs (PCB6) and PFAS were compiled in separate tables. If available, data for the last 5 years (2017-2021) were compiled in the table, but for species where only older data existed, the most recent available data were used. Contaminant data were presented for each species or fish stock. Where data for one species was available for different geographical areas, e.g. Barents Sea, Norwegian Sea and North Sea, data were presented separately for each area. For some species, data were also presented separately for different tissues, e.g. different parts of the fillet such as fatty belly parts and leaner parts. For each contaminant and species/fish stock/area/tissue, the following information was compiled in the Appendix Tables A2-A8:

  • Name of species/fish stock
  • Tissue (e.g. fillet, muscle, whole fish, claw meat…)
  • Name of monitoring program(s) which was the source of the data
  • Sampling year(s) for samples used in the evaluation
  • Geographical area
  • Maximum level (ML) relevant for the species/contaminant
  • Individual or composite sample
  • Number of samples analysed
  • Number of samples above the ML
  • Fraction of samples above the ML (%)
  • Mean, median, minimum-maximum and 95% percentile of the concentrations
  • Number of samples below the limit of quantification (LOQ)
  • Amount that may be consumed before exceeding TWI for a person of 70 kg*

*For contaminants where a TWI has been set (Hg, Cd, PCDDF+dl-PCB and Sum 4 PFAS), the amount of tissue (fillet, muscle meat, liver etc.) which may be consumed by a person of body weight (bw) 70 kg before exceeding the TWI, was calculated as follows:

Equation 1: Amount (g) = TWI*70/Ccontamin *1000

where TWI is tolerable weekly intake (1.3 µg/kg bw for methyl mercury (MeHg), 2.5 µg/kg bw for Cd, 2 pg TEQ/kg bw for PCDDF+dl-PCB, and 4.4 ng/kg bw for sum 4 PFAS) and Ccontamin is the mean concentration of the contaminant given as mg/kg wet weight (ww) for Hg and Cd, as ng TEQ/kg ww for PCDDF+dl-PCB, or as µg/kg ww for sum 4 PFAS.


2.2 - Risk-based prioritization of seafood species to be included in control plans

2.2.1 - Evaluation of risk factors

Based on the data from IMR’s monitoring compiled in Appendix Tables A2-A8, we performed a risk-based prioritization of seafood species to be included in the NFSA control plans for wild-caught Norwegian seafood. Seafood species to be considered for inclusion in the control plans were identified and evaluated according to the following potential risk factors:

  1. Potential for high exposure due to high catch volume/high consumption
  2. Potential for exceeding ML
  3. Potential for exceeding TWI
  4. Risks arising from knowledge gaps

Prioritization of species was performed by answering a set of questions (Questions 1 – 3), corresponding to the three first risk factors, as described in the following sections (2.2.1.1 – 2.2.1.3). Depending on the answer, a score between 0 and 3 was given for each risk factor and species. In addition, species in need of monitoring due to knowledge gaps were identified in three different categories as described in section 2.2.1.4.

2.2.1.1 - Potential for high exposure due to high catch volume/high consumption

Norwegian seafood species with high catch volumes were prioritized for inclusion in control plans due to potential for high exposure, since a high catch volume indicates high consumption by the population, and due to large export. Data on total catch volume was obtained from the Directorate of Fisheries for each species (Fangst fordelt på art (offisiell statistikk) | Fiskeridirektoratet).

Text box with the following text: Question 1: What is the annual catch volume of the species? •	Catch volume less than 100 000 tons: score = 0 •	Catch volume more than 100 000 tons: score = 3
Figure 1. Questions asked for assessing monitoring requirements with respect to potential for high exposure due to high catch volume/high consumption. A score of 0 or 3 was given depending on the answers.
2.2.1.2 - Potential for exceeding maximum levels

In the EU, Regulation EU 2023/915 sets maximum levels for certain contaminants in food, and Norwegian seafood species with high concentrations of one or more contaminants with a potential for exceeding one or more maximum levels were prioritized for inclusion in control plans. The contaminant concentrations compiled in Appendix Tables A2-A8, were evaluated against the maximum levels for Hg, Cd, Pb, sum dioxins, sum dioxins and dioxin-like PCBs and sum non-dioxin-like PCBs (PCB6) by calculating the fraction of individual fish exceeding the MLs. In addition, new data from 2023 on PFAS concentrations in a more limited set of 209 samples from eight different fish species and shrimp, analysed with a more sensitive analytical method and reported by Frantzen et al. (Frantzen et al., 2024b), were evaluated against the new maximum levels for PFOS, PFOA, PFNA, PFHxS and the sum of these four PFAS.

Text box with the following text: Question 2:  What percentage of individual samples of the species had contaminant concentrations above maximum levels during the last (five) years of surveys or monitoring? •	Less than 1% of individual samples exceeded any of the maximum levels: score = 0 •	Between 1% and 10% exceeded the ML for one contaminant/contaminant group (outliers not considered): score = 1 •	Between 1% and 10% exceeded the ML for more than one contaminant/contaminant group: score = 2  •	More than 10% exceeded the MLs for one contaminant/contaminant group: score = 2 •	More than 10% exceeded the MLs for more than one contaminant/contaminant group: score = 3 Only muscle samples were given a score, but since there are maximum levels for dioxins and dioxin-like PCBs and PCB6 in fish liver as well, the fraction of liver samples exceeding these MLs were evaluated and described in the text, whenever relevant.
Figure 2. Questions asked for assessing monitoring requirements with respect to potential for exceeding maximum levels. A score of 0-3 was given depending on the answers.
2.2.1.3 - Potential for exceeding tolerable weekly intake

Norwegian seafood species with high concentrations of one or more contaminants which may lead to a risk of exceeding TWI were prioritized for inclusion in control plans. To evaluate the health risk connected to the levels of Hg, Cd, dioxins and dl-PCBs (PCDD/F+dl-PCB), and polyfluorinated alkyl substances (PFAS), the maximum consumption of each species before exceeding the TWIs set by EFSA (EFSA, 2012a,b, Knutsen et al., 2018b) was calculated. For this purpose, mean concentrations of contaminants were used, not considering different geographical areas separately, and a consumer body weight of 70 kg was assumed (see Equation 1). Therefore, the risk may be higher for high consumers of seafood caught locally in areas where concentrations are higher, as well as for individuals of lower body weight such as small children. Intake of contaminants from other sources were not taken into account in this evaluation.

text box with the following text: Question 3:  What is the maximum amount of fish meat from the species that may be consumed before exceeding the TWI for a 70 kg person? •	200 g or more may be consumed before exceeding the TWI for any of the contaminants/contaminant groups: score = 0 •	Less than 200 g may be consumed before exceeding the TWI for one contaminant/contaminant group: score = 1 •	Less than 200 g may be consumed before exceeding the TWI for two contaminants/contaminant groups: score = 2 •	Less than 200 g may be consumed before exceeding the TWI for three contaminants/contaminant groups: score = 3
Figure 3. Questions asked for assessing monitoring requirements with respect to potential for exceeding tolerable weekly intake. A score of 0-3 was given depending on the answers.

2.2.1.4 - Knowledge gaps for specific species or areas

Norwegian seafood species with knowledge gaps on the occurrence of contaminants were prioritized for inclusion in control plans (or other monitoring). Knowledge gaps increase the risk of potential challenges going unnoticed. Species in need of extended data collection to uncover possible challenges were identified in the following three categories:

  • Low N: Species with insufficient number of analysed samples (less than 100 individuals)
  • Old data: Species with outdated data (more than 10 years old)
  • Low N in some areas: Species which have shown a potential for high levels of certain contaminants, but where data from certain geographical areas are insufficient.
2.2.1.5 - Other knowledge gaps

In addition to the knowledge gaps identified for specific species or areas, the following knowledge gaps in need of extended monitoring and method development, were identified and discussed:

  • Contaminants of emerging/increasing concern (e.g., PFAS, microplastics).
  • New resources: Macroalgae, mesopelagic species, new bivalve species etc.

2.2.2 - Priority of species and recommendation for inclusion in control plans

The final prioritization of seafood species to be included in control plans was based on the scores obtained when answering the questions for each of the three potential risk factors as presented in section 2.2.1.1-2.2.1.3. The priority was assigned based on the highest score among all three potential risk factors. The potential for exceeding maximum levels in fish liver was not taken into account in this prioritization, as consumption of liver was considered low. NFSA advises children, as well as pregnant and breast-feeding women, to avoid consuming fish liver. Additionally, the general population is warned against eating liver from fish from coastal areas (Advarsler | Mattilsynet).

The priority of each species was assigned according to the following categories:

  • High priority: Species with score 3 as the highest score for any of the risk factors
  • Medium priority: Species with score 2 as the highest score for any of the risk factors
  • Lower priority: Species with score 1 as the highest score for any of the risk factors
  • Lowest priority: Species with score 0 across all risk factors
  • Unknown priority: Species for which there is insufficient data to determine a priority level

3 - Results and discussion

3.1 - Potential for high exposure due to high catch volumes

Data on catch volumes were obtained from the Norwegian Directorate of Fisheries (Appendix Table A9). Fish species with catch volumes >100 000 tons are Atlantic herring (Clupea harengus), Atlantic mackerel (Scomber scombrus), Atlantic cod (Gadus morhua), saithe (Pollachius virens), and haddock (Melanogrammus aeglefinus). These species generally have concentrations of contaminants below EU’s current MLs in fish fillet, but because of their large catch volumes and frequent consumption, these species may contribute more than most other fish species to the total intake of some contaminants. Therefore, it is crucial to monitor and document the levels of contaminants in these species regularly.

3.1.1 - Atlantic herring

Norwegian spring spawning (NSS) herring: The NSS herring has relatively low levels of contaminants compared to other herring stocks, and all individual fish had concentrations below MLs (Frantzen et al., 2009, Frantzen et al., 2011, Frantzen et al., 2015). However, because it is a fatty fish species, concentrations of lipid-soluble contaminants such as PCBs, dioxins and polybrominated diphenyl ether (PBDE)s are higher than for the lean fish species. The NSS herring stock migrates seasonally between feeding areas in the Norwegian Sea, wintering areas off Northern Norway and spawning areas off the Norwegian coast (primarily north of 62°N). Levels of organic contaminants varied seasonally (and hence geographically) and were highest in February-March when the herring were in the spawning areas. Follow-up monitoring every third year since 2011 has focused on this season as worst-case scenario.

North Sea herring: North Sea herring has generally low levels of contaminants compared to other fish species with some exceptions. The baseline study revealed higher levels of dioxins and dl-PCBs in local spring spawning herring from the coast of Telemark with several fish exceeding the MLs, possibly originating from a local source of pollution. For North Sea herring from the open sea the baseline study found organic contaminants close to the MLs in autumn samples from the southern areas of the North Sea but outside the Norwegian fishery area, and one single fish exceeding the ML for dioxins and furans (PCDD/F) (Duinker et al., 2012). A few concentrations close to the ML for Cd were found in autumn samples from the northern North Sea in fish after spawning. Based on this, sampling every third year is recommended targeting worst-case scenarios, with samples of both mature fish during autumn in the southern areas of the Norwegian fishery and autumn samples of fish after spawning in the northern North Sea. No concentrations above the MLs have been found in follow-up monitoring performed every third year since 2014.

3.1.2 - Atlantic mackerel

Atlantic mackerel of the Northeast Atlantic mackerel stock generally has concentrations of contaminants below MLs but has shown a marked geographical variation (Frantzen et al., 2010; Frantzen et al., 2024a). Fillet from the Skagerrak has higher concentrations of Hg, dioxins and dl-PCB and non-dl-PCBs than mackerel from all other areas. Mackerel is a fatty fish species, and the concentrations of lipid-soluble contaminants are considerably higher than for the lean fish species. Because of higher levels in the Skagerrak than in other areas, follow-up monitoring was given a higher frequency in the Skagerrak than in the North Sea, with annual sampling in the Skagerrak and sampling every third year since 2013 in the North Sea. In addition, mackerel from the Norwegian Sea was included in the follow-up monitoring with annual sampling from 2016. Because sampling in baseline studies and follow-up monitoring focused on areas where the highest volumes are caught in fisheries, there is a lack of information on levels of contaminants in mackerel captured in coastal areas.

3.1.3 - Atlantic cod

Fillet of cod has low levels of contaminants, where Hg is the contaminant which is closest to the ML (Julshamn et al., 2012a, Julshamn et al., 2013b, c). The largest cod stock in Norwegian fisheries is the Northeast Arctic cod in the Barents Sea where the lowest levels are found. Fjord areas in southern Norway and the North Sea have smaller stocks but three times higher levels of Hg, around 0.1-0.2 mg/kg ww. For the North Sea, 6.4% of individual fishes sampled during the period 2017-2021 have exceeded the ML for Hg of 0.3 mg/kg. Cod is a lean fish species, and the concentrations of lipid-soluble organic contaminants in cod fillet is therefore very low, well below the MLs. For liver, the concentrations of organic contaminants are much higher, and monitoring in 2017-2021 showed that both the North Sea and the Norwegian Sea have relatively high proportions of individual fish liver samples above the ML for dioxins and dl-PCBs, whereas fish liver from the Barents Sea have lower levels with only a small proportion (<1%) above the ML for dioxins and dl-PCBs.

Based on the results from the baseline study and due to the size of the fishery, follow-up monitoring for cod have been performed annually with samples collected from all three ocean areas. In the first years of annual monitoring, samples were collected from four positions in the Barents Sea, two in the Norwegian Sea and four in the North Sea which has the smallest fishery but the highest concentrations of contaminants. In 2018, the monitoring program for cod was evaluated, and based on results obtained so far, a reduced number of positions was considered sufficient for continued monitoring. From 2018 onwards, samples were collected from two positions in the Barents Sea, one position in the Norwegian Sea and two positions in the North Sea.

3.1.4 - Saithe

The levels of contaminants in fillet of saithe are generally low and well below the MLs (Nilsen et al., 2012, Nilsen et al., 2013). For Hg in fillet, there is a marked geographical variation with highest levels in Skagerrak, medium levels in the North Sea and Norwegian Sea and lowest levels in the Barents Sea, but in all areas the mean concentrations are well below the ML. Since saithe is a lean fish, the levels of organic contaminants in fillet are very low, far below the MLs. However, in liver, the levels of organic contaminants are high, with 18% of the individual fish above the ML for sum dioxins and dl-PCB in the period 2017-2021. The levels in liver follow the same geographical pattern as the levels in fillet with highest levels in Skagerrak, medium levels in the North Sea and the Norwegian Sea, and lowest levels the Barents Sea. Annual monitoring for saithe has been performed in all the four marine areas, with one position in Skagerrak (low fisheries, but highest level of contaminants, worst case scenario), one position in the North Sea, and two positions in both the Norwegian Sea and the Barents Sea where most of the commercial fisheries take place.

3.1.5 - Haddock

The levels of contaminants in fillet of haddock are generally low. No individual had concentrations above the MLs for fish for human consumption in EU and Norway (Kögel et al., 2021). The levels of Hg in fillet from the North Sea was somewhat higher than from the Norwegian Sea and Barents Sea, with a pattern resembling the one observed earlier for cod. The concentrations of total As were, with an average of 10.6 mg/kg, somewhat higher than the levels reported in cod, saithe and Greenland halibut. There were no prominent geographical variations in the levels of total As. Concentrations of dioxins, furans, dl-PCB and PCB6 in haddock liver were relatively high compared to MLs, with the average sum of dioxins/furans and dl-PCB in total just above the ML, while average concentrations of PCB6 concentrations were above the MLs only at several geographically distinct stations. On average, these levels were still lower than reported earlier for cod.


3.2 - Potential for exceeding maximum levels

Based on results from earlier monitoring (Appendix Tables A2-A8), a potential for exceeding MLs have been identified for some species, as described below. Regarding metals in fillet, a few fish species have a potential for exceeding the ML for Hg, either in general or in specific areas. Regarding lipid-soluble organic contaminants in fish fillet, only a few large fatty fish species show a potential for exceeding the MLs for the sum of dioxins and dl-PCBs, the sum of dioxins or the sum of PCB6. Fish liver, on the other hand, particularly of lean fish species, often exceed MLs for the organic contaminants. In brown crab, Cd may leak from brown meat to claw meat during cooking in water, and cause exceedance of the ML which only applies to muscle meat from appendages. Reliable results for PFAS have been limited due to low sensitivity of earlier analytical methods, but recent results using a more sensitive analytical method show that a few species have a potential for exceeding one or more MLs for PFAS.

3.2.1 - Tusk

Fillet of tusk (Brosme brosme) has relatively high levels of Hg, and 19% of individual fish in the baseline study (2013-2016) had concentrations above ML (Frantzen and Maage, 2016). In some areas, mean levels were above ML, e.g., western Norwegian fjords including Hardangerfjord, Sognefjord and Boknafjord. In all areas except the Barents Sea, a significant portion of the tusk exceeded the ML for Hg. Also tusk from Vestfjorden and Skagerrak had mean fillet concentrations of Hg above ML. Fillets had very low levels of all other analysed contaminants.

More than 10% of tusk samples exceeded ML for Hg in fillet. Score: 2

Liver has high levels of lipid-soluble organic contaminants, and dioxins and dl-PCBs and PCB6 were above the MLs in 61% and 54%, respectively, of 56 pooled liver samples included in the baseline study. Mean levels of dioxins and dl-PCB were above ML in liver from both fjords, coastal areas and open sea of the North Sea, Skagerrak and the Norwegian Sea.

3.2.2 - Atlantic halibut

Large individuals of Atlantic halibut (Hippoglossus hippoglossus) may have very high concentrations of organic contaminants and Hg in fillet, often far exceeding the MLs in the largest individuals. The Norwegian Directorate of Fisheries has therefore prohibited fishing of Atlantic halibut over 100 kg (2 m length), in all Norwegian marine areas, due to the high risk of exceeding MLs for organic contaminants. In general, the levels of Hg and organic contaminants in Atlantic halibut are higher than in many other fish species, and of more than 500 fish investigated in the period 2013-2019, 4.1% exceeded the ML for Hg and 2.2% exceeded the ML for dioxins and dl-PCBs in fillet (B-cut) (Nilsen et al., 2016, Nilsen et al., 2019, Nilsen et al., 2020a). There is a clear geographical variation, and the highest concentrations of both Hg and organic contaminants were found in an area in Ytre Sklinnadjupet in the Norwegian Sea, where 25% of the halibut exceeded the ML for Hg (1.0 mg/kg ww for this species) and 5.6% exceeded the ML for dioxins and dl-PCB. Due to the high levels of contaminants, the Norwegian Directorate of Fisheries closed this area for halibut fishing starting in 2017, to reduce the risk of fish entering the market with concentrations exceeding the MLs.

Halibut from Skagerrak and the North Sea may also contain high levels of both Hg and organic contaminants, but the data from this sea area is extremely limited (only nine individuals analysed), and more data is needed to properly evaluate the potential for exceeding maximum levels for halibut in this geographical area.

Recent analyses of PFAS showed that 1 of 18 analysed samples of halibut muscle (5.5%) had concentrations exceeding the ML for the sum of 4 PFAS (Frantzen et al., 2024b). The halibut sample exceeding this ML were originally sampled in Ytre Sklinnadjupet.

Between 1% and 10% of fish exceeded the MLs for Hg, dioxins and dl-PCBs and/or PFAS. Score: 2.

3.2.3 - Greenland halibut

In the baseline study of Greenland halibut (Reinhardtius hippoglossoides) during 2006-2008 (Nilsen et al., 2010), high levels of both Hg and organic contaminants in fillet were observed, with 8% of the fish exceeding the ML for Hg and 24% of the fish exceeding the ML for dioxins and dl-PCB. There was large geographical variation, and the highest levels of Hg were found in fish caught between Bjørnøya and the area west of Svalbard, while the highest values of organic contaminants were found along the continental shelf edge (Eggakanten) between 66.9°N and 68.5°N. Due to the high levels of dioxins and dl-PCBs, two areas along Eggakanten in the Norwegian Sea were closed for fishing of Greenland halibut from 2011/2012.

Follow-up monitoring along Eggakanten in the Norwegian Sea in 2011-2015 showed significantly lower levels of dioxins and dl-PCB (and Hg) in this area (Nilsen and Måge, 2016), and as a result, the two areas closed for fishing were reopened in 2016.

Annual monitoring of fillet in both the Norwegian Sea and the Barents Sea in 2017-2021 have shown significantly lower levels of Hg and dioxins and dl-PCBs than in the baseline study, but the levels are still high compared to most other species (for Hg, see Bank et al., 2021). About 2.4% of individual fish exceed the ML for sum dioxins and dl-PCB and 2.1% exceeded the ML for Hg. There is still a marked geographical variation with the highest mean levels of sum dioxins and dl-PCB in the area between 67°N and 68°N in the Norwegian Sea, and the highest mean levels of Hg in the area between 67°N and 68°N in the Norwegian Sea and in the area west of Svalbard in the Barents Sea.

Between 1% and 10% exceed MLs for Hg and/or dioxins and dl-PCBs. Score: 2.

3.2.4 - Atlantic bluefin tuna

Irregular and limited monitoring of Atlantic bluefin tuna (Thunnus thynnus, ABFT) was performed since 2016 after reopening the ABFT fishery inside the Norwegian Exclusive Economic Zone (EEZ) in 2014. Only large individuals are caught in Norwegian waters and only fish weighing more than 100 kg were analysed. Large variation of contaminant levels was identified between the different parts of the fillet (Øyan, 2021) and the risk evaluation was performed accordingly. Regarding the lean and fatty white muscle, about 4% of the individual fish exceeded the ML of 1 mg/kg wet weight for Hg, while 33% of the red muscle samples exceeded this ML. Data for dioxins and PCBs is limited. However, the fatty muscle samples of all individuals analysed exceeded the ML for sum dioxins and dl-PCB and PCB6, and one of 15 lean muscle samples exceeded the ML for sum dioxins and dl-PCB.

More than 10% of samples exceeded the ML for Hg and/or dioxins and dl-PCBs. Score: 3.

3.2.5 - Blue ling

A limited number of blue ling (Molva dypterygia) were collected as bycatch in the baseline study for tusk and ling in 2013-2016, and the results showed high levels of Hg in fillet with 73% of 66 individual fish exceeding the ML for Hg. Blue ling is a lean fish species, and the levels of organic contaminants in fillet were low, far below the MLs for dioxin, dioxins and dl-PCBs and PCB6.

More than 10% of samples exceeded the ML for Hg. Score: 2.

Liver of blue ling had high levels of organic contaminants, with dioxins and dl-PCBs and PCB6 exceeding the MLs in 100% and 89% of the 10 pooled liver samples, respectively.

3.2.6 - European plaice

In the baseline study, fillet samples of 0.89% of individual plaice (Pleuronectes platessa) exceeded the current ML for Hg of 0.3 mg/kg. At the time of the baseline study, no fish exceeded the ML which then was 0.5 mg/kg for plaice, so the risk of exceeding ML has increased with the recent changes in the EU regulation.

Recent analyses showed that 1 of 30 analysed samples of plaice muscle (3.3%) had concentrations of PFNA and the sum of 4 PFAS exceeding the maximum levels of 2.5 and 8.0 µg/kg, respectively (Frantzen et al., 2024b).

Between 1% and 10% of fillet samples exceeded MLs for Hg and/or PFAS. Score: 1.

3.2.7 - Brown crab

For crabs, the MLs only apply to muscle meat of the appendages, which have much lower Cd concentrations than the brown meat (hepatopancreas). In freshly cooked brown crabs (Cancer pagurus), claw meat of about 5% of the individual crabs exceeded the ML for cadmium. This is, however, due to leakage from hepatopancreas to claw meat during cooking (Wiech et al., 2017). In crabs which were sampled without cooking in 2015, no samples of claw meat had Cd levels above ML. A significant difference in Cd levels was found between crabs from Northern and Southern Norway (Wiech et al., 2020).

Between 1% and 10% of claw meat from cooked crab were above ML for Cd. Score: 1.

3.2.8 - Atlantic cod

In the follow-up monitoring in 2017-2021, fillet samples of 2.6% of individual cod (from all areas combined) exceeded the ML for Hg of 0.3 mg/kg. In the North Sea, 6.4% of individual cod exceeded the ML, whereas no individual fish from the Barents Sea or the Norwegian Sea had concentrations above the ML.

Between 1% and 10% of fish exceeded the MLs for Hg. Score: 1.

Liver of cod has relatively high levels of organic contaminants, especially in the North Sea and Norwegian Sea. Monitoring in 2017-2021 showed that 39% of the individual fish from the North Sea and 61% of the fish from the Norwegian Sea had liver concentrations of dioxins and dl-PCBs above the ML, whereas less than 1% of the fish from the Barents Sea exceeded this ML. For PCB6, 13%, 15% and 0% of the individual fish from the North Sea, Norwegian Sea and Barents Sea, respectively, exceeded the ML for PCB6 in liver.

3.2.9 - Common ling

In the baseline study (2013-2015), where ling (Molva molva) was sampled along with tusk, ling had much lower Hg levels than tusk (Frantzen and Maage, 2016). Still, 4.8% of the fillet samples from all 748 individual fish had concentrations of Hg above ML. Most of the ling exceeding ML were exceptionally large fish sampled in the Skagerrak, where 42% of 50 fish were above the ML. In fjords in Western Norway, 15% of fillet samples were above the ML. In coastal and open sea areas of the North and Norwegian Seas, respectively, 1.0% and 1.7% exceeded ML.

Between 1% and 10% of fillet samples exceeded ML for Hg. Score: 1.

Liver of ling (composite samples only) had levels of dioxins and dl-PCB above ML in 80% of samples, and in Skagerrak and fjords in western Norway, concentrations were above ML in all liver samples.

3.2.10 - Atlantic wolffish

In recent monitoring of Atlantic wolffish (Anarhichas lupus), about 3% of individual fish, originating from different areas, exceeded the ML for Hg.

Between 1% and 10% of samples exceeded the ML for Hg. Score: 1.

3.2.11 - Anglerfish

In the baseline study, fillet samples of 10.5% of individual anglerfish (Lophius piscatorius) exceeded the current ML for Hg of 0.5 mg/kg. In the North Sea area, 17% of the fish exceeded the ML, and the highest levels were found along the coast. No single station had a mean Hg level above 0.5 mg/kg. At the time of the baseline study, not one fish exceeded the ML which then was 1.0 mg/kg for anglerfish, so the risk of exceeding ML has increased with the recent changes in the EU regulation.

More than 10% of individual fish exceeded ML for Hg. Score: 2.

Liver of anglerfish exceed ML for sum dioxins and dl-PCBs and sum PCB6 in 76% and 42% of samples, respectively.

3.2.12 - Pollack

In the baseline study, fillet samples of 1.7% of individual pollack (Pollachius pollachius) exceeded the current ML for Hg of 0.3 mg/kg. In the North Sea area, 4% of the fish exceeded the ML. At the time of the baseline study, no fish exceeded the ML which then was 0.5 mg/kg for pollack, so the risk of exceeding ML has increased with the recent changes in the EU regulation.

Between 1% and 10% of individual fish exceeded ML for Hg. Score: 1.

Liver of pollack exceed ML for sum dioxins and dl-PCBs and sum PCB6 in 44% and 22% of samples, respectively.

3.2.13 - Norway lobster

About 2% of the sampled individuals of Norway lobster (Nephrops norvegicus) exceeded the ML for Hg in muscle meat. The monitoring was mainly based on North Sea and coastal areas.

Between 1% and 10% of muscle samples exceeded MLs for Hg. Score: 1.

3.2.14 - European lobster

The limited data on lobster (Homarus gammarus) collected from four coastal stations indicated that about 2-3% of the sampled individuals exceeded the ML for Hg in muscle meat.

Between 1% and 10% of muscle samples exceeded MLs for Hg. Score: 1.

3.3 - Potential for exceeding the tolerable weekly intake (TWI) levels

Tolerable weekly intake (TWI) levels have been estimated by EFSA as a recommendation of how much of a substance a person can consume each week, without negative health effects. In this study, the potential for exceeding TWIs was evaluated regarding TWIs for dioxins and dl-PCBs, MeHg, Cd and PFAS, and the evaluation was based on results from earlier monitoring (Appendix Tables A2, A3, A6 and A8).

For some substances and seafood types, or seafood caught in particular areas, TWIs can be exceeded for individuals consuming the amounts recommended by the authorities. This particularly applies to individuals who often consume fish caught recreationally or for sustenance in their local area, or those who frequently consume the same seafood species. The Norwegian Directorate of Health recommends two to three portions of fish each week, corresponding to 300-450 g fish. At least 200 g should be fatty fish.

For dioxins and dl-PCB, a relatively new TWI of 2 pg TEQ/kg body weight (Knutsen et al., 2018b) greatly reduced the amount of fatty seafood that can be eaten without risk of exceeding the TWI. For many fatty or semi-fatty fish species, a consumption of less than 200 g fillet per week can lead to exceedance of TWI for dioxins and dl-PCBs (Table 4a).

To calculate the potential for exceeding TWI with regard to Hg, the TWI for MeHg of 1.3 µg/kg bw has been used, with concentrations of total Hg as a proxy for MeHg. For a person of 70 kg bodyweight to exceed TWI for Hg with consumption of 200 g per week, a mean concentration of about 0.5 mg/kg is required (Table 4b). Thus, the lists of species with high risk for exceeding the TWI and the ML for Hg only partly overlap. Only the species with the highest risks of exceeding the ML, will lead to exceedance of the TWI.

Regarding Cd, crustaceans and molluscs tend to accumulate this heavy metal in their hepatopancreas, and TWI for Cd of 2.5 µg/kg bw may be exceeded for people consuming these particular organs. Fish fillet in general has very low concentrations of Cd.

With regard to PFAS, a TWI of 4.4 ng/kg body weight per week has been set by EFSA for the sum of four PFAS (PFOS, PFOA, PFNA and PFHxS; EFSA, 2020). These compounds have been determined in a wide range of species collected between 2007-2021, but unfortunately, the analytical methods used have been less than optimal, with varying and often quite high LOQ-values for each of the compounds. In 2023, PFAS were determined in 206 samples from 18 different species of fish and shrimp, using a more sensitive analytical method (Frantzen et al., 2024b). These data have been used to calculate the amount that can be consumed before exceeding the TWI.

3.3.1 - Tusk

Hg: For tusk fillet from the Skagerrak and in fjords bordering the North Sea, 142 and 149 g can be consumed before exceeding the TWI (Table 4b).

For tusk fillet from Skagerrak or North Sea fjords, the TWi for Hg may be exceeded by consumption of less than 200 g. Score: 1.

3.3.2 - Atlantic halibut

Dioxins and dl-PCBs: Levels vary between different parts of the fillet, with the highest levels in the fattier part, the I-cut, and significantly lower levels in a leaner part of the fillet, the B-cut. For both parts of the fillet, consumption of less than 200 g per week can result in exceeding the TWI. Depending on sea area, only 58-100 g B-cut or 25-47 g I-cut may be consumed before exceeding the TWI (Table 4a). The levels of organic contaminants in halibut increase with fish size, and for fish between 40-100 kg, only about 60 g B-cut may be consumed, whereas up to 150 g B-cut may be consumed from fish below 40 kg before exceeding the TWI.

For halibut fillet, the TWI for dioxins and dl-PCBs may be exceeded by consumption of less than 200 g. Score: 1.

3.3.3 - Greenland halibut

Dioxins and dl-PCBs: Levels vary between sea areas, but even for the Barents Sea, where the levels are the lowest, only about 80 g fillet may be consumed before exceeding the TWI (Table 4a).

For Greenland halibut fillet, the TWI for dioxins and dl-PCBs may be exceeded by consumption of less than 200 g. Score: 1.

3.3.4 - Atlantic bluefin tuna

Dioxins and dl-PCBs: Levels vary considerably between different parts of the fillet with higher levels in the fatty parts. However, even for the leanest parts, a consumption of about 40 g will lead to an exceedance of the TWI (Table 4a).

Hg: The levels of Hg vary considerably between different parts of the fillet. Of red muscle meat, containing the highest concentrations, only about 75 g can be consumed before exceeding the TWI, while about 135 g and 150 g of white lean and fatty muscle could be consumed weekly respectively before exceeding the TWI (Table 4b).

For tuna fillet, the TWI for both dioxins and dl-PCBs and Hg may be exceeded by consumption of less than 200 g. Score: 2.

3.3.5 - Blue ling

Hg: Of blue ling fillet from all areas combined, 169 g per week can be consumed before exceeding the TWI. Only 66 samples were analysed (Table 4b).

For blue ling fillet, the TWI for Hg may be exceeded by consumption of less than 200 g. Score: 1.

3.3.6 - European plaice

PFAS: The new data from 2023 (n=30) indicates that 181 g plaice fillet can be consumed before exceeding TWI (Appendix Table A8).

For plaice fillet, the TWI for PFAS may be exceeded by consumption of less than 200 g. Score: 1.

3.3.7 - Brown crab

Dioxins and dl-PCBs: Based on measurements of brown meat from frozen and boiled crabs, only about 40 g can be consumed before exceeding the TWI (Table 4a).

Cd: Because of high levels in hepatopancreas, brown and inner meat contain high levels of Cd. Before and after cooking, only about 15 and 30 g, respectively, can be consumed before exceeding the TWI (Appendix Table A3). A clear trend of higher levels in the north compared to the south of Norway has been identified. As also other large crustaceans tend to efficiently accumulate Cd in their hepatopancreas, it can be assumed that the hepatopancreas of both European lobster and Norway lobster contain high levels. There is at present little data to confirm this.

PFAS: 68 g hepatopancreas from brown crab may be consumed before exceeding the TWI (Appendix Table A8).

For crab brown meat, the TWI for both dioxins and dl-PCBs, Cd and PFAS may be exceeded by consumption of less than 200 g. Score: 2.

3.3.8 - Atlantic mackerel

Dioxins and dl-PCBs: For mackerel from all areas combined, 144 g fillet per week can be consumed without exceeding the TWI. For Skagerrak, only 88 g per week can be consumed, while for the North Sea, Norwegian Sea and Barents Sea, 189, 237 and 241 g fillet per week, respectively, can be consumed without exceeding the TWI (Table 4a).

For fillet of mackerel caught in Skagerrak and the North Sea, the TWI for dioxins and dl-PCBs may be exceeded by consumption of less than 200 g. Score: 1.

3.3.9 - European sprat

Dioxins and dl-PCBs: European sprat (Sprattus sprattus) has been analysed as whole fish, and only 88 g of whole sprat may be consumed before exceeding the TWI (Table 4a).

For sprat fillet, the TWI for dioxins and dl-PCBs may be exceeded by consumption of less than 200 g. Score: 1.

3.3.10 - Atlantic salmon

Dioxins and dl-PCBs: Around 140 g fillet of wild caught Atlantic salmon (Salmo salar) may be consumed before exceeding the TWI (Table 4a).

For salmon fillet, the TWI for dioxins and dl-PCBs may be exceeded by consumption of less than 200 g. Score: 1.

3.3.11 - Greater argentine

Dioxins and dl-PCBs: Levels in greater argentine (Argentina silus) deviated particularly in one sample from Osterfjorden with significantly higher values. Only about 30 g of fillet originating from this fjord can be consumed before exceeding the TWI (Table 4a). For greater argentine from the North Sea and Norwegian Sea, about 145 g can be consumed before exceeding TWI.

For fillet of greater argentine, the TWI for dioxins and dl-PCBs may be exceeded by consumption of less than 200 g. Score: 1.

3.3.12 - Beaked redfish

Dioxins and dl-PCBs: The levels in beaked redfish (Sebastes mentella) are higher in the Norwegian Sea than in the Barents Sea, where most of the commercial fisheries takes place. For fish from the Norwegian Sea, only about 150 g fillet may be consumed, but for fish from the Barents Sea, around 250 g fillet may be consumed before exceeding the TWI (Table 4a).

For fillet of beaked redfish caught in the Norwegian Sea, the TWI for dioxins and dl-PCBs may be exceeded by consumption of less than 200 g. Score: 1.

3.3.13 - Spotted wolffish

Dioxins and dl-PCBs: About 160 g of spotted wolffish (Anarhichas minor) can be consumed before exceeding the TWI (Table 4a).

For spotted wolffish fillet, the TWI for dioxins and dl-PCBs may be exceeded by consumption of less than 200 g. Score: 1.

3.3.14 - Atlantic herring

Dioxins and dl -PCBs: Around 160 g fillet for Norwegian spring spawning (NSS) herring and 198 g for North Sea (NS) herring can be consumed before exceeding the TWI (Table 4a).

For fillet of herring, the TWI for dioxins and dl-PCBs may be exceeded by consumption of less than 200 g. Score: 1.

3.3.15 - Atlantic horse mackerel

Dioxins and dl-PCBs: For horse mackerel (Trachurus trachurus) from the North Sea (N=50 samples), 157 g fillet per week can be consumed without exceeding the TWI (Table 4a).

For horse mackerel fillet, the TWI for dioxins and dl-PCBs may be exceeded by consumption of less than 200 g. Score: 1.

3.3.16 - European hake

Dioxins and dl-PCBs: Levels in hake (Merluccius merluccius) vary between sea areas, with highest levels in the Norwegian Sea. Consumption of more than 170 g fillet from the Norwegian Sea can lead to exceedance of TWI, whereas around 290 g and 320 g fillet may be consumed before exceeding the TWI for hake from Skagerrak and the North Sea, respectively (Table 4a).

For fillet of hake caught in the Norwegian Sea, the TWI for dioxins and dl-PCBs may be exceeded by consumption of less than 200 g. Score: 1.

3.3.17 - Fish liver

Dioxins and dl-PCBs: For various fish species, 2-44 g fish liver per week can lead to exceedance of TWI (Appendix Table A6). The highest levels of dioxins and dl-PCB are found in liver of lean fish species (cod, saithe, haddock, tusk, ling, pollack).

For liver of most fish species, the TWI for dioxins and dl-PCBs may be exceeded by consumption of less than 200 g.

Species Catch volume (ton) Organ Geographical area N Sum PCDD/F+dl-PCB (ng TEQ/kg ww) Amount consumed (g) at TWI
Atlantic bluefin tuna 101 Fatty muscle Skagerrak, North Sea, Norwegian Sea 6 13 11
    Lean muscle incl. neck Skagerrak, North Sea, Norwegian Sea 15 4.1 34
    Red muscle Skagerrak, North Sea, Norwegian Sea 5 3.3 42
Atlantic halibut 2 845 Fillet, B-cut Barents Sea 132 1.6 88
    Fillet, B-cut Norwegian Sea 365 1.4 100
    Fillet, B-cut Skagerrak, North Sea 9 2.4 58
    Fillet, I-cut Barents Sea 125 3.0 47
    Fillet, I-cut Norwegian Sea 272 4.4 32
    Fillet, I-cut Skagerrak, North Sea 8 5.5 25
Greenland halibut 17 099 Fillet Barents Sea 299 1.7 82
    Fillet Norwegian Sea 199 2.1 67
European sprat 11 701 Whole fish Fjords and + some in the North Sea 47 1.60 88
Atlantic salmon (wild) 16 Fillet Northern Norway 137 1 140
Greater argentine 10 000 Fillet North Sea, Norwegian Sea, incl. Osterfjord 290 0.97 144
    Fillet Osterfjord 25 4.5 31
Beaked redfish 32 678 Fillet Barents Sea 447 0.56 249
    Fillet Norwegian Sea 77 0.92 153
Spotted wolffish 4 108 Fillet Norwegian Sea and Barents Sea 250 0.88 159
North Sea herring 130 000 Fillet North Sea 172 0.71 198
NSS-herring 415 346 Fillet Norwegian Sea 98 0.86 163
Atlantic mackerel 207 146 Fillet Barents Sea 60 0.58 241
    Fillet Norwegian Sea 247 0.59 237
    Fillet North Sea 75 0.74 189
    Fillet Skagerrak 198 1.60 88
Atlantic horse mackerel 10 924 Fillet North Sea 50 0.89 157
European hake 3 977 Fillet Norwegian Sea 183 0.81 172
    Fillet North Sea 570 0.43 323
    Fillet Skagerrak 25 0.49 288
Spiny dogfish 356 Fillet Skagerrak 17 0.71 197
Brown crab 5266 Brown meat Coast, Hvaler to Vesterålen 435 3.6 39
Table 4a. Species with potential for exceeding the TWI for dioxins and dl-PCBs. Catch volume per species in Norwegian fisheries, tissues, geographical areas, number of samples analysed (N), mean concentrations (Sum PCDD/F+dl-PCB), and amount of seafood a person of 70 kg can consume before exceeding the TWI of 2 pg TEQ/kg body weight for sum PCDD/F+dl-PCB, are shown.

Abbreviations: TEQ (toxic equivalent), ww (wet weight), NSS herring (Norwegian spring spawning herring)

Species Catch volume (ton) Organ Geographical area N THg (mg/kg ww) Amount consumed (g) at TWI for MeHg
Atlantic bluefin tuna 101 Fatty muscle Skagerrak, North Sea, Norwegian Sea 2 1 0.61 149
    Lean muscle incl. neck Skagerrak, North Sea, Norwegian Sea 4 6 0.67 136
    Red muscle Skagerrak, North Sea, Norwegian Sea 21 1.18 77
Tusk 13 143 Fillet Barents Sea 278 0.11 827
    Fillet Norwegian Sea 684 0.27 337
    Fillet North Sea, open sea and coast 263 0.31 294
    Fillet North Sea, fjords 503 0.61 149
    Fillet Skagerrak 42 0.64 142
Blue ling 537 Fillet Skagerrak, North Sea, Norwegian Sea 66 0.54 169

Table 4b. Species with potential for exceeding the TWI for MeHg. Catch volume per species in Norwegian fisheries, tissues, geographical areas, number of samples analysed (N), mean concentrations of total Hg (THg)*, and amount of seafood a person of 70 kg can consume before exceeding the TWI of 1.3 µg/kg body weight for MeHg, are shown.

*THg is used as a proxy for MeHg, since MeHg is usually assumed to make up near 100% of the THg content of fish muscle.

 

3.4 - Knowledge gaps

3.4.1 - Species with insufficient or outdated data (data deficient)

Species with an average annual landing volume of 100 t or more in the period of 2018-2021 (www.fiskeridir.no), were classified as data deficient if the number of measurements of trace elements and organic pollutants (PCDD/Fs +PCBs) was considered too low (< 100 analysed samples) or the data was too old (>10 years). Species identified as data deficient are shown in Table 5. Species used only for industrial processing (feed production), as cleaner fish in aquaculture, or those caught only in sea areas outside Norwegian waters, were not considered.

Species Norwegian/English (latin) Catch volume (t) N (metals) N (dioxins and PCBs) Year of most recent data Comment
Brisling/ European sprat (Sprattus sprattus) 11 800 47 47 2017  
Hestmakrell/ Atlantic horse mackerel (Trachurus trachurus) 11 000 50 50 2017  
Kongekrabbe/ Red king crab (Paralithodes camtchaticus) 2060 185 50 2012 Old data
Hvitting/ Whiting (Merlangius merlangus) 1 300 77 5 2014  
Blålange/ Blue ling (Molva dypterygia) 540 66 10 2016  
Sjøkreps/ Norway lobster (Nephrops norwegicus) 434 436 (Hg) 201 (other) 9 2021 Data insufficient for certain areas
Pigghå/ Spiny dogfish (Squalus acanthias) 360 63 17 2008 Data only from Skagerrak
Skjellbrosme/ Greater forkbeard (Phycis blennoides) 350 59 11 2015  
Gapeflyndre/ American plaice (Hippoglossoides platessoides ) 320 46 5 Hg: 2017 Dioxins and PCBs: 2006  
Havmus/ Rabbit fish (Chimaera monstrosa) 240 23 12 Hg: 2015 Dioxins and PCBs: 2016  
Knurr/ Gurnard (Eutrigla gurnardus) 240 0 0    
Gråskate/ Spinytail skate (Bathyraja spinicauda) 230 0 0    
Isgalt/ Roughhead grenadier (Macrourus berglax) 210 0 0    
Kloskate/ Starry ray (Amblyraja radiata) 200 11 0 2017  
Smørflyndre/ Witch flounder (Glyptocephalus cynoglossus) 200 11 0 2017  
Makrellstørje/ Atlantic bluefin tuna (Thunnus thynnus) 100 21/46/18* 6/15/5* 2021  
Hummer/ European lobster (Homarus gammarus) < 100 t** 80 22 2022  
Laks (vill)/ Atlantic salmon (wild) (Salmo salar) 16** 137 137 2012 Old data
Table 5. Species with insufficient number of data or outdated data with an annual catch volume above 100 t. Species named in Norwegian and English and the average annual catch volume is given for 2019-2022. Number of samples (N) analysed for metals and dioxins and dl-PCBs are given, respectively, as well as the latest sampling year.

*Partly different tissues from the same individuals.
**Despite commercial catches under 100 tons, wild caught Atlantic salmon (Salmo salar), and European lobster (Homarus gammarus) are included in the table due to significant catches in recreational fisheries.

3.4.2 - Species with insufficient data from certain geographical areas

For some species, certain geographical areas were identified as data deficient. For anglerfish (Lophius piscatorius) we need more data from Western Norway. For Atlantic halibut more data is needed for the North Sea and Skagerrak, and for plaice, we need more data from Skagerrak. Greater argentine from one specific fjord contained high levels of organic pollutants and further fjords should be investigated to find out if the elevated values are specific for this fjord or apply to this species in fjords in general.

Due to their potential high intake of self-caught seafood from coastal areas, recreational and sustenance fishers and their families are a vulnerable group and contaminant data on their catches is crucial to be able to assess their exposure. Recent surveillance of the finfish catches of anglers identified Atlantic cod, saithe, redfish, Atlantic halibut, tusk and Atlantic wolffish in Troms and Atlantic mackerel, saithe, cod, pollack, ling and hake in Hordaland as commonly caught species (Ferter et al., 2022). For these species, coast and fjord data should be gathered as these are the most common fishing grounds. In particular, species that have previously shown elevated levels of one or more contaminants in some coast- and fjord areas, may also have high levels in other so far unexplored fjords and coastal areas, and should therefore be prioritized for such surveys.

High Hg levels with mean concentrations above ML were found in fillet of tusk caught in several fjords in Western Norway, and dietary advices were issued for Hardangerfjord and Sognefjord. In Sognefjord this is not connected to a particular source, and it may be a problem also in many other fjords. Since tusk is captured by recreational fishers in many different fjords, there is a need to collect data from more local fjord areas. In 2024, a survey was performed of tusk sampled in three different data deficient western Norwegian fjords. But there are still a large number of fjords for which there is no data on Hg in tusk.

3.4.3 - Contaminants with insufficient data

For some contaminants there are insufficient data for all species due to lack of adequate analytical methods:

3.4.3.1 - PFAS

TWIs and maximum levels, were set for four PFAS (see Table 2 and 3), but it is challenging to develop a method with a sufficiently low LOQ to match the TWI range and the new MLs. The development of a new method heeding both low LOQ and the multitude of PFAS (>9000 substances) through suspect/non target screening is in progress and financed by IMR and through a project for the Norwegian Research Council. In 2023, 206 fish samples were analyzed with a more sensitive method (Eurofins), but there is still a need for more data to get a comprehensive overview of the PFAS contamination in wild caught fish. For instance, in the baseline study for haddock, a pooled fillet sample was discovered exceeding the TWI by consumption of 62 g per week, indicating a potential for high PFAS-levels in this species. However, in the study from 2023 including only 30 samples of haddock from all areas, no such high concentrations were found, and according to those results more than 850 g of haddock fillet can be consumed per week before exceeding TWI for PFAS.

3.4.3.2 - Plastics and plastic chemicals

Regarding micro- and nanoplastic and plastic chemicals, fish and people have been shown to be contaminated, and mammalian, fish and invertebrate model systems have shown that micro- and nanoplastic can lead to negative effects including effects on growth, reproduction, metabolism, activity, hormonal regulation, organ toxicity, development, intestinal function, oxidative stress, neurofunction and tissue changes (Kögel et al., 2020, Banerjee and Shelver, 2021, Brito et al., 2022, Kögel et al., 2023). Unfortunately, the exact levels of micro- and nanoplastic in fish are unknown due to methodological difficulties owed to the particle nature of this contaminant. While we have detected microplastic of 10 µm to 250 µm size in fish fillet and liver of different species (Gomero et al., 2020), only semi-quantitative methods are available. Reference material is so far lacking and even large international consortia such as BASEMAN and EuroQcharm have so far failed to produce fully quantitative methods for the critical small microplastic size ranges. Considerable method development is needed before the establishment of TWI will be possible. Additionally, plastic chemicals such as bisphenols and phthalates deserve attention, as they often have hormone or brain function disrupting effects at environmentally relevant concentrations (Hamilton et al., 2023, Horodytska et al., 2020). The multitude of 16 000 substances, with 4200 chemicals of concern, because they are persistent, bioaccumulative, mobile and/or toxic, renders method development challenging. Wagner et al. (2025) state that more than 1300 chemicals of concern are known to be marketed for use in plastics and 29–66% of the chemicals used or found in well-studied plastic types are of concern. This means that chemicals of concern can be present in all plastic types. For this, non-target screening method development has been initiated.

3.4.3.3 - Species of As and Hg

There is no maximum level or TWI for As in seafood. As consists of many different chemical species, where inorganic arsenic (arsenite and arsenate) are the most toxic ones. Inorganic arsenic has previously been found in only very low concentrations in fish, even when total As levels were high (Julshamn et al., 2012b). This was recently confirmed with analyses in 2023 of 459 seafood samples from 10 different species (Frantzen et al., 2024b). For molluscs, occasionally high levels of inorganic arsenic are found (Gomez-Delgado et al., 2023), and some species of seaweed are known to have high levels of inorganic arsenic (Duinker et al,. 2020). It is generally assumed that the major part of the arsenic present in seafood is the non-toxic arsenobetaine, but there is little documentation of this in Norwegian species of seafood. Other organic arsenic species may be more problematic than arsenobetaine, and it is therefore also a need for data on organic arsenic species in seafood. The data on inorganic and organic arsenic species are needed for risk assessment and regulatory development in EU.

Hg also exists in different chemical forms, but here the most toxic one, MeHg, is usually assumed to make up near 100% of the total Hg content (THg) of fish muscle. Because THg is much easier and cheaper to analyse than MeHg, it is most often used as a proxy for MeHg when risk assessments are being made based on the TWI for MeHg. This makes for a worst-case scenario when doing the risk assessments. There is, however, very little documentation of actual MeHg levels in Norwegian fish. Earlier, the method used for MeHg determination at IMR was performed separately from the THg determination, and due to the added measurement uncertainties of the two different methods, this sometimes resulted in a percentage MeHg of considerably more than 100% of THg. In 2023, 459 samples of 10 different seafood species were analysed with a new method where both MeHg and THg were determined simultaneously, resulting in a more correct estimate of the percentage contribution of MeHg to the THg concentration (Frantzen et al., 2024b). Muscle tissue of the different fish species had mean percentages MeHg between 96% and 99% of THg. More data on MeHg in more fish species is needed for more accurate risk assessments and regulatory development in EU.

3.4.4 - New resources

New resources include species that do not yet have significant catch volumes but are expected to be of increasing interest as food and feed in the coming decades, or new species in Norwegian waters that have already reached higher catch volumes. Spot-check monitoring of these species was initiated in 2017 to get data preceding commercial exploitation as food and feed.

For macroalgae a data collection was reported to EFSA in 2020 and data were also published as an IMR report (Duinker et al, 2020). Following this, the focus has been processing of two farmed kelp species with iodine reduction and nutrient retention, in addition to spot-check sampling of species with lowest n or highest risk. As there are no MLs for contaminants in macroalgae yet, this group of seafood is not covered in detail here.

Mesopelagic species might be exploited in future, and basic data on nutrients and contaminants is available for some of the most relevant species. Species from Norwegian fjords were found to be nutrient dense (Alvheim et al., 2020). Identified challenges regarding nutrients are: High levels of fluoride in northern krill (Meganyctiphanes norvegica), of wax esters in glacier lantern fish (Benthosema glaciale) and of long-chain monounsaturated fatty acids in Mueller’s pearlside (Maurolicus muelleri) (Wiech et al., 2020). Further investigations are needed to understand geographical and seasonal variations within species (Zhu et al., 2023). Due to the high biodiversity in open waters further contaminant profiling is needed to understand variation between species.

For sea urchins, sea cucumbers, and jellyfish, spot-check monitoring is ongoing, so far with low numbers of analyses (n). No exceedances of ML have been detected so far.

Pacific oysters (Magallana gigas), as invasive species, have been observed for the last ten years. There is increasing interest in harvesting these oysters and they have hence been included in spot-check monitoring. Levels are close to, but below ML for Cd and lower than for European oysters (Ostrea edulis). Specific attention is necessary since they are harvested in more populated areas around the Oslofjord and at the coast of southern Norway. Mapping of dioxins and PCB would also be meaningful, since Pacific oysters in some areas have elevated levels, probably due to local pollution sources.

Recently, harvest of wild stocks of razor shells (Solenidae spp.), cockles (Cerastoderma edule), sand gapers (Mya arenaria) and rayed artemis (Dosinia exoleta) – which are new species for commercial harvest in Norway - has started and spot-check samples of these species are being collected to attain a basis for evaluating the risk of harmful levels of heavy metals.

The fishery of snow crab has developed significantly in a rather limited geographical area. According to the limited existing data, the levels of contaminants are not likely to exceed existing MLs.

A report has been published on the feasibility of a fishery of shore crab (Carcinus maenas) (van der Meeren et al., 2022). As the legal limit only applies to the appendages of crustaceans, no levels above the MLs for elements and organic pollutants have been found based on the limited data gathered so far. However, high consumption of hepatopancreas might lead to an exceedance of the TWI for Cd and dioxins and dl-PCBs. The main use of these crabs is probably for soup, and results from Cd concentrations in shore crab soup indicate low levels of exposure (Knutsen et al., 2018a).

4 - Summary of all risk factors combined

In this report, a risk-based prioritization of seafood species was performed as a basis for preparation of risk-based control plans to be implemented by the Norwegian Food Safety Authority for wild-caught Norwegian seafood. To this end, seafood species to be considered for inclusion in the control plans were identified and evaluated according to the potential risk factors described above. A final evaluation and prioritization based on all risk factors combined was performed as described in section 2.2.2 for a total of 43 seafood species. With the exception of wild Atlantic salmon and European lobster, species with an annual landing volume of less than 100 tons were not included in the evaluation. The results are summarized in Table 6. An extended table detailing which MLs or TWIs were exceeded for each species is given in Appendix Table A10.

Species (Norwegian/English) Potential for high exposure due to high catch volume Potential for exceeding ML Potential for exceeding TWI Priority Data deficiency
Sild/ Atlantic herring 3 0 1 High  
Makrell/ Atlantic mackerel 3 0 1 High Low N in some areas
Torsk/ Atlantic cod 3 1 0 High  
Sei/ Saithe 3 0 0 High  
Hyse/ Haddock 3 0 0 High  
Makrellstørje/ Atlantic bluefin tuna 0 3 2 High Low N
Blåkveite/ Greenland halibut 0 2 1 Medium  
Kveite/ Atlantic halibut 0 2 1 Medium Low N in some areas
Brosme/ Tusk 0 2 1 Medium Low N in some areas
Blålange/ Blue ling 0 2 1 Medium Low N
Breiflabb/ Anglerfish 0 2 0 Medium Low N in some areas
Taskekrabbe/ Brown crab 0 1 (claw meat) 2 (brown meat) Medium  
Rødspette/ European plaice 0 1 1 Lower Low N in some areas
Lange/ Common ling 0 1 0 Lower Low N in some areas
Lyr/ Pollack 0 1 0 Lower Low N in some areas
Gråsteinbit/ Atlantic wolffish 0 1 0 Lower Low N in some areas
Sjøkreps/ Norway lobster 0 1 0 Lower Low N
Hummer/ European lobster 0 1 0 Lower Low N
Brisling/ European sprat 0 0 1 Lower Low N
Hestmakrell/ Atlantic horse mackerel 0 0 1 Lower Low N
Laks (vill)/ Atlantic salmon (wild) 0 0 1 Lower Old data
Lysing/ European hake 0 0 1 Lower Low N in some areas
Vassild/ Greater argentine 0 0 1 Lower Low N in some areas
Flekksteinbit/ Spotted wolffish 0 0 1 Lower  
Snabeluer/ Beaked redfish 0 0 1 Lower Low N in some areas
Vanlig uer/ Golden redfish 0 0 0 Lowest  
Dypvannsreke/ Northern shrimp 0 0 0 Lowest  
Pigghå/ Spiny dogfish 0 0 0 Unknown Low N
Kongekrabbe/ Red king crab 0 0 0 Unknown Old data
Hvitting/ Whiting 0 0 0 Unknown Low N
Skjellbrosme/ Greater forkbeard 0 0 0 Unknown Low N
Gapeflyndre/ American plaice 0 0 0 Unknown Low N
Havmus/ Ratfish 0 0 0 Unknown Low N
Kloskate/ Starry ray 0 0 0 Unknown Low N
Smørflyndre/ Witch flounder 0 0 0 Unknown Low N
Knurr/ Gurnard 0 not evaluated not evaluated Unknown No data
Gråskate/ Spinytail skate 0 not evaluated not evaluated Unknown No data
Isgalt/ Roughhead grenadier 0 not evaluated not evaluated Unknown No data
Strandkrabbe/ Shore crab 0 0 0 Unknown New resource
Snøkrabbe/ Snow crab 0 0 0 Unknown New resource
Stillehavsøsters/ Pacific oyster 0 not evaluated not evaluated Unknown New resource
Echinoderms 0 not evaluated not evaluated Unknown New resource
Mesopelagic species 0 not evalated not evaluated Unknown New resource
Table 6. Overview of risk-based prioritization of Norwegian wild-caught seafood species to be included in control plans. Scores are shown for the following potential risk factors: Potential for high exposure due to high catch volume (Potential for high exposure), potential for exceeding maximum levels for Cd, Hg, PCDD/F+dl-PCB, PCB6 and/or PFAS in muscle (Potential for exceeding ML), potential for exceeding tolerable weekly intake for Cd, Hg, PCDD/F+dl-PCB and/or PFAS (Potential for exceeding TWI). The priority of each species for inclusion in risk-based control plans is shown according to the following categories: High priority (dark blue): Species with score 3 as the highest score for any of the risk factors, Medium priority (medium blue): Species with score 2 as the highest score for any of the risk factors, Lower priority (light blue): Species with score 1 as the highest score for any of the risk factors, Lowest priority (white): Species with score 0 across all the risk factors, and Unknown priority (white): Species for which there is insufficient data to determine a priority level. Data deficiency per species is noted in the last column. 

 

In conclusion, species with high catch volumes, Atlantic herring, Atlantic mackerel, Atlantic cod, saithe and haddock, were assigned a high priority (dark blue), since they contribute significantly to the overall exposure of the population to contaminants from seafood. In addition, Atlantic bluefin tuna was assigned a high priority due to a high fraction of individual fish (> 10%) having contaminant levels above the ML for more than one contaminant, i.e., Hg and dioxins and dl-PCBs.

Medium priority (medium blue) was assigned to Greenland halibut and Atlantic halibut due to a (low) fraction of individual fish (between 1% and 10%) exceeding the MLs for more than one contaminant, i.e., Hg and dioxins and dl-PCB in fillet for Greenland halibut and Hg, dioxins and dl-PCB and sum 4PFAS in fillet for Atlantic halibut. Medium priority was also assigned to tusk, anglerfish and blue ling due to a high fraction of individual fish (>10%) having contaminant levels above the ML for one contaminant (Hg). Brown meat of brown crab was assigned a medium priority due to risk of exceeding the tolerable weekly intake (TWI) for both Cd and dioxins and dl-PCB, whereas claw meat of brown crab was assigned a lower priority due to a (low) fraction of the individuals exceeding the ML for Cd.

A lower priority (light blue) was assigned to ling, European plaice, pollack, Atlantic wolffish, Norway lobster and European lobster due to a fraction, albeit a low one, of the individuals exceeding the ML for a single contaminant (Hg or PFAS). Of these, Norway lobster and European lobster are also data deficient. A lower priority was also assigned to European plaice, European sprat, Atlantic horse mackerel, wild Atlantic salmon, European hake, greater argentine, spotted wolffish, and beaked redfish due to risk of exceeding TWI for a single contaminant group (dioxins and dl-PCB). Of these, European sprat and Atlantic horse mackerel are also data deficient and for wild Atlantic salmon the data are old, which increases the need for further monitoring of these species.

The lowest priority was assigned for golden redfish and Northern shrimp, since no risks were identified for these species. For the remaining species in Table 6, the data are insufficient to determine a priority level (unknown priority), and further monitoring is necessary for these species before potential risk can be evaluated.

In addition to the prioritization summarized in Table 6, future monitoring should also focus on regions with high levels of contaminants in certain species, including fjords and coastal waters and data deficient areas. Even with limited commercial fishery in fjords and coastal areas, monitoring is important to assess the exposure of recreational and sustenance fishers. Data are also needed for all species on PFAS and new contaminants including microplastic, which requires considerable efforts in method development.

5 - References

  • Alvheim, A.R., Kjellevold, M., Strand, E., Sanden, M. and Wiech, M. (2020). Mesopelagic Species and Their Potential Contribution to Food and Feed Security—A Case Study from Norway. Foods 9(3): 344. https://www.mdpi.com/2304-8158/9/3/344

  • AMAP (2025). Effects of Plastic Pollution on Arctic Animals. Summary for Policy-makers. Arctic Monitoring and Assessment Programme (AMAP), Tromsø, Norway: 16 pp. https://www.amap.no/documents/doc/effects-of-plastic-pollution-on-arctic-animals-summary-for-policy-makers/3845

  • Azad, A.M., Frantzen, S., Bank, M.S., Nilsen, B.M., Duinker, A., Madsen, L. and Maage, A. (2019). Effects of geography and species variation on selenium and mercury molar ratios in Northeast Atlantic marine fish communities. Science of the Total Environment 652: 1482-1496. https://doi.org/10.1016/j.scitotenv.2018.10.405

  • Banerjee, A. and Shelver, W. L. (2021). Micro- and Nanoplastic-Mediated Pathophysiological Changes in Rodents, Rabbits, and Chickens: A Review. Journal of Food Protection 84(9): 1480-1495. https://www.sciencedirect.com/science/article/pii/S0362028X22054461

  • Bank, M.S., Frantzen, S., Duinker, A., Amouroux, D., Tessier, E., Nedreaas, K., Maage, A. and Nilsen, B.M. (2021). Rapid temporal decline of mercury in Greenland halibut (Reinhardtius hippoglossoides). Environmental Pollution 289: 117843. https://doi.org/10.1016/j.envpol.2021.117843

  • Bank, M.S., Ho, Q.T., Ingvaldsen, R.B., Duinker, A., Nilsen, B.M., Maage, A. and Frantzen, S. (2023a). Climate change dynamics and mercury temporal trends in Northeast Arctic cod (Gadus morhua) from the Barents Sea ecosystem. Environmental Pollution 338: 122706. https://doi.org/10.1016/j.envpol.2023.122706

  • Bank, M.S., Yiou, M.Z. and Staby, A. (2023b). Contaminants in European Hake (Merluccius merluccius) from the Northeast Atlantic Ocean. Rapport fra havforskningen 2023-43: 34 p. https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-en-2023-43

  • Brito, W. A. D., Mutter, F., Wende, K., Cecchini, A. L., Schmidt, A. and Bekeschus, S. (2022). Consequences of nano and microplastic exposure in rodent models: the known and unknown. Particle and Fibre Toxicology 19(1):28. https://particleandfibretoxicology.biomedcentral.com/articles/10.1186/s12989-022-00473-y

  • De Witte, B., Coleman, B., Bekaert, K., Boitsov, S., Botelho, M.J., Castro-Jiménez, J., Duffy, C., Habedank, F., McGovern, E., Parmentier, K., Tornero, V., Viñas, L. and Turner, A.D. (2022). Threshold values on environmental chemical contaminants in seafood in the European Economic Area. Food Control 138: 108978. https://doi.org/10.1016/j.foodcont.2022.108978

  • Duinker, A., Frantzen, S., Nilsen, B.M., Måge, A., Nedreaas, K. and Julshamn, K. (2012). Basisundersøkelse av fremmedstoffer i nordsjøsild (Clupea harengus). Sluttrapport. NIFES-rapport: 26 p. https://www.hi.no/resources/publikasjoner/rapporter-nifes/2013/basisundersokelseavfremmedstofferinordsjosild.pdf

  • Duinker, A., Kleppe, M., Fjære, E., Biancarosa, I., Heldal, H.E., Dahl, L.,and Lunestad, B.T. (2020). Knowledge update on macroalgae food and feed safety - based on data generated in the period 2014-2019 by the Institute of Marine Research, Norway. Rapport fra havforskningen 2020-44: 35 p. https://doi.org/10.13140/RG.2.2.20134.14407 

  • EFSA (2012a). Cadmium dietary exposure in the European population. EFSA Journal 2012 10 (1:2551): 37 p. https://doi.org/10.2903/j.efsa.2012.2551

  • EFSA (2012b). Scientific opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA Journal 10(12): 2985. https://doi.org/10.2903/j.efsa.2012.2985

  • EFSA (2020). Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA Journal 18(9): e06223. https://doi.org/10.2903/j.efsa.2020.6223

  • Ferter, K., Otterå, H., Christman, M., Kleiven, A.R., Weltersbach, M.S., Gundersen, S., Djønne, C., Bjelland, O., Hartill, B., Lyle, J., Hyder, K., Borch, T. and Vølstad, J.H. (2022). Integrating complementary survey methods to estimate catches in Norway's complex marine recreational hook-and-line fishery. ICES Journal of Marine Science 80: 107-121. https://doi.org/10.1093/icesjms/fsac216

  • Frantzen, S., Duinker, A., Julshamn, K., Nøttestad, L. and Maage, A. (2024a). Levels of mercury, arsenic, cadmium and lead in Northeast Atlantic mackerel (Scomber scombrus) from northern European waters. Marine Pollution Bulletin 200: 116060. https://doi.org/10.1016/j.marpolbul.2024.116060

  • Frantzen, S. and Maage, A. (2016). Fremmedstoffer i villfisk med vekt på kystnære farvann. Brosme, lange og bifangstarter. Gjelder tall for prøver samlet inn i 2013-2015. NIFES-rapport: 116 p. https://www.hi.no/resources/publikasjoner/rapporter-nifes/2017/rapportvillfisk2016-1.pdf

  • Frantzen, S., Måge, A., Duinker, A., Julshamn, K. and Iversen, S.A. (2015). A baseline study of metals in herring (Clupea harengus) from the Norwegian Sea, with focus on mercury, cadmium, arsenic and lead. Chemosphere 127: 164-170. http://dx.doi.org10.1016/j.chemosphere.2015.01.037

  • Frantzen, S., Måge, A., Iversen, S.A. and Julshamn, K. (2011). Seasonal variation in the levels of organohalogen compounds in herring (Clupea harengus) from the Norwegian Sea. Chemosphere 85(2): 179-187. http://dx.doi.org10.1016/j.chemosphere.2011.06.034

  • Frantzen, S., Måge, A. and Julshamn, K. (2009). Basisundersøkelse av fremmedstoffer i Norsk Vårgytende Sild. NIFES-rapport: 24 p. https://imr.brage.unit.no/imr-xmlui/handle/11250/3056146

  • Frantzen, S., Måge, A. and Julshamn, K. (2010). Basisundersøkelse fremmedstoffer i nordøstatlantisk makrell (Scomber scombrus). Sluttrapport. NIFES-rapport: 33 p. https://imr.brage.unit.no/imr-xmlui/handle/11250/3057019

  • Frantzen, S., Nilsen, B.M. and Sanden, M. (2020). Fremmedstoffer i rødspette, breiflabb og lyr - Sluttrapport for kartleggingsprogrammet "Fremmedstoffer i villfisk med vekt på kystnære farvann" 2016-2018. Rapport fra havforskningen. 2020-20: 75 p. https://www.hi.no/en/hi/nettrapporter/rapport-fra-havforskningen-2020-20

  • Frantzen, S., Valdersnes, S., Wiech, M. and Sanden, M. (2024b). Fremmedstoffer i villfisk 2023. Bestemmelse av uorganisk arsen, metylkvikksølv og PFAS i utvalgte sjømatprøver. Rapport fra havforskningen. 2024-27:44 p. https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-2024-27#sec-3-8

  • Gomero, A., Haave, M., Bjorøy, Ø., Herzke, D., Kögel, T., Nikiforov, V. and Øysæd, K.B. (2020). Quantification of microplastic in fillet and organs of farmed and wild salmonids- a comparison of methods for detection and quantification. NORCE Report. 8-2020: 43 p. https://www.hi.no/resources/Salmodetect-report-final.pdf

  • Gomez-Delgado, A.I., Tibon, J., Silva, M.S., Lundebye, A.-K., Agüera, A., Rasinger, J.D., Strohmeier, T., Sele, V. (2023). Seasonal variations in mercury, cadmium, lead and arsenic species in Norwegian blue mussels (Mytilus edulis L.) – Assessing the influence of biological and environmental factors. J. Trace Elem. Med. Biol. 76: 127110. https://doi.org/https://doi.org/10.1016/j.jtemb.2022.127110.

  • Hamilton, B.M., Baak, J.E., Vorkamp, K., Hammer, S., Granberg, M., Herzke, D. and Provencher, J. (2023). Plastics as a carrier of chemical additives to the Arctic: Possibilities for strategic monitoring across the circumpolar North. Arctic Science 9: 284-296. http://dx.doi.org/10.1139/AS-2021-0055

  • Ho, Q.T., Bank, M.S., Azad, A.M., Nilsen, B.M., Frantzen, S., Boitsov, S., Maage, A., Kogel, T., Sanden, M., Froyland, L., Hannisdal, R., Hove, H., Lundebye, A.K., Ostbakken, O.J.N. and Madsen, L. (2021). Co-occurrence of contaminants in marine fish from the North East Atlantic Ocean: Implications for human risk assessment. Environment International 157: 106858. https://doi.org/10.1016/j.envint.2021.106858

  • Ho, Q.T., Dahl, L., Nedreaas, K., Azad, A.M., Bank, M.S., Berg, F., Wiech, M., Frantzen, S., Sanden, M., Wehde, H., Frøyland, L., Maage, A. and Madsen, L. (2024). Modelling seasonal and geographical n-3 polyunsaturated fatty acid contents in marine fish from the Northeast Atlantic Ocean. Environmental Research 252: 119021. https://doi.org/10.1016/j.envres.2024.119021 .

  • Ho, Q.T., Frantzen, S., Nilsen, B.M., Nøstbakken, O.J., Azad, A.M., Duinker, A., Madsen, L. and Bank, M.S. (2023). Congener-specific accumulation of persistent organic pollutants in marine fish from the Northeast Atlantic Ocean. Journal of Hazardous Materials 457: 131758. https://doi.org/10.1016/j.jhazmat.2023.131758

  • Horodytska, O., Cabanes, A. and Fullana, A. (2020). Non-intentionally added substances (NIAS) in recycled plastics. Chemosphere 251: 126373. https://doi.org/10.1016/j.chemosphere.2020.126373

  • Julshamn, K., Duinker, A., Berntssen, M., Nilsen, B.M., Frantzen, S., Nedreaas, K.H. and Måge, A. (2013a). A baseline study on levels of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, non-ortho and mono-ortho PCBs, non-dioxin-like PCBs and polybrominated diphenyl ethers in Northeast Arctic cod (Gadus morhua) from different parts of the Barents Sea. Marine Pollution Bulletin 75(1-2): 250-258. http://dx.doi.org10.1016/j.marpolbul.2013.07.017 .

  • Julshamn, K., Duinker, A., Nilsen, B.M., Frantzen, S., Maage, A., Valdersnes, S. and Nedreaas, K. (2013b). A baseline study of levels of mercury, arsenic, cadmium and lead in Northeast Arctic cod (Gadus morhua) from different parts of the Barents Sea. Marine Pollution Bulletin 67(1–2): 187-195. http://dx.doi.org/10.1016/j.marpolbul.2012.11.038

  • Julshamn, K., Duinker, A., Nilsen, B.M., Nedreaas, K. and Maage, A. (2013c). A baseline study of metals in cod (Gadus morhua) from the North Sea and coastal Norwegian waters, with focus on mercury, arsenic, cadmium and lead. Marine Pollution Bulletin 72(1): 264-273. http://dx.doi.org/10.1016/j.marpolbul.2013.04.018

  • Julshamn, K., Duinker, A., Valdersnes, S., Lunestad, B.T. and Måge, A. (2013d). Mattilsynets program: Miljøgifter i fisk og fiskevarer 2012 – Undersøkelse av fremmedstoffer i kongekrabbe (Paralithodes camtschaticus) og oljer. NIFES-rapport: 28 p. https://imr.brage.unit.no/imr-xmlui/handle/11250/3057022

  • Julshamn, K., Grøsvik, B.E., Nedreaas, K. and Maage, A. (2006). Mercury concentration in fillets of Greenland halibut (Reinhardtius hippoglossoides) caught in the Barents Sea in January 2006. Science of the Total Environment 372: 345-349. https://doi.org/10.1016/j.scitotenv.2006.09.030

  • Julshamn, K., Nilsen, B.M., Duinker, A., Frantzen, S., Valdersnes, S., Nedreaas, K. and Måge, A. (2012a). Basisundersøkelse fremmedstoffer i torsk (Gadus morhua). Sluttrapport. NIFES-rapport: 28 p. https://imr.brage.unit.no/imr-xmlui/handle/11250/3056483 

  • Julshamn, K., Nilsen, B.M., Frantzen, S., Valdersnes, S., Maage, A., Nedreaas, K. and Sloth, J.J. (2012b). Total and inorganic arsenic in fish samples from Norwegian waters. Food Additives & Contaminants Part B-Surveillance 5(4): 229-235. https://doi.org/10.1080/19393210.2012.698312

  • Julshamn, K., Nilsen, B.M., Valdersnes, S. and Frantzen, S. (2012c). Årsrapport 2011. Mattilsynets program: Fremmedstoffer i villfisk med vekt på kystnære farvann: Delrapport I: Undersøkelser av miljøgifter i taskekrabbe. NIFES-rapport: 52 p. https://imr.brage.unit.no/imr-xmlui/handle/11250/3056451

  • Julshamn, K., Valdersnes, S., Duinker, A., Nedreaas, K., Sundet, J.H. and Maage, A. (2015). Heavy metals and POPs in red king crab from the Barents Sea. Food Chemistry 167: 409-417. https://doi.org/10.1016/j.foodchem.2014.07.003 .

  • Knutsen, H., Wiech, M., Duinker, A. and Maage, A. (2018a). Cadmium in the shore crab Carcinus maenas along the Norwegian coast: geographical and seasonal variation and correlation to physiological parameters. Environmental Monitoring and Assessment 190(4): 253. https://doi.org./10.1007/s10661-018-6606-6 

  • Knutsen, H.K., Alexander, J., Barregard, L., Bignami, M., Bruschweiler, B., Ceccatelli, S., Cottrill, B., Dinovi, M., Edler, L., Grasl-Kraupp, B., Hogstrand, C., Nebbia, C.S., Oswald, I.P., Petersen, A., Rose, M., Roudot, A.C., Schwerdtle, T., Vleminckx, C., Vollmer, G., Wallace, H., Furst, P., Hakansson, H., Halldorsson, T., Lundebye, A.K., Pohjanvirta, R., Rylander, L., Smith, A., Van Loveren, H., Waalkens-Berendsen, I., Zeilmaker, M., Binaglia, M., Ruiz, J.A.G., Horvath, Z., Christoph, E., Ciccolallo, L., Bordajandi, L.R., Steinkeliner, H., Hoogenboom, L. and Chain, E.P.C.F. (2018b). Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA Journal 16(11): e05333. https://doi.org/10.2903/j.efsa.2018.5333 

  • Kögel, T., Frantzen, S., Bakkejord, J.A., Kjellevold, M. and Maage, A. (2021). Basisundersøkelse av fremmedstoffer i hyse - Tungmetaller, sporelementer og organiske miljøgifter i hyse (Melanogrammus aeglefinus) fra Skagerrak, Nordsjøen, Norskehavet og Barentshavet. Rapport fra havforskningen 2021-35: 60 p. https://www.hi.no/templates/reporteditor/report-pdf?id=48066&92043089

  • Kögel, T., Hamilton, B.M., Granberg, M.E., Provencher, J., Hammer, S., Gomiero, A., Magnusson, K. and Lusher, A. (2023). Current efforts on microplastic monitoring in Arctic fish and how to proceed. Arctic Science 9: 266-283. http://dx.doi.org/10.1139/AS-2021-0057 

  • Kögel, T., Refosco, A. and Maage, A. (2020). Surveillance of Seafood for Microplastics. In Handbook of Microplastics in the Environment, T. Rocha-Santos, M. Costa and C. Mouneyrac (Ed.). Cham, Springer International Publishing. p. 1-34.

  • Nilsen, B.M., Boitsov, S., Frantzen, S., Berg, E. and Sanden, M. (2020a). Miljøgifter i atlantisk kveite fra kyst- og havområder i Norskehavet - 2019. Oppfølging av kartleggingsundersøkelsen for atlantisk kveite i 2013-2016. Rapport fra havforskningen 2020-35: 35 p. https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-2020-35

  • Nilsen, B.M., Frantzen, S., Julshamn, K., Nedreaas, K. and Måge, A. (2013). Basisundersøkelse av fremmedstoffer i sei (Pollachius virens) fra Nordsjøen. Sluttrapport for prosjektet "Fremmedstoffer i villfisk med vekt på kystnære farvann". NIFES-rapport: 56 p. https://imr.brage.unit.no/imr-xmlui/handle/11250/3056489

  • Nilsen, B.M., Frantzen, S., Nedreaas, K. and Julshamn, K. (2010). Basisundersøkelse av fremmedstoffer i blåkveite (Reinhardtius hippoglossoides). NIFES-rapport: 42 p. https://imr.brage.unit.no/imr-xmlui/handle/11250/3056300

  • Nilsen, B.M., Frantzen, S. and Sanden, M. (2019). Undersøkelse av miljøgifter i atlantisk kveite fra kysten av Trøndelag og Nordland : Sammenligning med resultater fra kartleggingsundersøkelsen for atlantisk kveite i 2013-2016. Rapport fra havforskningen 2019-49: 28 p. https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-2019-49 

  • Nilsen, B.M., Frantzen, S. and Sanden, M. (2020b). Fremmedstoffer i snabeluer (Sebastes mentella) og vanlig uer (Sebastes norvegicus) - Sluttrapport for kartleggingsprogrammet "Miljøgifter i fisk og fiskevarer" 2016-2018. Rapport fra havforskningen 2020-11: 75 p. https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-2020-11

  • Nilsen, B.M., Julshamn, K., Duinker, A., Nedreaas, K. and Måge, A. (2012). Basisundersøkelse av fremmedstoffer i sei (Pollachius virens) fra Norskehavet og Barentshavet. Sluttrapport. NIFES-rapport: 44 p.  https://www.hi.no/resources/publikasjoner/rapporter-nifes/2013/basisundersokelseavfremmedstofferiseifranorskehavetogbarentshavet.pdf

  • Nilsen, B.M. and Måge, A. (2016). Oppfølging av basisundersøkelse blåkveite. Juni-2015. NIFES-rapport: 19 p. https://imr.brage.unit.no/imr-xmlui/handle/11250/3056943

  • Nilsen, B.M., Nedreaas, K. and Måge, A. (2016). Kartlegging av fremmedstoffer i Atlantisk kveite (Hippoglossus hippoglossus). Sluttrapport for programmet "Miljøgifter i fisk og fiskevarer" 2013-2015. NIFES-rapport: 82 p. https://www.hi.no/resources/publikasjoner/rapporter-nifes/2017/sluttrapportatlantiskkveite.pdf

  • Nøstbakken, O.J., Duinker, A., Rasinger, J.D., Nilsen, B.M., Sanden, M., Frantzen, S., Hove, H.T., Lundebye, A.-K., Berntssen, M., Hannisdal, R., Madsen, L. and Måge, A. (2018). Factors influencing risk assessments of brominated flame-retardants; evidence based on seafood from the North East Atlantic Ocean. Environment International 119: 544-557. http://dx.doi.org10.1016/j.envint.2018.04.044

  • Nøstbakken, O.J., Rasinger, J.D., Hannisdal, R., Sanden, M., Frøyland, L., Duinker, A., Frantzen, S., Dahl, L.M., Lundebye, A.K. and Madsen, L. (2021). Levels of omega 3 fatty acids, vitamin D, dioxins and dioxin-like PCBs in oily fish; a new perspective on the reporting of nutrient and contaminant data for risk–benefit assessments of oily seafood. Environment International 147: 106322. https://doi.org/10.1016/j.envint.2020.106322

  • van der Meeren, G., Zimmermann, F., Palm, A.C.U., Wiech, M., Havorsen, K.A.T.H., Kleiven, A.R., Kleiven, P.J.N., Jørgensen, T. and Marcussen, J.B. (2022). Strandkrabber Carcinus maenas og strandkrabbefiskeri. Rapport fra havforskningen 2022-25: 49 p. https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-2022-15

  • Wagner, M., Monclüs, L., Arp, H.P.H., Groh, K.J., Løseth, M.E., Muncke, J., Wang, Z., Wolf, R. and Zimmermann, L. (2025). State of the science on plastic chemicals - Identifying and addressing chemicals and polymers of concern. PlastChem report and PlastChem database (version 1.01). https://doi.org/10.5281/zenodo.10701705

  • Wiech, M., Frantzen, S., Reecht, Y., Hallfredsson, E.H. and Nilsen, B.M. (2023). Fremmedstoffer i flekksteinbit, gråsteinbit og vassild/strømsild. Rapport fra havforskningen 2023-52: 72 p. https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-2023-52#sec-3-11

  • Wiech, M., Silva, M., Meier, S., Tibon, J., Berntssen, M.H.G., Duinker, A. and Sanden, M. (2020). Undesirables in Mesopelagic Species and Implications for Food and Feed Safety—Insights from Norwegian Fjords. Foods 9(9): 1162. https://www.mdpi.com/2304-8158/9/9/1162

  • Wiech, M., Vik, E., Duinker, A., Frantzen, S., Bakke, S. and Måge, A. (2017). Effects of cooking and freezing practices on the distribution of cadmium in different tissues of the brown crab (Cancer pagurus). Food Control 75: 14-20. http://dx.doi.org10.1016/j.foodcont.2016.12.011

  • Zhu, Y., Azad, A.M., Kjellevold, M., Bald, C., Iñarra, B., Alvarez, P., Boyra, G., Berntssen, M., Madsen, L. and Wiech, M. (2023). Differences in nutrient and undesirable substance concentrations in Maurolicus muelleri across the Bay of Biscay, Norwegian fjords, and the North Sea. Frontiers in Marine Science 10. https://doi.org/10.3389/fmars.2023.1213612

  • Zhu, Y., Barre, J., Staby, A., Wiech, M., Zayas, Z.P., Tessier, E., Berail, S., Maage, A., Frøyland, L. and Bank, M.S. (2025). Distribution and trophic transfer of mercury and selenium in European hake (Merluccius merluccius) from the Northeast Atlantic Ocean: A stable isotope approach. J. Haz. Mat. 494: 138564. https://www.sciencedirect.com/science/article/pii/S0304389425014803  

  • Øyan, S. (2021). Distribution of fat, selenium, mercury, cadmium, arsenic and persistent organic pollutants in Atlantic Bluefin Tuna (Thunnus thynnus) and implications for sampling and food safety. Department of Chemistry University of Bergen. Master of Science. https://bora.uib.no/bora-xmlui/bitstream/handle/11250/2827379/Master-thesis-Sigurd--yan-KJEM399.pdf?sequence=1&isAllowed=y

6 - Appendix Table A1 - Surveys of contaminants in seafood from polluted areas

Area Year(s) Report Funding
Jøssingfjord 2018 Bank et al., 2024 Ministry of Trade, Industry and Fisheries
U-864, Fedje 2005-2023 Måge et al., 2006, 2007, Frantzen et al., 2008, 2010, 2011, 2012, Haldorsen et al., 2013, Frantzen et al., 2014, Frantzen and Måge, 2015, 2016, Frantzen et al., 2018, 2019a, 2019b, 2020, 2021, 2023, 2024 The Norwegian Coastal Administration
Bergen 2007-2009 2019-2021 Måge and Frantzen, 2008, 2009, Frantzen and Måge, 2009, Kögel et al., 2023 County Governor, NFSA
Ålesund 2019-2021 Kögel et al., 2023 NFSA
Grenlandsfjord/Kragerø 2019-2021 Kögel et al., 2023 NFSA
Førdefjord 2017 Kögel, 2019 NFSA
Repparfjord and Revsbotn 2016-2017 Kögel et al., 2021 IMR
Årdalsfjord 2016 Kögel et al., 2017 NFSA
Frænfjord 2016 Kögel and Maage, 2017 Hustad marmor
Oslofjord 2007, 2013-2015 Nesje et al., 2007, Kögel et al., 2016 MS Trygg, NFSA
Vatsfjord 2013-2014 Frantzen and Måge, 2013, Frantzen and Maage, 2014 Jacob Hatteland AS
Hardangerfjord 2011, 2021 Måge et al., 2012, Måge and Frantzen, 2022 NFSA, County Governor
Ølenfjord 2011 Sanden and Ørnsrud, 2012 NFSA
Salten 2012 Ørnsrud and Måge, 2013, Julshamn et al., 2013a NFSA
Vesterålen 2012 Julshamn et al., 2013b Ministry of Trade, Industry and Fisheries
Salten - Vesterålen 2013-2014 Frantzen et al., 2015 Ministry of Trade, Industry and Fisheries, County of Nordland
Tønsberg/Vrengen 2009 Nilsen et al., 2011, Nilsen and Julshamn, 2011, Valdersnes et al., 2017 NFSA
Sandefjord 2009 Nilsen et al., 2011, Nilsen and Julshamn, 2011, Valdersnes et al., 2017 NFSA
Kragerø 2009 Nilsen et al., 2011, Nilsen and Julshamn, 2011, Valdersnes et al., 2017 NFSA
Tvedestrand 2009 Nilsen et al., 2011, Nilsen and Julshamn, 2011, Valdersnes et al., 2017 NFSA
Lillesand 2009 Nilsen et al., 2011, Nilsen and Julshamn, 2011, Valdersnes et al., 2017 NFSA
Farsund 2009 Nilsen et al., 2011, Nilsen and Julshamn, 2011, Valdersnes et al., 2017 NFSA
Flekkefjord 2009 Nilsen et al., 2011, Nilsen and Julshamn, 2011, Valdersnes et al., 2017 NFSA
Egersund 2009 Nilsen et al., 2011, Nilsen and Julshamn, 2011, Valdersnes et al., 2017 NFSA
Sandnes 2009 Nilsen et al., 2011, Nilsen and Julshamn, 2011, Valdersnes et al., 2017 NFSA
Stavanger 2009 Nilsen et al., 2011, Nilsen and Julshamn, 2011, Valdersnes et al., 2017 NFSA
Karmsundet 2009 Nilsen et al., 2011, Nilsen and Julshamn, 2011, Valdersnes et al., 2017 NFSA
Narvik 2009 Nilsen et al., 2011, Nilsen and Julshamn, 2011, Valdersnes et al., 2017 NFSA
Hammerfest 2009 Nilsen et al., 2011, Nilsen and Julshamn, 2011, Valdersnes et al., 2017 NFSA
Honningsvåg 2009 Nilsen et al., 2011, Nilsen and Julshamn, 2011, Valdersnes et al., 2017 NFSA
Svolvær 2008-2009 Nilsen et al., 2011, Nilsen and Julshamn, 2011, Valdersnes et al., 2017 NFSA
Table A1. An overview of surveys of contaminants in seafood from Norwegian fjords and harbours, conducted by IMR, year(s) of sampling, reports and funding sources.

 

References

Bank, M.S., Ho, Q.T., Kutti, T., Kögel, T., Rodushkin, I., van der Meeren, T., Wiech, M. and Rastrick, S. (2024). Multi-isotopic composition of brown crab (Cancer pagurus) and seafloor sediment from a mine tailing sea disposal impacted fjord ecosystem. Journal of Hazardous Materials 471: 134406. https://doi.org/10.1016/j.jhazmat.2024.134406

Frantzen, S., Duinker, A. & Måge, A. (2015). Kadmiumanalyser i taskekrabbe fra Nordland høsten/vinteren 2013 - 2014. NIFES rapport til Nordland fylkeskommune, 21 p. https://imr.brage.unit.no/imr-xmlui/handle/11250/3056937

Frantzen, S., Furevik, D., Ulvestad, B.H. and Måge, A. (2014). Kvikksølvinnhold i fisk og annen sjømat ved vraket av U-864 vest av Fedje. Nye analyser i 2013. NIFES-rapport: 20 p. 

Frantzen, S. and Måge, A. (2009). Utvidet kostholdsrådsundersøkelse, Bergen Byfjord 2009. NIFES-rapport: 44 p. https://imr.brage.unit.no/imr-xmlui/handle/11250/3056267

Frantzen, S. and Måge, A. (2013). Metaller og organiske miljøgifter i sjømat fra Vatsfjorden. NIFES-rapport: 27 p. 

Frantzen, S. and Måge, A. (2015). Kvikksølv i fisk og annen sjømat ved vraket av U-864 vest av Fedje. Nye analyser i 2014. NIFES-rapport: 24 p. https://www.kystverket.no/globalassets/oljevern-og-miljoberedskap/skipsvrak/u-864/kvikksolvinnhold-i-fisk-og-annen-sjomat-ved-u864.pdf/download

Frantzen, S. and Måge, A. (2016). Kvikksølvinnhold i fisk og annen sjømat ved vraket av U-864 vest av Fedje. Nye analyser i 2015. NIFES-rapport: 31 p.

Frantzen, S. and Maage, A. (2014). Metaller og organiske miljøgifter i sjømat fra Vatsfjorden. NIFES-rapport: 27 p. 

Frantzen, S., Måge, A., Furevik, D. and Julshamn, K. (2008). Kvikksølvinnhold i fisk og sjømat ved vraket av U864 vest av Fedje. Nye analyser i 2008 og sammenligning med data fra perioden 2004 til 2007. NIFES-rapport: 20 p.

Frantzen, S., Måge, A., Furevik, D. and Julshamn, K. (2010). Kvikksølvinnhold i fisk og sjømat ved vraket av U864 vest av Fedje - Nye analyser i 2009 og sammenligning av data fra perioden 2004-2008. NIFES-rapport: 18 p.

Frantzen, S., Måge, A., Furevik, D. and Julshamn, K. (2011). Kvikksølv i fisk og annen sjømat ved vraket av U-864 vest av Fedje - Nye analyser i 2010 og sammenligning med perioden 2004 til 2009. NIFES-rapport: 20 p.

Frantzen, S., Måge, A., Furevik, D., Ulvestad, B.H. and Julshamn, K. (2012). Kvikksølvinnhold i fisk og annen sjømat ved vraket av U-864 vest av Fedje - Nye analyser i 2011 og sammenligning med data fra perioden 2004 til 2010. NIFES-rapport: 20 p.

Frantzen, S., Måge, A. and Sanden, M. (2019a). Kvikksølv i sjømat ved U-864: Resultater fra overvåkning i 2018. Rapport fra havforskningen 2019-38: 26 p. https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-2019-38

Frantzen, S., Måge, A. and Sanden, M. (2021). Kvikksølv i sjømat ved U-864 — Resultat fra overvåkning i 2020. Rapport fra havforskningen 2021-37: 29 p. https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-2021-37

Frantzen, S., Måge, A. and Sanden, M. (2023). Kvikksølv i sjømat ved U-864 - Resultater fra overvåkning i 2021. Rapport fra havforskningen 2023-23: 37 p. https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-2023-23

Frantzen, S., Måge, A. and Sanden, M. (2024). Kvikksølv i sjømat ved U-864 - Resultater fra overvåkning i 2022 og 2023. Rapport fra havforskningen 2024-35: 33 p. https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-2024-35

Frantzen, S., Maage, A. and Sanden, M. (2020). Kvikksølv i sjømat ved U-864 - Resultater fra overvåkning i 2019. Rapport fra havforskningen 2020-33: 23 p. https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-2020-33

Frantzen, S., Otterå, H.M., Heldal, H.E. and Måge, A. (2018). Kvikksølvinnhold i fisk og annen sjømat ved vraket av U-864 vest av Fedje - Resultater fra fast overvåkning og ekstra prøvetaking i 2016. Rapport fra havforskningen 8-2018: 36 p. https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen/2018/rapport_fra_havforskningen_fedje_2016_endelig

Frantzen, S., Sanden, M. and Måge, A. (2019b). Kvikksølvinnhold i sjømat ved vraket av U-864 vest av Fedje - Resultater fra fast overvåkning i 2017. Rapport fra havforskningen 2019-9: 34 p. https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen_fedje-2017-rev2.docx

Haldorsen, A.-K.L., Frantzen, S., Julshamn, K., Furevik, D. and Måge, A. (2013). Kvikksølvinnhold i fisk og annen sjømat ved vraket av U-864 vest av Fedje. - Nye analyser i 2012. NIFES-rapport: 17 p.

Julshamn, K., Duinker, A. og Måge, A. (2013a). Innhold av kadmium og andre tungmetaller i filet og lever av fisk fanget i Saltenområdet, november-desember 2012. NIFES-rapport: 14 p. https://imr.brage.unit.no/imr-xmlui/handle/11250/3057018?locale-attribute=en

Julshamn, K., Duinker, A. og Måge, A. (2013b). Oppfølging av Mattilsynets krabbeprosjekt – november –desember 2012. Oppfølgende analyser fra Vesterålen. Rapport til Mattilsynet. NIFES-rapport: 11 p. https://imr.brage.unit.no/imr-xmlui/handle/11250/3057018?locale-attribute=en

Kögel, T. (2019). Førdefjorden: Basisundersøkelse av fremmedstoff i sjømat - Analyse av tungmetaller, andre grunnstoff og persistente organiske forbindelser i sjømat fra Førdefjorden 2017; Førdefjord – A baseline study of undesirable substances - Analysis of heavy metals, other elements and persistent organic pollutants in seafood from the Førdefjord 2017. Rapport fra havforskningen 2019-48: 30 p. https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-2019-48

Kögel, T., Bienfait, A.M., Maage, A. and van der Meeren, T. (2021). Examination of elements in seafood from Repparfjorden and Revsbotn-haddock as an indicator species for monitoring marine landfills. Rapport fra havforskningen 2021-50: 76 p. https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-2021-50

Kögel, T., Frantzen, S., Azad, A.M. and Maage, A. (2017). Sjømat fra Årdalsfjorden. Overvåking av forurensede havner og fjorder 2016. NIFES-rapport: 54 p. https://www.hi.no/resources/Rapport-om-sjomat-fra-Ardalsfjorden-2017.pdf

Kögel, T. and Maage, A. (2017). Analyse av uønskede stoffer i sjømat fra Frænfjorden ved Omya Hustadmarmor AS. NIFES-rapport: 7p. https://imr.brage.unit.no/imr-xmlui/bitstream/handle/11250/3056965/2017_K%C3%B6gel_M%C3%A5ge_Rapport_Hustadmarmor%20Fr%C3%A6nfjord_tko_2017_02_06.pdf?sequence=1

Kögel, T., Maage, A. and Ørnsrud, R. (2016). Sjømat i Oslofjorden - Uønskede stoffer i torsk, makrell og taskekrabbe. Overvåking av forurensede havner og fjorder 2013-2015. NIFES-rapport: 62 p. https://www.hi.no/resources/publikasjoner/rapporter-nifes/2017/rapportsjomatioslofjordenuonskedestofferitorskmakrellogtaskekrabbe2016finaldes.pdf

Kögel, T., Wiech, M. and Frantzen, S. (2023). Sjømat fra havner og fjorder med kostadvarsel-En undersøkelse av fremmedstoff i torsk, brosme og krabbe fra områdene Bergen, Kragerø, Grenland og Ålesund fra 2019-2021; A survey of contaminants in cod, tusk and crab from the areas Bergen, Kragerø, Grenland and Ålesund from 2019-2021. Rapport fra havforskningen 2023-48: 49 p. https://imr.brage.unit.no/imr-xmlui/bitstream/handle/11250/3101306/RH+2023-48.pdf?sequence=1

Måge, A., Bjelland, O., Olsvik, P.A., Nilsen, B.M. and Julshamn, K. (2012). Miljøgifter i fisk og fiskevarer 2011: Kvikksølv i djupvassfisk og skaldyr frå Hardangerfjorden samt miljøgifter i marine oljer. NIFES-rapport: 31 p. https://www.researchgate.net/publication/288177218

Måge, A. and Frantzen, S. (2008). Kostholdsrådsundersøkelse, Bergen Byfjord 2007. NIFES-rapport: 37 p. https://imr.brage.unit.no/imr-xmlui/handle/11250/3056107?locale-attribute=en

Måge, A. and Frantzen, S. (2009). Kostholdsråds-undersøking, fritidsfiske Bergen, 2008-2009. Kvikksølv i torskefisk og PCB i lever. NIFES-rapport: 18 p. https://imr.brage.unit.no/imr-xmlui/handle/11250/3056243

Måge, A. and Frantzen, S. (2022). DDT i blåskjel frå fruktområde i Vestnorske fjordar 2021. Prøvar frå Hardangerfjorden og Sognefjorden med vekt på Sørfjorden. Rapport fra havforskningen 2022-29: 29 p. https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-2022-29

Måge, A., Julshamn, K., Storaker, A. and Furevik, D.M. (2006). Kvikksølvinnhald i fisk og sjømat ved søkkt ubåt (U-864) vest av Fedje - Nye analysar i 2006 - Samanlikning med data frå 2004 og 2005. NIFES-rapport: 15 p.

Måge, A., Vågenes, L., Frantzen, S., Julshamn, K. and Furevik, D. (2007). Kvikksølvinnhald i fisk og sjømat ved søkkt ubåt (U864) vest av Fedje - Nye analysar 2007 - Samanlikning med data frå perioden 2004 til 2006. NIFES-rapport: 17 p.

Nesje, G., Grøsvik, B.E. and Måge, A., 2007. Nivåer av klororganiske forbindelser (PCB, DDT, HCB og HCH) og kvikksølv i fangst fra MS Trygg i juni og august 2007. Rapport fra havforskningen 8-2007: 19 p. https://imr.brage.unit.no/imr-xmlui/handle/11250/3056978

Nilsen, B.M., Frantzen, S. and Julshamn, K. (2011). Fremmedstoffer i villfisk med vekt på kystnære farvann. En undersøkelse av innholdet av dioksiner og dioksinlignende PCB i torskelever fra 15 fjorder og havner langs norskekysten 2009. NIFES-rapport: 77 p. https://imr.brage.unit.no/imr-xmlui/handle/11250/3056402?locale-attribute=en

Nilsen, B.M. and Julshamn, K. (2011). Overvåking forurensede havner og fjorder 2009/2010. En undersøkelse av kvikksølv i torskefilet fra 15 fjorder og havner langs norskekysten. NIFES-rapport: 74 p. https://imr.brage.unit.no/imr-xmlui/handle/11250/3056395

Sanden, M. and Ørnsrud, R. (2012). Overvåkning forurensede havner og fjorder. Undersøkelse av fremmedstoffer i fisk og sjømat fra Ølenfjorden. NIFES-rapport: 18 p.

Valdersnes, S., Nilsen, B.M., Breivik, J.F., Borge, A. and Maage, A. (2017). Geographical trends of PFAS in cod livers along the Norwegian coast. Plos One 12(5): e0177947. 10.1371/journal.pone.0177947. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177947

Ørnsrud, R. og Måge, A. (2013). Overvåkning forurensede havner og fjorder, 2012. Undersøkelse av fremmedstoffer i torsk fra Salten til Nordland. NIFES-rapport: 20 p. https://imr.brage.unit.no/imr-xmlui/handle/11250/3056978

7 - Appendix Table A2 - Hg

Name of Species        English (Latin)

Tissue Name of monitoring program for source data Sampling year(s) Geographical area ML Individual or composite samples No of samples analysed No of samples above ML Fraction exceeding the ML (%) Mean Median Min-max 95% Percentile No of samples below LOQ Amount (g) that may be consumed before exceeding TWI
American plaice (Hippoglossus platessoides) Fillet Spot-check monitoring + NFSA Fjords and harbours 2016-2017 2006, 2016-2017 Barents Sea, Repparfjord, Revsbotn, Bøkfjord 0.5 Individual+ 5 Composite 46 0 0 0.044 0.040 0.002-0.13 0.096   2068
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019, spot check monitoring 2015 2015-2016 Skagerrak 0.5 Individual 50 5 10 0.29 0.24 0.084-0.77 0.59   314
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019 2016-2019 North Sea 0.5 Individual 167 29 17 0.32 0.27 0.019-0.93 0.72   284
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019 2017-2019 Norwegian Sea 0.5 Individual 123 2 1.6 0.20 0.18 0.019-1.0 0.44   455
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019, spot check monitoring 2015 2015-2019 Total, all areas 0.5 Individual 340 36 10.6 0.27 0.22 0.019-1.0 0.67   337
Atlantic bluefin tuna (Thunnus thynnus) Fatty muscle (o-toro) Spot-check monitoring 2016, 2018-2021 Skagerrak/North Sea/Norwegian Sea 1.0 Individual 21 1 4.76 0.61 0.57 0.17-1.1 0.97   149
Atlantic bluefin tuna (Thunnus thynnus) Lean muscle Spot-check monitoring 2016, 2018-2021 Skagerrak/North Sea/Norwegian Sea 1.0 Individual 46 2 4.35 0.67 0.6 0.45-1.2 1.2   136
Atlantic bluefin tuna (Thunnus thynnus) Red muscle Spot-check monitoring 2016, 2018-2021 Skagerrak/North Sea/Norwegian Sea 1.0 Individual 21 7 33.33 1.18 0.98 0.35-2.7 2.7   77
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 North Sea 0.3 Individual 265 17 6.4 0.15 0.12 0.023-0.64 0.33   619
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 Norwegian Sea 0.3 Individual 61 0 0 0.073 0.070 0.024-0.16 0.13   1247
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 Barents Sea 0.3 Individual 322 0 0 0.027 0.023 0.009-0.18 0.058   3342
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 Total, all areas 0.3 Individual 648 17 2.6 0.080 0.05 0.009-0.64 0.23   1138
Atlantic cod (Gadus morhua) Fillet Polluted fjords and harbours 2015-2017, 2019, 2021 Oslofjorden, Frænfjorden, Årdalsfjord, Repparfjord og Revsbotn, Førdefjorden, Bergen, Grenland/Kragerø, Ålesund 0.3 Individual+ 46 composite 281 4 1.4 0.094 0.078 0.011-0.45 0.23   968
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study+follow-up monitoring 2014-2016, 2019 Skagerrak, North Sea 1.0 Individual 9 1 11 0.35 0.16 0.072-1.7 1.7   260
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study+follow-up monitoring 2013-2015, 2017-2019 Norwegian Sea 1.0 Individual 366 20 5.5 0.30 0.16 0.021-2.4 1.1   303
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study 2013-2016 Barents Sea 1.0 Individual 133 0 0 0.11 0.081 0.019-0.61 0.29   827
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study+follow-up monitoring 2013-2019 Total, all areas 1.0 Individual 508 21 4.1 0.25 0.13 0.019-2.4 0.9   364
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut EU-Dioxin 2007, mini-baseline (2008-2010), baseline study 2007, 2008, 2013 Norwegian Sea 1.0 Individual 29 0 0 0.28 0.23 0.039-0.77 0.66   325
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Mini-baseline (2008-2010), baseline study 2008-2010, 2013 Barents Sea 1.0 Individual 15 0 0 0.082 0.05 0.020-0.35 0.35   1110
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut EU-Dioxin 2007, mini-baseline (2008-2010), baseline study 2007-2010, 2013 Total, both areas 1.0 Individual 44 0 0 0.21 0.18 0.020-0.77 0.65   433
Atlantic halibut (Hippoglossus hippoglossus) Fillet Polluted fjords and harbours 2016, 2017, 2021 Repparfjord and Revsbotn 1.0 Individual 50 0 0 0.026 0.02 0.008-0.078 0.061   3500
Atlantic herring (Clupea harengus) Fillet Follow-up monitoring 2017, 2020 North Sea 0.3 Individual 173 0 0 0.04 0.035 <0.003-0.12 0.09 3 2275
Atlantic herring (Clupea harengus) Fillet Follow-up monitoring 2017, 2020 Norwegian Sea 0.3 Individual 98 0 0 0.065 0.064 <0.003-0.12 0.099 3 1400
Atlantic horse mackerel (Trachurus trachurus) Fillet Spot-check monitoring 2017 North Sea 0.5 Individual 50 0 0 0.048 0.045 0.016-0.098 0.084   1896
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2017-2021 Skagerrak 0.3 Individual 223 1 0.45 0.06 0.053 <0.004-0.33 0.13 10 1517
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2018, 2019, 2022 North Sea 0.3 Individual 150 0 0 0.04 0.037 0.017-0.14 0.073   2275
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2017-2021 Norwegian Sea 0.3 Individual 270 0 0 0.0322 0.030 0.007-0.090 0.055   2826
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2019-2020 Barents Sea 0.3 Individual 60 0 0 0.0407 0.040 0.025-0.063 0.058   2236
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2017-2022 Total, all areas 0.3 Individual 703 1 0.14 0.0433 0.036 <0.004-0.33 0.09 10 2102
Atlantic salmon (Salmo salar), wild Fillet Wild salmon project 2012 2012 Coast of Northern Norway 0.3 Individual 137 0 0 0.038 0.037 0.014-0.13 0.065   2395
Atlantic wolffish (Anarhichas lupus) Fillet Baseline study 2018-2021 North Sea, Norwegian Sea, Barents Sea 0.5 Individual 176 5 2.8 0.14 0.11 0.029-0.74 0.39   650
Beaked redfish (Sebastes mentella) Fillet Baseline study 2016-2018 Norwegian Sea 0.5 Individual 77 0 0 0.20 0.19 0.016-0.36 0.32   461
Beaked redfish (Sebastes mentella) Fillet Baseline study 2016-2018 Barents Sea 0.5 Individual 447 0 0 0.076 0.062 0.0094-0.44 0.21   1205
Beaked redfish (Sebastes mentella) Fillet Baseline study 2016-2018 Total, both areas 0.5 Individual 524 0 0 0.093 0.075 0.0094-0.44 0.28   974
Blue ling (Molva dipterygia) Fillet NFSA Bycatch 2013-2015 2013-2016 Skagerrak, North Sea, Norwegian Sea 0.5 Individual 66 48 72.7 0.54 0.40 0.12-2.0 1.4   169
Common ling (Molva molva) Fillet Baseline study 2014 Skagerrak 0.5 Individual 50 21 42 0.47 0.45 0.002-1.1 0.80   194
Common ling (Molva molva) Fillet Baseline study 2013-2014, 2016 North Sea 0.5 Individual 98 1 1.0 0.18 0.16 0.062-0.52 0.36   506
Common ling (Molva molva) Fillet Baseline study 2014-2015 North Sea, fjords 0.5 Individual 41 6 15 0.30 0.25 0.093-0.98 0.66   303
Common ling (Molva molva) Fillet Baseline study 2013-2015 Norwegian Sea 0.5 Individual 484 8 1.7 0.15 0.13 0.007-0.68 0.33   607
Common ling (Molva molva) Fillet Baseline study 2014 Barents Sea 0.5 Individual 75 0 0 0.11 0.099 0.042-0.29 0.19   827
Common ling (Molva molva) Fillet Baseline study 2013-2015 Total, all areas 0.5 Individual 748 36 4.8 0.18 0.14 0.002-1.1 0.48   506
Common ling (Molva molva) Fillet Spot check monitoring 2008-2009 Barents Sea, Norwegian Sea, Skagerrak, North Sea, Atlantic Ocean 0.5 Individual 238 2 0.8 0.16 0.13 0.042-0.59 0.38   583
Edible crab (Cancer pagurus) (cooked) Claw meat Baseline+various surveys + spot check monitoring 2011-2012, 2014-2016, 2020-2022 Southern Norway 0.5 Individual 479 0 0 0.094 0.083 0.020-0.32 0.19   968
Edible crab (Cancer pagurus) (cooked) Claw meat Baseline+various surveys + spot check monitoring 2011-2012, 2014-2016, 2020-2022 Northern Norway 0.5 Individual 344 0 0 0.090 0.078 0.018-0.40 0.19   1011
Edible crab (Cancer pagurus) (cooked) Claw meat Baseline+various surveys + spot check monitoring 2011-2012, 2014-2016, 2020-2022 Total, all areas 0.5 Individual 823 0 0 0.092 0.082 0.018-0.40 0.19   989
Edible crab (Cancer pagurus) (cooked) Brown meat Baseline+various surveys + spot check monitoring 2011-2012, 2014-2016, 2020-2022 Southern Norway No ML Individual 474 NA NA 0.064 0.058 0.015-0.25 0.12   1422
Edible crab (Cancer pagurus) (cooked) Brown meat Baseline+various surveys + spot check monitoring 2011-2012, 2014-2016, 2020-2022 Northern Norway No ML Individual 325 NA NA 0.066 0.057 0.016-.035 0.13   1379
Edible crab (Cancer pagurus) (cooked) Brown meat Baseline+various surveys + spot check monitoring 2011-2012, 2014-2016, 2020-2022 Total, all areas No ML Individual 799 NA NA 0.065 0.057 0.015-0.35 0.12   1400
Edible crab (Cancer pagurus) (cooked) Claw meat Polluted fjords and harbours 2013, 2016 Different areas in south of Norway 0.5 Individual+ composite 62 5 8.06 0.180 0.11 0.021-0.74 0.68   506
Edible crab (Cancer pagurus) (cooked) Brown meat Polluted fjords and harbours 2013, 2016 Different areas in south of Norway No ML Individual+ composite 62 NA NA 0.090 0.063 0.012-0.33 0.28   1011
Edible crab (Cancer pagurus) (fresh) Claw meat PhD M. Wiech + spot check monitoring 2014-2016, 2020-2022 Southern Norway 0.5 Individual 170 2 1.18 0.076 0.060 0.016-0.60 0.15   1197
Edible crab (Cancer pagurus) (fresh) Claw meat PhD M. Wiech + spot check monitoring 2014-2016, 2020-2022 Northern Norway 0.5 Individual 167 0 0 0.067 0.057 0.015-0.40 0.13   1358
Edible crab (Cancer pagurus) (fresh) Claw meat PhD M. Wiech + spot check monitoring 2014-2016, 2020-2022 Total, all areas 0.5 Individual 337 2   0.072 0.059 0.0015-0.60 0.14   1264
Edible crab (Cancer pagurus) (fresh) Hepatopancreas PhD M. Wiech + spot check monitoring 2014-2016, 2020-2022 Southern Norway No ML Individual 303 NA NA 0.078 0.070 0.02-0.39 0.14   1167
Edible crab (Cancer pagurus) (fresh) Hepato-pancreas PhD M. Wiech + spot check monitoring 2014-2016, 2020-2022 Northern Norway No ML Individual 255 NA NA 0.081 0.073 0.0027-0.31 0.18   1123
Edible crab (Cancer pagurus) (fresh) Hepato-pancreas PhD M. Wiech + spot check monitoring 2014-2016, 2020-2022 Total, all areas No ML Individual 558 NA   0.079 0.071 0.0027-0.39 0.16   1152
Edible crab (Cancer pagurus) (fresh) Claw meat Polluted fjords and harbours 2019 Bergen 0.5 Composite 8 0 0 0.099 0.10 0.046-0.16 0.16   919
Edible crab (Cancer pagurus) (fresh) Hepato-pancreas Polluted fjords and harbours 2019 Bergen No ML Composite 4 NA NA 0.082 0.083 0.072-0.088 0.09   1110
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 Skagerrak 0.5 Individual 25 0 0 0.15 0.12 0.068-0.29 0.29   608
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 North Sea 0.5 Individual 570 3 0.53 0.11 0.069 0.021-0.71 0.35   815
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 Norwegian Sea 0.5 Individual 183 0 0 0.14 0.13 0.026-0.49 0.29   664
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 Total, all areas 0.5 Individual 778 3 0.39 0.12 0.078 0.021-0.71 0.32   766
European lobster (Homarus gammarus) Muscle meat Spot-check monitoring 2017-2022 North Sea 0.5 Individual 80 2 2.5 0.24 0.12 0.08-0.61 0.38   379
European plaice (Pleuronectes platessa) Fillet Baseline study 2016 Skagerrak 0.3 Individual 25 0 0 0.043 0.037 0.009-0.12 0.091   2116
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2018 North Sea 0.3 Individual 123 1 0.81 0.057 0.040 0.008-0.46 0.14   1596
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2017 Barents Sea 0.3 Individual 150 2 1.33 0.072 0.053 0.009-0.37 0.19   1264
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2017 Norwegian Sea 0.3 Individual 150 0 0 0.045 0.028 0.005-0.30 0.12   2022
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2018 Total, all areas 0.3 Individual 448 3 0.67 0.057 0.040 0.005-0.46 0.16   1596
European plaice (Pleuronectes platessa) Fillet Spot-check monitoring 2007, 2014-2016 Barents Sea, Norwegian Sea, Skagerrak 0.3 Individual 267 1 0.37 0.059 0.043 0.0092-0.4 0.16   1542
European sprat (Sprattus sprattus) Whole fish Miljøgifter i fisk og fiskevarer (NFSA 2010), Spot-check monitoring 2017 2010, 2017 Fjords and North Sea 0.3 Composite 47 0 0 0.021 0.021 0.009-0.028 0.026   4333
Golden redfish (Sebastes norvegicus) Fillet Baseline study 2016-2018 Norwegian Sea 0.5 Individual 148 0 0 0.12 0.11 0.014-0.33 0.29   778
Golden redfish (Sebastes norvegicus) Fillet Baseline study 2016-2018 Barents Sea 0.5 Individual 75 0 0 0.033 0.019 0.0051-0.35 0.11   2776
Golden redfish (Sebastes norvegicus) Fillet Baseline study 2016-2018 Total, both areas 0.5 Individual 223 0 0 0.089 0.052 0.0051-0.35 0.26   1026
Greater argentine (Argentina silus) Fillet Baseline study 2018-2021 North Sea, Norwegian Sea, incl. Osterfjorden 0.5 Individual 300 0 0 0.069 0.051 0.014-0.37 0.16   1319
Greater forkbeard (Physis blennoides) Fillet NFSA Bycatch 2013-2015 2013-2015 All areas 0.5 Individual 59 0 0 0.12 0.11 0.069-0.25 0.20   758
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2017-2021 Norwegian Sea 0.5 Individual 200 3 1.5 0.16 0.14 0.014-0.63 0.35   569
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2017, 2019-2021 Barents Sea 0.5 Individual 324 8 2.5 0.13 0.074 0.013-0.72 0.44   700
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2017-2021 Total, both areas 0.5 Individual 524 11 2.1 0.14 0.096 0.013-0.72 0.39   650
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2011, 2013 Barents Sea 0.5 Composite 31 0 0 0.084 0.063 0.026-0.22 0.18   1083
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2011-2015 Norwegian Sea 0.5 Composite 81 0 0 0.13 0.13 0.035-0-29 0.21   700
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2011-2015 Total, both areas 0.5 Composite 112 0 0 0.11 0.12 0.026-0.29 0.21   827
Haddock (Melanogrammus aeglefinus) Fillet Baseline study 2015-2017 Skagerrak 0.5 Individual 70 0 0 0.084 0.082 0.016-0.23 0.15   1083
Haddock (Melanogrammus aeglefinus) Fillet Baseline study + NFSA Bycatch 2013-2015 2013-2019 North Sea 0.5 Individual 300 0 0 0.082 0.06 0.018-0.44 0.231   1110
Haddock (Melanogrammus aeglefinus) Fillet Baseline study + NFSA Bycatch 2013-2015 2014-2017 Norwegian Sea 0.5 Individual 307 0 0 0.059 0.052 0.006-0.28 0.124   1542
Haddock (Melanogrammus aeglefinus) Fillet Baseline study + NFSA Bycatch 2013-2015 2014-2018 Barents Sea 0.5 Individual 712 0 0 0.032 0.028 0.003-0.16 0.064   2844
Haddock (Melanogrammus aeglefinus) Fillet Baseline study + NFSA Bycatch 2013-2015 2013-2019 Skagerrak, North Sea, Norwegian Sea, Rockall, Barents Sea 0.5 Individual 1401 0 0 0.052 0.040 0.003-0.44 0.130   1750
Haddock (Melanogrammus aeglefinus) Fillet Polluted fjords and harbours 2009, 2016-2017 Bergen, Repparfjord, Revsbotn, Bøkfjord 0.5 Individual+ 1 Composite 115 0 0 0.030 0.025 0.008-0.11 0.065   3033
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2007, 2014-2022 North Sea and Skagerrak 0.5 Composite 21 0 0 0.11 0.073 0.038-0.42 0.28   827
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2007, 2012-2021 Norwegian Sea 0.5 Composite 27 0 0 0.050 0.045 0.031-0.15 0.079   1820
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2007-2022 Barents Sea 0.5 Composite 51 0 0 0.071 0.058 0.017-0.26 0.20   1282
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2007-2022 Total, all areas 0.5 Composite 99 0 0 0.073 0.056 0.017-0.042 0.20   1247
Northern wolffish (Anarhichas denticulatus) Fillet NFSA Bycatch 2013-2015 2014 Barents Sea 0.5 Individual 12 0 0 0.030 0.02 0.008-0.093 0.093   3033
Norway lobster (Nephrops norvegicus) Muscle Spot-check monitoring + Master thesis 2011, 2014, 2020, 2021 North Sea, fjords 0.5 Individual 436 8 1.83 0.13 0.1 0.008-0.58 0.32   700
Pollack (Pollachius pollachius) Fillet Baseline study 2016 Skagerrak 0.3 Individual 25 1 4.0 0.15 0.14 0.071-0.32 0.26   607
Pollack (Pollachius pollachius) Fillet Baseline study 2016-2019 North Sea 0.3 Individual 125 3 2.4 0.14 0.12 0.037-0.40 0.29   646
Pollack (Pollachius pollachius) Fillet Baseline study 2016-2019 Norwegian Sea 0.3 Individual 146 1 0.68 0.076 0.056 0.021-0.34 0.17   1197
Pollack (Pollachius pollachius) Fillet Baseline study 2016-2019 Total, all areas 0.3 Individual 296 5 1.7 0.11 0.091 0.021-0.40 0.26   827
Pollack (Pollachius pollachius) Fillet Spot-check monitoring 2014 North Sea, Norwegian Sea, coast 0.3 Individual 50 1 2.0 0.14 0.12 0.065-0.35 0.24   650
Ratfish (Chimaera monstrosa) Fillet Spot check monitoring 2016 Lustrafjord 0.5 Individual 23 0 0 0.14 0.13 <0.005-0.47 0.35 1 650
Red king crab (Paralithodes camtchaticus) Claw meat Baseline study 2012 2012 Barents Sea 0.5 Individual 185 0 0 0.039 0.034 0.002-0.14 0.081   2333
Saithe (Pollachius virens) Fillet Follow-up monitoring 2017-2019 Skagerrak 0.3 Individual 71 0 0 0.095 0.085 0.033-0.23 0.19   963
Saithe (Pollachius virens) Fillet Follow-up monitoring 2017-2021 North Sea 0.3 Individual 120 0 0 0.070 0.061 0.025-0.21 0.15   1295
Saithe (Pollachius virens) Fillet Follow-up monitoring 2018-2021 Norwegian Sea 0.3 Individual 195 0 0 0.070 0.061 0.0052-0.25 0.14   1304
Saithe (Pollachius virens) Fillet Follow-up monitoring 2017-2021 Barents Sea 0.3 Individual 223 0 0 0.025 0.025 0.012-0.058 0.038   3608
Saithe (Pollachius virens) Fillet Follow-up monitoring 2017-2021 All areas 0.3 Individual 609 0 0 0.056 0.047 0.0052-0.25 0.14   1612
Saithe (Pollachius virens) Fillet Polluted fjords and harbours 2009 Bergen 0.3 Individual 105 1 0.95 0.046 0.037 0.016-0.45 0.091   1978
Snow crab (Chionoecetes opilio) Leg meat Spot-check monitoring 2015, 2016, 2018-2021 Barents Sea 0.5 Individual 145 0 0 0.054 0.039 0.015-0.21 0.14   1685
Spiny dogfish (Squalus acanthias) Fillet Spot check monitoring 2007-2008 Skagerrak, Norskehavet 1.0 Individual 63 0 0 0.21 0.19 0.045-0.68 0.45   433
Spotted wolffish (Anarhichas minor) Fillet Baseline study 2018-2021 Norwegian Sea and Barents Sea 0.5 Individual 250 0 0 0.087 0.066 0.016-0.44 0.22   1046
Starry ray (Amblyraja radiata) Fillet Polluted fjords and harbours 2016-2017 Barents Sea (Repparfjord and Revsbotn) 0.5 Individual 10 0 0 0.056 0.052 0.034-0.099 0.088   1616
Tusk (Brosme brosme) Fillet Baseline study 2013-2015 2013-2015 Skagerrak 0.5 Individual 42 35 83.3 0.64 0.63 0.39-0.90 0.83   142
Tusk (Brosme brosme) Fillet Baseline study 2013-2015, follow-up monitoring 2019-2021 2013-2021 North Sea, open sea and coast 0.5 Individual 263 36 13.7 0.31 0.27 0.052-1.3 0.68   294
Tusk (Brosme brosme) Fillet Baseline study 2013-2015, follow-up-monitoring 2019-2021 + spot-check monitoring 2021 + MT fjorder og havner (NFSA 2017) + Vatsfjorden 2013-2014 2013-2021 North Sea, Fjords 0.5 Individual 503 240 47.7 0.61 0.49 0.073-2.7 1.4   149
Tusk (Brosme brosme) Fillet Baseline study 2013-2015, follow-up monitoring 2019-2021 2013-2022 Norwegian Sea 0.5 Individual 684 79 11.5 0.27 0.21 0.005-1.1 0.72   337
Tusk (Brosme brosme) Fillet Baseline study 2013-2015 2013-2015 Barents Sea 0.5 Individual 278 0 0 0.11 0.09 0.030-0.47 0.27   827
Tusk (Brosme brosme) Fillet Baseline study 2013-2015, follow-up-monitoring 2019-2021 + spot-check monitoring 2021 + MT fjorder og havner (NFSA 2017) + Vatsfjorden 2013-2014 2013-2015 Total, all areas 0.5 Individual 1770 390 22.0 0.36 0.25 0.005-2.7 1.0   253
Tusk (Brosme brosme) Fillet Polluted fjords and harbours 2017, 2019, 2021 Førdefjorden, Bergen, Ålesund 0.5 Individual+ 29 Composite 88 33 37.5 0.44 0.43 0.082-1.2 0.78   207
Tusk (Brosme brosme) Fillet Monitoring around submarine U-864 2017-2021 Fedje; by the submarine wreck U-864 and 4 nm north and south of the wreck 0.5 Individual 345 33 9.57 0.313 0.30 0.042-1.1 0.57   291
Whiting (Merlangius merlangus) Fillet NFSA Bycatch 2013-2015 + spot check monitoring 2016 2013-2016 All areas 0.3 Individual 77 0 0 0.083 0.067 0.029-0.23 0.18   1096
Witch flounder (Glyptocephalus cynoglossus) Fillet Polluted fjords and harbours 2016-2017 Repparfjord and Revsbotn 0.5 Individual 10 0 0 0.034 0.026 0.014-0.080 0.076   2645
Table A2. Mercury (Hg) levels for wild-caught fish and other seafood collected by IMR in various monitoring programs conducted in the period 2006-2022. The maximum level (ML) and the mean, median, minimum (min), maximum (max) and 95% percentile concentrations are given as mg/kg wet weight, and concentrations above the ML are indicated in red. For each species and tissue, the maximum amount in gram (g) that may be consumed before exceeding the tolerable weekly intake (TWI; 1.3 µg MeHg/kg bw) for a 70 kg person is given in the last column.

8 - Appendix Table A3 - Cd

Name of Species        English (Latin) Tissue Name of monitoring program for source data Sampling year(s) Geographical area ML Individual or composite samples No of samples analysed No of samples above ML Fraction exceeding the ML (%) Mean Median Min-max 95% Percentile No of samples below LOQ Amount (g) that may be consumed before exceeding TWI
American plaice (Hippoglossus platessoides) Fillet Spot-check monitoring + NFSA Fjords and harbours 2016-2017 2006, 2016-2017 Barents Sea, Repparfjord, Revsbotn, Bøkfjord 0.05 Individual+ 5 Composite 46 0 0   <0.001 <0.0008-0.042 0.0009 43  
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019, spot check monitoring 2015 2015-2016 Skagerrak 0.05 Individual 50 0 0   <0.0008 <0.0007-<0.0010 <0.0010 50  
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019 2016-2019 North Sea 0.05 Individual 167 0 0   <0.0008 <0.0005-0.003 <0.001 159  
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019 2017-2019 Norwegian Sea 0.05 Individual 123 0 0   <0.0008 <0.0006-0.004 <0.0009 118  
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019, spot check monitoring 2015 2015-2019 Total, all areas 0.05 Individual 340 0 0   <0.0008 <0.0005-0.004 <0.001 326  
Atlantic bluefin tuna (Thunnus thynnus) Fatty muscle (o-toro) Spot-check monitoring 2016, 2018-2021 Skagerrak/North Sea/Norwegian Sea 0.10 Individual 21 0 0 0.021 0.017 0.006-0.057 0.039   8333
Atlantic bluefin tuna (Thunnus thynnus) Lean muscle Spot-check monitoring 2016, 2018-2021 Skagerrak/North Sea/Norwegian Sea 0.10 Individual 46 0 0 0.0082 0.007 0.003-0.018 0.016   21341
Atlantic bluefin tuna (Thunnus thynnus) Red muscle Spot-check monitoring 2016, 2018-2021 Skagerrak/North Sea/Norwegian Sea 0.10 Individual 17 0 0 0.078 0.027 0.057 0.057   2244
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 North Sea 0.05 Individual 265 0 0   <0.0009 <0.0007-0.012 0.0029 227  
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 Norwegian Sea 0.05 Individual 61 0 0   <0.0009 <0.0007-<0.001 <0.001 61  
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 Barents Sea 0.05 Individual 322 0 0   <0.0009 <0.0007-0.0032 0.0020 225  
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 Total, all areas 0.05 Individual 648 0 0   <0.0009 <0.0007-0.012 0.0020 513  
Atlantic cod (Gadus morhua) Fillet Polluted fjords and harbours 2015-2017, 2019, 2021 Oslofjorden, Frænfjorden, Årdalsfjord, Repparfjord og Revsbotn, Førdefjorden, Bergen, Grenland/Kragerø, Ålesund 0.05 Individual+ 46 composite 281 0 0   <0.0009 <0.0006-0.0036 0.0009 264  
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study+follow-up monitoring 2014-2016, 2019 Skagerrak, North Sea 0.05 Individual 9 0 0   <0.001 <0.0009-0.001 0.001 8  
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study+follow-up monitoring 2013-2015, 2017-2019 Norwegian Sea 0.05 Individual 366 0 0   <0.001 <0.0008-0.034 0.0038 310  
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study 2013-2016 Barents Sea 0.05 Individual 133 0 0   <0.001 <0.0009-0.017 0.0017 121  
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study+follow-up monitoring 2013-2019 Total, all areas 0.05 Individual 508 0 0   <0.002 <0.0008-0.034 0.0028 439  
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut EU-Dioxin 2007, mini-baseline (2008-2010), baseline study 2007, 2008, 2013 Norwegian Sea 0.05 Individual 29 0 0   <0.0045 <0.0009-0.0025 <0.0061 28  
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Mini-baseline, baseline study 2008-2010, 2013 Barents Sea 0.05 Individual 15 0 0   <0.0022 <0.0018-0.0028 0.0028 14  
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut EU-Dioxin 2007, mini-baseline (2008-2010), baseline study 2007-2010, 2013 Total, both areas 0.05 Individual 44 0 0   <0.0029 <0.0009-0.0028 0.0025 42  
Atlantic halibut (Hippoglossus hippoglossus) Fillet Polluted fjords and harbours 2016, 2017, 2021 Repparfjord and Revsbotn 0.05 Individual 50 0 0   <0.001 <0.0008-0.0021 0.0014 43  
Atlantic herring (Clupea harengus) Fillet Follow-up monitoring 2017, 2020 North Sea 0.05 Individual 173 0 0 0.0125 0.011 0.0033-0.044 0.027 0 13958
Atlantic herring (Clupea harengus) Fillet Follow-up monitoring 2017, 2020 Norwegian Sea 0.05 Individual 98 1 1.0 0.020 0.019 0.006-0.063 0.037 0 8750
Atlantic horse mackerel (Trachurus trachurus) Fillet Spot-check monitoring 2017 North Sea 0.05 Individual 50 0 0 0.003 0.002 <0.001-0.006 0.005 2 58333
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2017-2021 Skagerrak 0.10 Individual 223 0 0 0.0081 0.0064 <0.002-0.032 0.019 19 21605
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2018, 2019, 2022 North Sea 0.10 Individual 150 0 0 0.0135 0.012 <0.002-0.039 0.030 4 12963
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2017-2021 Norwegian Sea 0.10 Individual 270 0 0 0.0123 0.011 <0.002-0.047 0.023 6 14228
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2019-2020 Barents Sea 0.10 Individual 60 0 0 0.0165 0.016 0.006-0-033 0.025 0 10606
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2017-2022 Total, all areas 0.10 Individual 703 0 0 0.0116 0.0099 <0.002-0.047 0.024 29 15086
Atlantic salmon (Salmo salar), wild Fillet Wild salmon project 2012 2012 Coast of Northern Norway 0.05 Individual 137 0 0 0.0018 <0.002 <0.001-0.015 0.004 79 97222
Atlantic wolffish (Anarhichas lupus) Fillet Baseline study 2018-2021 North Sea, Norwegian Sea, Barents Sea 0.05 Individual 176 0 0 0.0028 0.002 <0.0008-0.017 0.007 25 62500
Beaked redfish (Sebastes mentella) Fillet Baseline study 2016-2018 Norwegian Sea 0.05 Individual 77 0 0 0.0072 0.0036 <0.0009-0.046 0.030 19 24353
Beaked redfish (Sebastes mentella) Fillet Baseline study 2016-2018 Barents Sea 0.05 Individual 447 0 0 0.0038 0.0026 <0.001-0.038 0.010 52 46119
Beaked redfish (Sebastes mentella) Fillet Baseline study 2016-2018 Total, both areas 0.05 Individual 524 0 0 0.0043 0.0028 <0.0009-0.046 0.012 71 40765
Blue ling (Molva dipterygia) Fillet NFSA Bycatch 2013-2015 2013-2016 Skagerrak, North Sea, Norwegian Sea 0.05 Individual 66 0 0   <0.001 <0.0008-0.007 0.004 45  
Common ling (Molva molva) Fillet Baseline study 2014 Skagerrak 0.05 Individual 50 0 0   <0.0009 <0.0008-0.001 <0.001 49  
Common ling (Molva molva) Fillet Baseline study 2013-2014, 2016 North Sea 0.05 Individual 98 0 0   <0.0009 <0.0007-0.004 0.001 92  
Common ling (Molva molva) Fillet Baseline study 2014-2015 North Sea, fjords 0.05 Individual 41 0 0   <0.0009 <0.0008-0.005 <0.005 39  
Common ling (Molva molva) Fillet Baseline study 2013-2015 Norwegian Sea 0.05 Individual 484 0 0   <0.0009 <0.0003-0.003 <0.001 476  
Common ling (Molva molva) Fillet Baseline study 2014 Barents Sea 0.05 Individual 75 0 0   <0.0009 <0.0007-<0.001 <0.001 75  
Common ling (Molva molva) Fillet Baseline study 2013-2015 Total, all areas 0.05 Individual 748 0 0   <0.0009 <0.0003-0.005 <0.001 731  
Common ling (Molva molva) Fillet Spot check monitoring 2008-2009 Barents Sea, Norwegian Sea, Skagerrak, North Sea, Atlantic Ocean 0.05 Individual 238 0 0   <0.0021 <0.0018-0.0042 <0.0025 231  
Edible crab (Cancer pagurus) (cooked) Claw meat Baseline+various surveys + spot check monitoring 2011-2012, 2014-2016, 2020-2022 Southern Norway 0.5 Individual 479 12 2.5 0.088 0.042 0.0015-01.8 0.31 0 1034
Edible crab (Cancer pagurus) (cooked) Claw meat Baseline+various surveys + spot check monitoring 2011-2012, 2014-2016, 2020-2022 Northern Norway 0.5 Individual 344 108 31.4 0.50 0.24 0.007-3.7 2.0 0 182
Edible crab (Cancer pagurus) (cooked) Claw meat Baseline+various surveys + spot check monitoring 2011-2012, 2014-2016, 2020-2022 Total, all areas 0.5 Individual 823 120 14.6 0.26 0.075 0.0015-3.7 1.2 0 350
Edible crab (Cancer pagurus) (cooked) Brown meat Baseline+various surveys + spot check monitoring 2011-2012, 2014-2016, 2020-2022 Southern Norway No ML Individual 474 NA NA 2.2 1.3 0.10-18 6.4 0 41
Edible crab (Cancer pagurus) (cooked) Brown meat Baseline+various surveys + spot check monitoring 2011-2012, 2014-2016, 2020-2022 Northern Norway No ML Individual 325 NA NA 11 7.7 0.35-59 32 0 8
Edible crab (Cancer pagurus) (cooked) Brown meat Baseline+various surveys + spot check monitoring 2011-2012, 2014-2016, 2020-2022 Total, all areas No ML Individual 799 NA NA 5.7 2.7 0.10-59 21 0 16
Edible crab (Cancer pagurus) (cooked) Claw meat Polluted fjords and harbours 2013, 2016 Different areas in south of Norway 0.5 Individual+ composite 62 1 1.6 0.059 0.029 0.0024-0.66 0.15 0 1542
Edible crab (Cancer pagurus) (cooked) Brown meat Polluted fjords and harbours 2013, 2016 Different areas in south of Norway No ML Individual+ composite 62 NA NA 2.0 1.2 0.0027-9.1 6.50 0 46
Edible crab (Cancer pagurus) (fresh) Claw meat PhD M. Wiech + spot check monitoring 2014-2016, 2020-2022 Northern Norway 0.5 Individual 167 0 0 0.012 0.005 0.001-0.43 0.037 2 7583
Edible crab (Cancer pagurus) (fresh) Claw meat PhD M. Wiech + spot check monitoring 2014-2016, 2020-2022 Southern Norway 0.5 Individual 170 0 0 0.008 0.003 0.0008-0.16 0.043 0 12133
Edible crab (Cancer pagurus) (fresh) Claw meat PhD M. Wiech + spot check monitoring 2014-2016, 2020-2022 Total, all areas 0.5 Individual 337 0 0 0.0099 0.0035 0.0008-0.43 0.041 2 9192
Edible crab (Cancer pagurus) (fresh) Hepato-pancreas PhD M. Wiech + spot check monitoring 2014-2016, 2020-2022 Northern Norway No ML Individual 255 NA NA 16 12 0.0016-146 48 0 6
Edible crab (Cancer pagurus) (fresh) Hepato-pancreas PhD M. Wiech + spot check monitoring 2014-2016, 2020-2022 Southern Norway No ML Individual 303 NA NA 5.5 3.8 0.15-50 14 0 17
Edible crab (Cancer pagurus) (fresh) Hepato-pancreas PhD M. Wiech + spot check monitoring 2014-2016, 2020-2022 Total, all areas No ML Individual 558 NA NA 10 6.4 0.0016-146 35 0 9
Edible crab (Cancer pagurus) (fresh) Claw meat Polluted fjords and harbours 2019 Bergen 0.5 Composite 8 0 0 0.022 0.018 0.001-0.055 0.055 0 4136
Edible crab (Cancer pagurus) (fresh) Hepato-pancreas Polluted fjords and harbours 2019 Bergen No ML Composite 4 0 0 4.9 4.3 2.5-8.4 8.4 0 19
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 Skagerrak 0.05 Individual 25 0 0   <0.001 <0.0008-<0.001 <0.001 25  
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 North Sea 0.05 Individual 570 0 0   <0.001 <0.0008-0.0018 <0.001 568  
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 Norwegian Sea 0.05 Individual 183 0 0   <0.001 <0.0008-0.0014 <0.001 182  
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 Total, all areas 0.05 Individual 778 0 0   <0.001 <0.0008-0.0018 <0.001 775  
European lobster (Homarus gammarus) Muscle meat (tail) Spot-check monitoring 2017-2022 North Sea 0.5 Individual 80 0 0 0.082 0.041 0.02-0.36 0.14 0 2134
European plaice (Pleuronectes platessa) Fillet Baseline study 2016 Skagerrak 0.05 Individual 25 0 0   <0.001 <0.0008-<0.001 <0.001 25  
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2018 North Sea 0.05 Individual 123 0 0   <0.0009 <0.0003-0.008 0.001 109  
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2017 Norwegian Sea 0.05 Individual 150 0 0   <0.001 <0.0007-0.007 0.003 119  
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2017 Barents Sea 0.05 Individual 150 0 0   <0.001 <0.0008-0.007 0.004 83  
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2018 Total, all areas 0.05 Individual 448 0 0   <0.001 <0.0003-0.008 0.003 336  
European plaice (Pleuronectes platessa) Fillet Spot-check monitoring 2007, 2014-2016 Barents Sea, Norwegian Sea, Skagerrak 0.05 Individual 267 0 0   <0.0018 <0.0007-0.012 0.0027 232  
European sprat (Sprattus sprattus) Whole fish Miljøgifter i fisk og fiskevarer (NFSA 2010), Spot-check monitoring 2017 2010, 2017 Fjords and North Sea 0.05 Composite 47 0 0 0.013 0.013 0.003-0.025 0.022 0 7000
Golden redfish (Sebastes norvegicus) Fillet Baseline study 2016-2018 Norwegian Sea 0.05 Individual 148 0 0   <0.001 <0.0008-0.0028 0.0017 129  
Golden redfish (Sebastes norvegicus) Fillet Baseline study 2016-2018 Barents Sea 0.05 Individual 75 0 0   <0.001 <0.001-0.0023 0.0014 64  
Golden redfish (Sebastes norvegicus) Fillet Baseline study 2016-2018 Total, both areas 0.05 Individual 223 0 0   <0.001 <0.0008-0.0028 0.0014 193  
Greater argentine (Argentina silus) Fillet Baseline study 2018-2021 North Sea, Norwegian Sea, incl. Osterfjorden 0.05 Individual 300 0 0 0.0051 0.004 <0.001-0.036 0.014 35 34314
Greater forkbeard (Physis blennoides) Fillet NFSA Bycatch 2013-2015 2013-2015 Total, all areas 0.05 Individual 59 0 0   <0.001 <0.001-0.033 <0.001 51  
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2017-2021 Norwegian Sea 0.05 Individual 200 0 0 0.0040 0.0018 <0.0006-0.034 0.017 60 43750
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2017, 2019-2021 Barents Sea 0.05 Individual 324 1 0.31   <0.001 <0.0005-0.067 0.0073 207  
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2017-2021 Total, both areas 0.05 Individual 524 1 0.19   <0.001 <0.0005-0.067 0.011 267  
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2011, 2013 Barents Sea 0.05 Composite 31 0 0 0.0059 0.0014 <0.001-0.024 0.023 7.00 29661
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2011-2015 Norwegian Sea 0.05 Composite 81 0 0 0.0034 0.0018 <0.001-0.026 0.016 16 51471
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2011-2015 Total, both areas 0.05 Composite 112 0 0 0.0041 0.0018 <0.001-0.026 0.020 23 42683
Haddock (Melanogrammus aeglefinus) Fillet Baseline study + NFSA Bycatch 2013-2015 2015-2017 Skagerrak 0.05 Individual 70 0 0   <0.001 <0.001-<0.001 <0.001 70  
Haddock (Melanogrammus aeglefinus) Fillet Baseline study + NFSA Bycatch 2013-2015 2013-2019 North Sea 0.05 Individual 300 0 0   <0.001 <0.001-0.005 0.002 236  
Haddock (Melanogrammus aeglefinus) Fillet Baseline study + NFSA Bycatch 2013-2015 2014-2017 Norwegian Sea 0.05 Individual 307 0 0   <0.001 <0.0003-0.008 0.002 225  
Haddock (Melanogrammus aeglefinus) Fillet Baseline study + NFSA Bycatch 2013-2015 2014-2018 Barents Sea 0.05 Individual 712 0 0   <0.001 <0.0007-0.015 0.003 363  
Haddock (Melanogrammus aeglefinus) Fillet Baseline study + NFSA Bycatch 2013-2015 2013-2019 Skagerrak, North Sea, Norwegian Sea, Rockall, Barents Sea 0.05 Individual 1401 0 0   <0.001 <0.0003-0.015 0.003 896  
Haddock (Melanogrammus aeglefinus) Fillet Polluted fjords and harbours 2009, 2016-2017 Bergen, Repparfjord, Revsbotn, Bøkfjord 0.05 Individual+ 1 Composite 115 0 0   <0.002 <0.0009-0.0038 0.002 63  
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2007, 2014-2022 North Sea and Skagerrak 0.5 Composite 21 0 0 0.065 0.053 0.024-0.17 0.15 0 2692
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2007, 2012-2021 Norwegian Sea 0.5 Composite 27 0 0 0.030 0.018 0.0067-0.29 0.057 0 5833
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2007-2022 Barents Sea 0.5 Composite 51 0 0 0.10 0.088 0.029-0.33 0.24 0 1750
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2007-2022 Total, all areas 1.5 Composite 99 1 1 0.074 0.053 0.0067-0.33 0.23 0  
Northern wolffish (Anarhichas denticulatus) Fillet NFSA Bycatch 2013-2015 2014 Barents Sea 0.05 Individual 12 0 0 0.0046 0.002 0.0006-0.030 0.03 0  
Norway lobster (Nephrops norvegicus) Muscle Spot-check monitoring 2014, 2020-2021 North Sea, fjords 0.5 Individual 146 0 0 0.056 0.034 0.004-0.43 0.18 0 3125
Pollack (Pollachius pollachius) Fillet Baseline study 2016 Skagerrak 0.05 Individual 25 0 0   <0.001 <0.0009-0.003 0.0025 16  
Pollack (Pollachius pollachius) Fillet Baseline study 2016-2019 North Sea 0.05 Individual 125 0 0   <0.001 <0.0008-0.003 0.0013 101  
Pollack (Pollachius pollachius) Fillet Baseline study 2016-2019 Norwegian Sea 0.05 Individual 146 0 0   <0.001 <0.0008-0.007 0.0014 129  
Pollack (Pollachius pollachius) Fillet Baseline study 2016-2019 Total, all areas 0.05 Individual 296 0 0   <0.001 <0.0008-0.007 0.0015 246  
Pollack (Pollachius pollachius) Fillet Spot-check monitoring 2014 North Sea, Norwegian Sea, coast 0.05 Individual 50 0 0   <0.0009 <0.0007-0.0015 0.0008 46  
Ratfish (Chimaera monstrosa) Fillet Spot-check monitoring 2016 Lustrafjord 0.05 Individual 23 0 0   <0.005 <0.003-0.006 <0.005 22  
Red king crab (Paralithodes camtchaticus) Claw meat Baseline study 2012 2012 Barents Sea 0.5 Individual 185 0 0 0.02 0.009 <0.0009-0.26 0.079 1 8750
Saithe (Pollachius virens) Fillet Follow-up monitoring 2017-2019 Skagerrak 0.05 Individual 71 0 0 0.0015 0.0011 <0.0009-0.088 0.0033 30 114551
Saithe (Pollachius virens) Fillet Follow-up monitoring 2017-2021 North Sea 0.05 Individual 120 0 0 0.0014 0.0011 <0.0009-0.0096 0.0028 52 120802
Saithe (Pollachius virens) Fillet Follow-up monitoring 2018-2021 Norwegian Sea 0.05 Individual 195 0 0 0.0013 0.0010 <0.0008-0.0074 0.0029 97 134422
Saithe (Pollachius virens) Fillet Follow-up monitoring 2017-2021 Barents Sea 0.05 Individual 223 0 0 0.0017 0.0014 <0.0008-0.012 0.0033 47 105638
Saithe (Pollachius virens) Fillet Follow-up monitoring 2017-2021 Total, all areas 0.05 Individual 609 0 0 0.0015 0.0011 <0.0008-0.012 0.0031 226 117685
Saithe (Pollachius virens) Fillet Polluted fjords and harbours 2009 Bergen 0.05 Individual 105 0 0   <0.0021 <0.0019-0.0069 0.00 72  
Snow crab (Chionoecetes opilio) Leg meat Spot-check monitoring 2015, 2016, 2018-2021 Barents Sea No ML Individual 145 NA NA 0.021 0.01 0.004-0.25 0.072   8333
Spiny dogfish (Squalus acanthias) Fillet Spot check monitoring 2007-2008 Skagerrak, Norskehavet 0.05 Individual 63 0 0 0.0061 0.0045 <0.0027-0.022 0.017 21 28689
Spotted wolffish (Anarhichas minor) Fillet Baseline study 2018-2021 Total, Norwegian Sea and Barents Sea 0.05 Individual 250 0 0   <0.001 <0.0007-0.008 0.003 128  
Starry ray (Amblyraja radiata) Fillet Polluted fjords and harbours 2016-2017 Barents Sea (Repparfjord and Revsbotn) 0.05 Individual 10 0 0 0.0029 0.0015 <0.001-0.0077 0.0077 1 60345
Tusk (Brosme brosme) Fillet Baseline study 2013-2015 2013-2015 Skagerrak 0.05 Individual 42 0 0   <0.0009 <0.0009-0.0020 0.0015 35  
Tusk (Brosme brosme) Fillet Baseline study 2013-2015, follow-up monitoring 2019-2021 2013-2021 North Sea, open sea and coast 0.05 Individual 263 0 0   <0.0009 <0.0007-0.009 0.0024 190  
Tusk (Brosme brosme) Fillet Baseline study 2013-2015, follow-up-monitoring 2019-2021 + spot-check monitoring 2021 + MT fjorder og havner (NFSA 2017) + Vatsfjorden 2013-2014 2013-2021 North Sea, Fjords 0.05 Individual 503 0 0   <0.0009 <0.0007-0.029 0.0018 450  
Tusk (Brosme brosme) Fillet Baseline study 2013-2015, follow-up monitoring 2019-2021 2013-2022 Norwegian Sea 0.05 Individual 684 0 0   <0.0009 <0.0007-0.026 0.0015 598  
Tusk (Brosme brosme) Fillet Baseline study 2013-2015 2013-2015 Barents Sea 0.05 Individual 278 0 0   <0.001 <0.0007-0.023 <0.001 264  
Tusk (Brosme brosme) Fillet Baseline study 2013-2015, follow-up-monitoring 2019-2021 + spot-check monitoring 2021 + MT fjorder og havner (NFSA 2017) + Vatsfjorden 2013-2014 2013-2015 Total. all areas 0.05 Individual 1770 0 0   <0.0009 <0.0007-0.029 0.002 1537  
Tusk (Brosme brosme) Fillet Polluted fjords and harbours 2017, 2019, 2021 Førdefjorden, Bergen, Ålesund 0.05 Individual+ 29 Composite 88 0 0   <0.001 <0.0008-0.0039 0.0015 76  
Tusk (Brosme brosme) Fillet Monitoring around submarine U-864 2017-2021 Fedje; by the submarine wreck U-864 and 4 nm north and south of the wreck 0.05 Individual 345 0 0   <0.001 <0.0008-0.0095 0.0023 255  
Whiting (Merlangius merlangus) Fillet NFSA Bycatch 2013-2015 + spot check monitoring 2016 2013-2016 Total, all areas 0.05 Individual 77 0 0 0.0015 0.001 <0.0008-0.005 0.004 28 116667
Witch flounder (Glyptocephalus cynoglossus) Fillet Polluted fjords and harbours 2016-2017 Repparfjord and Revsbotn 0.05 Individual 10 0 0   <0.001 <0.0008-0.0015 0.0015 7  
Table A3. Cadmium (Cd) levels for wild-caught fish and other seafood collected by IMR in various monitoring programs conducted in the period 2006-2022. The maximum level (ML) and the mean, median, minimum (min), maximum (max) and 95% percentile concentrations are given as mg/kg wet weight, and concentrations above the ML are indicated in red. Mean values were calculated only when more than 50% of the samples had concentrations above the limit of quantification (LOQ). Based on the mean values for each species and tissue, the maximum amount in gram (g) that may be consumed before exceeding the tolerable weekly intake (TWI; 2.5 µg Cd/kg bw) for a 70 kg person is given in the last column.

9 - Appendix Table A4 - Pb

Name of Species        English (Latin) Tissue Name of monitoring program for source data Sampling year(s) Geographical area ML Individual or composite No of samples analysed No of samples above ML Fraction exceeding the ML (%) Mean Median Min-max 95% Percentile No of samples below LOQ
American plaice (Hippoglossus platessoides) Fillet Spot-check monitoring + NFSA Fjords and harbours 2016-2017 2006, 2016-2017 Barents Sea, Repparfjord, Revsbotn, Bøkfjord 0.3 Individual+ 5 Composite 46 0 0   <0.005 <0.004-0.25 0.040 33
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019, spot check monitoring 2015 2015-2016 Skagerrak 0.3 Individual 50 0 0   <0.004 <0.004-0.10 0.010 46
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019 2016-2019 North Sea 0.3 Individual 167 0 0   <0.004 <0.003-0.012 <0.005 164
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019 2017-2019 Norwegian Sea 0.3 Individual 123 0 0   <0.004 <0.003-0.022 <0.005 122
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019, spot check monitoring 2015 2015-2019 Total, all areas 0.3 Individual 340 0 0   <0.004 <0.003-0.10 <0.005 332
Atlantic bluefin tuna (Thunnus thynnus) Fatty muscle (o-toro) Spot-check monitoring 2016, 2018-2021 Skagerrak/North Sea/Norwegian Sea 1.0 Individual 21 0 0   <0.02 <0.02-0.026 0.026 20
Atlantic bluefin tuna (Thunnus thynnus) Lean muscle Spot-check monitoring 2016, 2018-2021 Skagerrak/North Sea/Norwegian Sea 1.0 Individual 45 0 0   <0.01 <0.009-0.17 0.076 21
Atlantic bluefin tuna (Thunnus thynnus) Red muscle Spot-check monitoring 2016, 2018-2021 Skagerrak/North Sea/Norwegian Sea 1.0 Individual 18 0 0   <0.01 <0.006-<0.0. <0.01 18
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 North Sea 0.3 Individual 265 0 0   <0.005 <0.003-0.025 0.0074 240
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 Norwegian Sea 0.3 Individual 61 0 0   <0.005 <0.004-<0.005 <0.005 61
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 Barents Sea 0.3 Individual 322 0 0   <0.004 <0.003-0.0062 <0.005 317
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 Total. All areas 0.3 Individual 648 0 0   <0.004 <0.003-0.025 <0.005 618
Atlantic cod (Gadus morhua) Fillet Polluted fjords and harbours 2015-2017, 2019, 2021 Oslofjorden, Frænfjorden, Årdalsfjord, Repparfjord og Revsbotn, Førdefjorden, Bergen, Grenland/Kragerø, Ålesund 0.3 Individual+ 46 composite 281 0 0   <0.005 <0.003-0.027 0.008 255
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study+follow-up monitoring 2014-2016, 2019 Skagerrak, North Sea 0.3 Individual 9 0 0   <0.006 <0.005-0.016 0.016 6
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study+follow-up monitoring 2013-2015, 2017-2019 Norwegian Sea 0.3 Individual 366 0 0   <0.007 <0.004-0.12 0.017 319
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study 2013-2016 Barents Sea 0.3 Individual 133 0 0   <0.007 <0.005-0.025 <0.01 127
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study+follow-up monitoring 2013-2019 Total, all areas 0.3 Individual 508 0 0   <0.007 <0.004-0.12 0.013 452
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut EU-Dioxin 2007, mini-baseline (2008-2010), baseline study 2007, 2008, 2013 Norwegian Sea 0.3 Individual 29 0 0   <0.017 <0.005-0.056 <0.024 28
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Mini-baseline, baseline study 2008-2010, 2013 Barents Sea 0.3 Individual 15 0 0   <0.009 <0.007-<0.03 <0.014 15
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut EU-Dioxin 2007, mini-baseline (2008-2010), baseline study 2007-2010, 2013 Total, both areas 0.3 Individual 44 0 0   <0.011 <0.005-0.056 <0.024 43
Atlantic halibut (Hippoglossus hippoglossus) Fillet Polluted fjords and harbours 2016, 2017, 2021 Repparfjord and Revsbotn 0.3 Individual 50 0 0   <0.005 <0.004-0.0099 <0-006 49
Atlantic herring (Clupea harengus) Fillet Follow-up monitoring 2017, 2020 North Sea 0.3 Individual 173 0 0   <0.02 <0.005-<0.02 <0.02 173
Atlantic herring (Clupea harengus) Fillet Follow-up monitoring 2017, 2020 Norwegian Sea 0.3 Individual 98 0 0   <0.015 <0.005-<0.020 <0.020 98
Atlantic horse mackerel (Trachurus trachurus) Fillet Spot-check monitoring 2017 North Sea 0.3 Individual 50 0 0   <0.005 <0.003-0.008 <0.006 49
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2017-2021 Skagerrak 0.3 Individual 223 0 0   <0.008 <0.005-0.026 <0.02 223
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2018, 2019, 2022 North Sea 0.3 Individual 150 0 0   <0.01 <0.004-<0.02 <0.02 148
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2017-2021 Norwegian Sea 0.3 Individual 270 0 0   <0.02 <0.006-0.043 <0.02 270
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2019-2020 Barents Sea 0.3 Individual 60 0 0   <0.01 <0.007-<0.01 <0.01 60
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2017-2022 Total, all areas 0.3 Individual 703 0 0   <0.01 <0.004-0.043 <0.020 701
Atlantic salmon (Salmo salar), wild   Wild salmon project 2012 2012 Coast of Northern Norway 0.3 Individual 136 0 0   <0.009 <0.006-0.14 <0.01 134
Atlantic wolffish (Anarhichas lupus) Fillet Baseline study 2018-2021 North Sea, Norwegian Sea, Barents Sea 0.3 Individual 176 0 0   <0.004 <0.002-0.009 <0.005 174
Beaked redfish (Sebastes mentella) Fillet Baseline study 2016-2018 Norwegian Sea 0.3 Individual 77 0 0   <0.006 <0.004-<0.006 <0.006 77
Beaked redfish (Sebastes mentella) Fillet Baseline study 2016-2018 Barents Sea 0.3 Individual 447 0 0   <0.007 <0.004-0.012 <0.006 441
Beaked redfish (Sebastes mentella) Fillet Baseline study 2016-2018 Total, all areas 0.3 Individual 524 0 0   <0.005 <0.004-0.012 <0.006 518
Blue ling (Molva dipterygia) Fillet NFSA Bycatch 2013-2015 2013-2016 Skagerrak, North Sea, Norwegian Sea 0.3 Individual 66 0 0   <0.005 <0.004-0.16 0.011 54
Common ling (Molva molva) Fillet Baseline study 2014 Skagerrak 0.3 Individual 50 0 0   <0.005 <0.005-<0.006 <0.006 50
Common ling (Molva molva) Fillet Baseline study 2013-2014, 2016 North Sea 0.3 Individual 98 0 0   <0.005 <0.002-0.073 0.01 89
Common ling (Molva molva) Fillet Baseline study 2014-2015 North Sea, fjords 0.3 Individual 41 0 0   <0.006 <0.005-0.03 0.03 35
Common ling (Molva molva) Fillet Baseline study 2013-2015 Norwegian Sea 0.3 Individual 484 0 0   <0.006 <0.004-0.34 0.01 433
Common ling (Molva molva) Fillet Baseline study 2014 Barents Sea 0.3 Individual 75 0 0   <0.006 <0.004-0.007 <0.006 72
Common ling (Molva molva) Fillet Baseline study 2013-2015 Total, all areas 0.3 Individual 748 0 0   <0.006 <0.002-0.34 0.01 679
Common ling (Molva molva) Fillet Spot check monitoring 2005, 2008-2009 Barents Sea, Norwegian Sea, Skagerrak, North Sea, Atlantic Ocean 0.3 Individual 238 0 0   <0.008 <0.007-0.13 0.022 191
Edible crab (Cancer pagurus) (cooked) Claw meat Baseline+various surveys + spot check monitoring 2014-2016, 2020-2022 Southern Norway 0.5 Individual 479 0 0 0.012 0.0079 <0.004-0.44 0.027 66
Edible crab (Cancer pagurus) (cooked) Claw meat Baseline+various surveys + spot check monitoring 2014-2016, 2020-2022 Northern Norway 0.5 Individual 344 0 0 0.0090 0.0070 <0.003-0.12 0.018 59
Edible crab (Cancer pagurus) (cooked) Claw meat Baseline+various surveys + spot check monitoring 2014-2016, 2020-2022 Total, all areas 0.5 Individual 823 0 0 0.011 0.0071 <0.003-0.44 0.023 125
Edible crab (Cancer pagurus) (cooked) Brown meat Baseline+various surveys + spot check monitoring 2014-2016, 2020-2022 Southern Norway No ML Individual 474 NA NA 0.047 0.035 0.008-0.53 0.12 0
Edible crab (Cancer pagurus) (cooked) Brown meat Baseline+various surveys + spot check monitoring 2014-2016, 2020-2022 Northern Norway No ML Individual 325 NA NA 0.050 0.039 0.009-0.32 0.12 0
Edible crab (Cancer pagurus) (cooked) Brown meat Baseline+various surveys + spot check monitoring 2014-2016, 2020-2022 Total, all areas No ML Individual 799 NA NA 0.048 0.038 0.008-0.53 0.12 0
Edible crab (Cancer pagurus) (cooked) Claw meat Polluted fjords and harbours 2013, 2016 Different areas in south of Norway 0.5 Individual+ composite 62 0 0 0.0099 0.008 0.0041-0.027 0.022 0
Edible crab (Cancer pagurus) (cooked) Brown meat Polluted fjords and harbours 2013, 2016 Different areas in south of Norway No ML Individual+ composite 62 NA NA 0.059 0.049 <0.010-0.29 0.16 1
Edible crab (Cancer pagurus) (fresh) Claw meat PhD M. Wiech + spot check monitoring 2014-2016, 2020-2022 Southern Norway 0.5 Individual 170 0 0 0.012 0.009 <0.003-0.086 0.026 1
Edible crab (Cancer pagurus) (fresh) Claw meat PhD M. Wiech + spot check monitoring 2014-2016, 2020-2022 Northern Norway 0.5 Individual 167 0 0   <0.006 <0.002-0.12 0.02 95
Edible crab (Cancer pagurus) (fresh) Claw meat PhD M. Wiech + spot check monitoring 2014-2016, 2020-2022 Total, all areas 0.5 Individual 337 0 0 0.0096 0.0062 <0.002-0.12 0.024 96
Edible crab (Cancer pagurus) (fresh) Hepato-pancreas PhD M. Wiech + spot check monitoring 2014-2016, 2020-2022 Northern Norway No ML Individual   NA NA          
Edible crab (Cancer pagurus) (fresh) Hepato-pancreas PhD M. Wiech + spot check monitoring 2014-2016, 2020-2022 Southern Norway No ML Individual 303 0 0 0.056 0.043 <0.007-0.30 0.14 4
Edible crab (Cancer pagurus) (fresh) Hepato-pancreas PhD M. Wiech + spot check monitoring 2014-2016, 2020-2022 Total, all areas No ML Individual 558 NA NA 0.050 0.036 <0.005-0.38 0.13 49
Edible crab (Cancer pagurus) (fresh) Claw meat Polluted fjords and harbours 2019 Bergen 0.5 Composite 8 0 0 0.089 0.058 0.041-0.30 0.30 0
Edible crab (Cancer pagurus) (fresh) Hepato-pancreas Polluted fjords and harbours 2019 Bergen No ML Composite 4 NA NA 0.190 0.19 0.14-0.23 0.23 0
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 Skagerrak 0.3 Individual 25 0 0   <0.006 <0.004-0.014 0.011 23
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 North Sea 0.3 Individual 570 0 0   <0.007 <0.004-0.063 <0.006 547
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 Norwegian Sea 0.3 Individual 183 0 0   <0.008 <0.004-0.13 0.023 164
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 Total, all areas 0.3 Individual 778 0 0   <0.005 <0.004-0.13 <0.006 734
European lobster (Homarus gammarus) Hale Spot-check monitoring 2017-2022 North Sea 0.5 Individual 80 0 0   <0.005 <0.004-0.087 0.012 56
European plaice (Pleuronectes platessa) Fillet Baseline study 2016 Skagerrak 0.3 Individual 25 0 0 0.016 0.006 <0.005-0.11 0.057 7
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2018 North Sea 0.3 Individual 123 0 0   <0.005 <0.0009-0.039 0.0062 105
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2017 Norwegian Sea 0.3 Individual 150 0 0   <0.005 <0.003-0.031 <0.006 148
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2017 Barents Sea 0.3 Individual 150 0 0   <0.005 <0.003-0.046 0.012 130
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2018 Total, all areas 0.3 Individual 448 0 0   <0.005 <0.0009-0.11 0.0087 390
European plaice (Pleuronectes platessa)   Spot-check monitoring 2007, 2014-2016 Barents Sea, Norwegian Sea, Skagerrak 0.3 Individual 267 0 0   <0.0072 <0.004-0.11 0.0097 246
European sprat (Sprattus sprattus) Whole fish Miljøgifter i fisk og fiskevarer (NFSA 2010), Spot-check monitoring 2017 2010, 2017 Fjords and North Sea 0.3 Composite 47 0 0   <0.01 <0.01-0.023 0.019 25
Golden redfish (Sebastes norvegicus) Fillet Baseline study 2016-2018 Norwegian Sea 0.3 Individual 148 0 0   <0.005 <0.004-0.12 <0.007 143
Golden redfish (Sebastes norvegicus) Fillet Baseline study 2016-2018 Barents Sea 0.3 Individual 75 0 0   <0.006 <0.004-<0.007 <0.007 75
Golden redfish (Sebastes norvegicus) Fillet Baseline study 2016-2018 Total, all areas 0.3 Individual 223 0 0   <0.006 <0.004-0.12 <0.007 218
Greater argentine (Argentina silus) Fillet Baseline study 2018-2021 North Sea, Norwegian Sea, incl.Osterfjorden 0.3 Individual 300 0 0   <0.005 <0.004-0.075 <0.007 293
Greater forkbeard (Physis blennoides) Fillet NFSA Bycatch 2013-2015 2013-2015 Total, all areas 0.3 Individual 59 0 0   <0.005 <0.004-0.20 0.02 46
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2017-2021 Norwegian Sea 0.3 Individual 200 0 0   <0.006 <0.001-0.0061 <0.007 196
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2017, 2019-2021 Barents Sea 0.3 Individual 324 0 0   <0.005 <0.002-0.010 <0.007 319
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2017-2021 Total, both areas 0.3 Individual 524 0 0   <0.005 <0.001-0.010 <0.007 515
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2011-2015 Norwegian Sea 0.3 Composite 81 0 0   <0.007 <0.006-0.029 <0.010 75
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2011, 2013 Barents Sea 0.3 Composite 31 0 0   <0.008 <0.006-<0.010 <0.009 31
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2011-2015 Total, both areas 0.3 Composite 112 0 0   <0.007 <0.006-0.029 <0.009 106
Haddock (Melanogrammus aeglefinus) Fillet Baseline study + NFSA Bycatch 2013-2015 2015-2017 Skagerrak 0.3 Individual 70 0 0   <0.005 <0.004-0.025 0.008 59
Haddock (Melanogrammus aeglefinus) Fillet Baseline study + NFSA Bycatch 2013-2015 2013-2019 North Sea 0.3 Individual 300 0 0   <0.006 <0.004-0.017 0.009 253
Haddock (Melanogrammus aeglefinus) Fillet Baseline study + NFSA Bycatch 2013-2015 2014-2017 Norwegian Sea 0.3 Individual 307 0 0   <0.007 <0.001-0.025 0.009 253
Haddock (Melanogrammus aeglefinus) Fillet Baseline study + NFSA Bycatch 2013-2015 2014-2018 Barents Sea 0.3 Individual 712 0 0   <0.008 <0.003-0.098 0.022 523
Haddock (Melanogrammus aeglefinus) Fillet Baseline study + NFSA Bycatch 2013-2015 2013-2019 Skagerrak, Nordsjø, Norwegian Sea, Rockall, Barents Sea 0.3 Individual 1401 0 0   <0.009 <0.001-0.098 0.014 1100
Haddock (Melanogrammus aeglefinus) Fillet Polluted fjords and harbours 2009, 2016-2017 Bergen, Repparfjord, Revsbotn, Bøkfjord 0.3 Individual+ 1 Composite 115 0 0 0.023 0.0092 <0.004-0.092 0.057 36
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2007, 2014-2022 North Sea and Skagerrak 0.5 Composite 21 0 0 0.0140 0.011 <0.007-0.038 0.024 4
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2007, 2012-2021 Norwegian Sea 0.5 Composite 27 0 0 0.0080 0.0070 <0.005-0.023 0.011 20
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2007-2022 Barents Sea 0.5 Composite 51 0 0 0.0088 0.0084 <0.006-0.018 0.014 34
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2007-2022 Total, all areas 1.5 Composite 99 0 0 0.010 0.0082 <0.005-0.038 0.019 58
Northern wolffish (Anarhichas denticulatus) Fillet NFSA Bycatch 2013-2015 2014 Barents Sea 0.3 Individual 12 0 0 0.01 0.016 <0.002-0.024 0.024 1
Norway lobster (Nephrops norvegicus) Muscle Spot-check monitoring 2014, 2020-2021 North Sea, fjords 0.5 Individual 146 0 0 0.021 0.017 <0.004-0.24 0.045 11
Pollack (Pollachius pollachius) Fillet Baseline study 2016 Skagerrak 0.3 Individual 25 0 0   <0.005 <0.004-0.010 0.010 24
Pollack (Pollachius pollachius) Fillet Baseline study 2016-2019 North Sea 0.3 Individual 125 0 0   <0.005 <0.004-0.010 <0.010 121
Pollack (Pollachius pollachius) Fillet Baseline study 2016-2019 Norwegian Sea 0.3 Individual 146 0 0   <0.005 <0.004-0.018 0.018 137
Pollack (Pollachius pollachius) Fillet Baseline study 2016-2019 Total, all areas 0.3 Individual 296 0 0   <0.005 <0.004-0.018 0.018 282
Pollack (Pollachius pollachius) Fillet Spot-check monitoring 2014 North Sea, Norwegian Sea, coast 0.3 Individual 50 0 0   <0.005 <0.004-0.036 0.007 45
Ratfish (Chimaera monstrosa) Fillet Spot-check monitoring 2016 Lustrafjord 0.3 Individual 23 0 0   <0.02 <0.02-<0.03 <0.02 23
Red king crab (Paralithodes camtchaticus) Claw meat Baseline study 2012 2012 Barents Sea 0.5 Individual 185 0 0   <0.006 <0.003-0.017 0.0044 168
Saithe (Pollachius virens) Fillet Follow-up monitoring 2017-2019 Skagerrak 0.3 Individual 71 0 0   <0.005 <0.004-<0.009 <0.005 71
Saithe (Pollachius virens) Fillet Follow-up monitoring 2017-2021 North Sea 0.3 Individual 120 0 0   <0.005 <0.004-0.038 <0.005 118
Saithe (Pollachius virens) Fillet Follow-up monitoring 2018-2021 Norwegian Sea 0.3 Individual 195 0 0   <0.005 <0.004-0.025 0.005 180
Saithe (Pollachius virens) Fillet Follow-up monitoring 2017-2021 Barents Sea 0.3 Individual 223 0 0   <0.005 <0.004-0.23 <0.005 221
Saithe (Pollachius virens) Fillet Follow-up monitoring 2017-2021 Total, all areas 0.3 Individual 609 0 0   <0.005 <0.004-0.23 <0.005 590
Saithe (Pollachius virens) Fillet Polluted fjords and harbours 2009 Bergen 0.3 Individual 105 0 0   <0.008 <0.008-0.034 0.011 96
Snow crab (Chionoecetes opilio) Leg meat Spot-check monitoring 2015, 2016, 2018-2021 Barents Sea 0.5 Individual 86 0 0 0.0055 0.005 0.002-0.018 0.009  
Spiny dogfish (Squalus acanthias) Fillet Spot check monitoring 2007-2008 Skagerrak, Norskehavet 0.3 Individual 63 0 0   <0.012 <0.011-0.062 <0.014 62
Spotted wolffish (Anarhichas minor) Fillet Baseline study 2018-2021 Total, Norwegian Sea and Barents Sea 0.3 Individual 250 0 0   <0.005 <0.003-0.012 <0.003 244
Starry ray (Amblyraja radiata) Fillet Polluted fjords and harbours 2016-2017 Barents Sea (Repparfjord and Revsbotn) 0.3 Individual 10 0 0 0.012 0.011 <0.005-0.025 0.025 2
Tusk (Brosme brosme) Fillet Baseline study 2013-2015 2013-2015 Skagerrak 0.3 Individual 42 0 0   <0.006 <0.005-0.029 0.022 29
Tusk (Brosme brosme) Fillet Baseline study 2013-2015, follow-up monitoring 2019-2021 2013-2021 North Sea, open sea and coast 0.3 Individual 263 0 0   <0.005 <0.003-0.083 <0.006 249
Tusk (Brosme brosme) Fillet Baseline study 2013-2015, follow-up-monitoring 2019-2021 + spot-check monitoring 2021 + MT fjorder og havner (NFSA 2017) + Vatsfjorden 2013-2014 2013-2021 North Sea, Fjords 0.3 Individual 503 1 0.20   <0.006 <0.004-0.45 0.020 407
Tusk (Brosme brosme) Fillet Baseline study 2013-2015, follow-up monitoring 2019-2021 2013-2022 Norwegian Sea 0.3 Individual 684 0 0   <0.005 <0.003-0.071 <0.007 637
Tusk (Brosme brosme) Fillet Baseline study 2013-2015 2013-2015 Barents Sea 0.3 Individual 278 0 0   <0.006 <0.004-0.023 <0.006 269
Tusk (Brosme brosme) Fillet Baseline study 2013-2015, follow-up-monitoring 2019-2021 + spot-check monitoring 2021 + MT fjorder og havner (NFSA 2017) + Vatsfjorden 2013-2014 2013-2015 Total. all areas 0.3 Individual 1770 1 0.06   <0.006 <0.003-0.45 0.012 1591
Tusk (Brosme brosme) Fillet Polluted fjords and harbours 2017, 2019, 2021 Førdefjorden, Bergen, Ålesund 0.3 Individual+ 29 Composite 88 0 0   <0.005 <0.004-0.040 0.011 82
Tusk (Brosme brosme) Fillet Monitoring around submarine U-864 2017-2021 Fedje; by the submarine wreck U-864 and 4 nm north and south of the wreck 0.3 Individual 345 0 0   <0.005 <0.004-0.042 <0.005 342
Whiting (Merlangius merlangus) Fillet NFSA Bycatch 2013-2015 + spot check monitoring 2016 2013-2016 Total, all areas 0.3 Individual 77 0 0   <0.005 <0.004-0.016 <0.005 75
Witch flounder (Glyptocephalus cynoglossus) Fillet Polluted fjords and harbours 2016-2017 Repparfjord and Revsbotn 0.3 Individual 10 0 0 0.017 0.014 <0.004-0.041 0.031 1
Table A4. Lead (Pb) levels for wild-caught fish and other seafood collected by IMR in various monitoring programs conducted in the period 2006-2022. The maximum level (ML) and the mean, median, minimum (min), maximum (max) and 95% percentile concentrations are given as mg/kg wet weight, and concentrations above the ML are indicated in red. Mean values were calculated only when more than 50% of the samples had concentrations above the limit of quantification (LOQ). 

10 - Appendix Table A5 - PCDD/F

Name of Species English (Latin) Tissue Name of monitoring program for source data Sampling year(s) Geographical area ML Individual or composite samples No of samples analysed No of samples above ML Fraction exceeding the ML (%) Mean Median Min-max 95% Percentile
American plaice (Hippoglossus platessoides) Fillet Spot-check monitoring 2006 Barents Sea 3.5 Composite 5 0 0 0.047 0.046 0.036-0.062 0.062
Anglerfish (Lophius piscatorius) Fillet Spot check monitoring 2015 Skagerrak 3.5 Individual 25 0 0 0.064 0.062 0.035-0.11 0.093
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019 2016 Skagerrak 3.5 Composite 3 0 0 0.048 0.045 0.031-0.069 0.069
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019 2016-2019 North Sea 3.5 Composite 22 0 0 0.057 0.050 0.019-0.19 0.12
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019 2017-2019 Norwegian Sea 3.5 Composite 15 0 0 0.034 0.032 0.016-0.068 0.068
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019 2016-2019 Total, all areas 3.5 Composite 40 0 0 0.047 0.043 0.016-0.19 0.095
Anglerfish (Lophius piscatorius) Liver Baseline study 2016-2019, spot check monitoring 2015 2015-2016 Skagerrak No ML Composite 6 NA NA 18 16 13-27 27
Anglerfish (Lophius piscatorius) Liver Baseline study 2016-2019 2016-2019 North Sea No ML Composite 22 NA NA 11 7.8 1.5-22 19
Anglerfish (Lophius piscatorius) Liver Baseline study 2016-2019 2017-2019 Norwegian Sea No ML Composite 13 NA NA 5.2 4.8 1.9-8.3 8.3
Anglerfish (Lophius piscatorius) Liver Baseline study 2016-2019, spot check monitoring 2015 2016-2019 Total, all areas No ML Composite 41 NA NA 10 8.3 1.5-27 22
Atlantic bluefin tuna (Thunnus thynnus) Fatty muscle (o-toro) Spot-check monitoring 2018-2021 Skagerrak/North Sea/Norwegian Sea 3.5 Individual 6 1 16.7 1.80 1.50 1.2-3.6 3.60
Atlantic bluefin tuna (Thunnus thynnus) Lean muscle Spot-check monitoring 2018-2021 Skagerrak/North Sea/Norwegian Sea 3.5 Individual 15 0 0 0.68 0.61 0.39-1.2 1.20
Atlantic bluefin tuna (Thunnus thynnus) Red muscle Spot-check monitoring 2018-2021 Skagerrak/North Sea/Norwegian Sea 3.5 Individual 5 0 0 0.52 0.59 0.34-0.62 0.62
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 North Sea 3.5 Individual 45 0 0 0.035 0.031 0.0089-0.22 0.057
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 Norwegian Sea 3.5 Individual 15 0 0 0.023 0.023 0.011-0.036 0.036
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 Barents Sea 3.5 Individual 45 0 0 0.026 0.025 0.0079-0.056 0.043
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 Total, all areas 3.5 Individual 105 0 0 0.029 0.028 0.0079-0.22 0.049
Atlantic cod (Gadus morhua) Fillet Polluted fjords and harbours 2009, 2015 Tønsberg, Vrengen, Narvik, Oslofjord 3.5 Individual+ 6 composite 17 0 0 0.086 0.079 0.050-0.14 0.140
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study+follow-up monitoring 2014-2016, 2019 Skagerrak, North Sea 3.5 Individual 9 0 0 0.48 0.27 0.060-2.0 2.0
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study+follow-up monitoring 2013-2015, 2017-2019 Norwegian Sea 3.5 Individual 365 3 0.82 0.44 0.23 0.023-4.0 1.7
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study 2013-2016 Barents Sea 3.5 Individual 132 2 1.5 0.32 0.18 0.033-6.6 0.72
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study+follow-up monitoring 2013-2019 Total, all areas 3.5 Individual 506 5 0.99 0.41 0.22 0.023-6.6 1.6
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Baseline study+follow-up monitoring 2014-2016, 2019 Skagerrak, North Sea 3.5 Individual 8 1 12.5 1.4 0.76 0.23-4.2 4.2
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Baseline study+follow-up monitoring 2013-2015, 2017-2018 Norwegian Sea 3.5 Individual 272 19 7.0 1.3 0.75 0.059-17 4.3
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Baseline study 2013-2016 Barents Sea 3.5 Individual 125 2 1.6 0.72 0.54 0.11-6.0 1.6
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Baseline study+follow-up monitoring 2013-2019 Total, all areas 3.5 Individual 405 22 5.4 1.1 0.65 0.059-17 3.6
Atlantic herring (Clupea harengus) Fillet Follow-up monitoring 2017, 2020 North Sea 3.5 Individual 172 0 0 0.41 0.38 0.15-2.0 0.70
Atlantic herring (Clupea harengus) Fillet Follow-up monitoring 2017, 2020 Norwegian Sea 3.5 Individual 98 0 0 0.45 0.44 0.17-0.79 0.67
Atlantic horse mackerel (Trachurus trachurus) Fillet Spot-check monitoring 2017 North Sea 3.5 Individual 50 0 0 0.40 0.35 0.18-0.92 0.78
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2017-2020 Skagerrak 3.5 Individual 198 2 1.0 0.67 0.41 0.081-4.8 2.0
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2018-2019 North Sea 3.5 Individual 100 0 0 0.35 0.30 0.13-1.0 0.78
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2017-2020 Norwegian Sea 3.5 Individual 222 0 0 0.27 0.26 0.079-1.8 0.45
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2019-2020 Barents Sea 3.5 Individual 60 0 0 0.25 0.24 0.099-0.47 0.38
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2017-2020 Total, all areas 3.5 Individual 580 2 0.34 0.42 0.29 0.079-4.8 1.2
Atlantic salmon (Salmo salar), wild Fillet Wild salmon project 2012 2012 Coast of Northern Norway 3.5 Individual 137 0 0 0.46 0.39 0.13-1.7 0.87
Atlantic wolffish (Anarhichas lupus) Fillet Baseline study 2018-2021 North Sea, Norwegian Sea, Barents Sea 3.5 Individual 176 0 0 0.09 0.07 0.018-0.35 0.22
Atlantic wolffish (Anarhichas lupus) Liver Baseline study 2018-2021 North Sea, Norwegian Sea, Barents Sea No ML Composite 9 NA NA 1.51 1.58 0.68-2.72 2.72
Beaked redfish (Sebastes mentella) Fillet Baseline study 2016-2018 Norwegian Sea 3.5 Individual 77 0 0 0.24 0.19 0.047-1.1 0.69
Beaked redfish (Sebastes mentella) Fillet Baseline study 2016-2018 Barents Sea 3.5 Individual 447 0 0 0.19 0.17 0.040-0.72 0.38
Beaked redfish (Sebastes mentella) Fillet Baseline study 2016-2018 Total, all areas 3.5 Individual 524 0 0 0.20 0.17 0.040-1.1 0.41
Blue ling (Molva dipterygia) Fillet NFSA Bycatch 2013-2015 2013-2015 Skagerrak, North Sea, Norwegian Sea 3.5 Composite 10 0 0 0.098 0.072 0.027-0.29 0.29
Blue ling (Molva dipterygia) Liver NFSA Bycatch 2013-2015 2013-2015 Skagerrak, North Sea, Norwegian Sea No ML Composite 9 NA NA 23 17 12-47 47
Common ling (Molva molva) Fillet Baseline study 2014 Skagerrak 3.5 Composite 3 0 0 0.057 0.056 0.038-0.079 0.079
Common ling (Molva molva) Fillet Baseline study 2013-2014, 2016 North Sea 3.5 Composite 4 0 0 0.043 0.044 0.025-0.059 0.059
Common ling (Molva molva) Fillet Baseline study 2014-2015 North Sea, fjords 3.5 Composite 8 0 0 0.07 0.059 0.034-0.15 0.15
Common ling (Molva molva) Fillet Baseline study 2013-2015 Norwegian Sea 3.5 Composite 22 0 0 0.044 0.046 0.029-0.068 0.065
Common ling (Molva molva) Fillet Baseline study 2014 Barents Sea 3.5 Composite 4 0 0 0.034 0.031 0.03-0.042 0.042
Common ling (Molva molva) Fillet Baseline study 2013-2015 Total, all areas 3.5 Composite 41 0 0 0.049 0.046 0.025-0.15 0.082
Common ling (Molva molva) Fillet Spot check monitoring 2008-2009 Barents Sea, Norwegian Sea, Skagerrak, North Sea, Atlantic Ocean 3.5 Individual 167 0 0 0.039 0.035 0.0084-0.16 0.087
Edible crab (Cancer pagurus) (cooked) Brown meat Baseline study 2011-2012 2011 - 2012 Coast Hvaler to Vesterålen No ML Individual 435 NA NA 2.1 1.7 1.0-15 4.7
Edible crab (Cancer pagurus) (cooked) Brown meat Polluted fjords and harbours 2013, 2016 Different areas in south of Norway No ML Composite 13 NA NA 2.70 2.3 1.3-4.2 4.2
Edible crab (Cancer pagurus) (cooked) Claw meat Polluted fjords and harbours 2013 Different areas in south of Norway 3.5 Composite 11 0 0 0.14 0.14 0.097-0.21 0.20
Edible crab (Cancer pagurus) (raw) Hepato-pancreas Spot check monitoring 2022 Austevoll, Hvaler, Vestfjorden No ML Composite 6 NA NA 4.3 4.0 1.8-7.6 7.4
Edible crab (Cancer pagurus) (raw) Hepato-pancreas Polluted fjords and harbours 2019 Bergen No ML Composite 8 NA NA 5.2 2.5 1.7-12 12
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 Skagerrak 3.5 Individual 25 0 0 0.23 0.21 0.067-0.48 0.38
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 North Sea 3.5 Individual 570 0 0 0.16 0.14 0.020-0.55 0.31
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 Norwegian Sea 3.5 Individual 183 0 0 0.27 0.26 0.046-1.0 0.53
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 Total, all areas 3.5 Individual 778 0 0 0.18 0.16 0.020-1.0 0.38
European hake (Merluccius merluccius) Liver Baseline study 2019-2021 Skagerrak No ML Composite 1 NA NA 2.4 2.4 2.4-2.4 2.4
European hake (Merluccius merluccius) Liver Baseline study 2019-2021 North Sea No ML Composite 23 NA NA 3.1 2.6 1.6-9.4 5.8
European hake (Merluccius merluccius) Liver Baseline study 2019-2021 Norwegian Sea No ML Composite 7 NA NA 3.5 3.2 2.1-5.5 5.5
European hake (Merluccius merluccius) Liver Baseline study 2019-2021 Total, all areas No ML Composite 31 NA NA 3.2 2.7 1.6-9.4 5.8
European lobster (Homarus gammarus) Hale Spot-check monitoring 2017-2022 North Sea 3.5 Individual 20 0 0 0.08 0.08 0.031-0.18 0.15
European plaice (Pleuronectes platessa) Fillet Baseline study 2016 Skagerrak 3.5 Composite 3 0 0 0.28 0.20 0.12-0.51 0.51
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2018 North Sea 3.5 Composite 15 0 0 0.18 0.18 0.084-0.34 0.34
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2017 Norwegian Sea 3.5 Composite 18 0 0 0.23 0.20 0.12-0.65 0.65
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2017 Barents Sea 3.5 Composite 18 0 0 0.17 0.17 0.11-0.28 0.28
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2018 Total, all areas 3.5 Composite 54 0 0 0.20 0.19 0.084-0.65 0.34
European plaice (Pleuronectes platessa) Fillet Spot-check monitoring 2007, 2014-2016 Barents Sea, Norwegian Sea, Skagerrak 3.5 Individual 102 0 0 0.19 0.14 0.033-1.3 0.43
European sprat (Sprattus sprattus) Whole fish Miljøgifter i fisk og fiskevarer (NFSA 2010), Spot-check monitoring 2017 2010, 2017 Fjords+ some in North Sea 3.5 Composite 47 0 0 0.75 0.77 0.21-1.2 1.1
Golden redfish (Sebastes norvegicus) Fillet Baseline study 2016-2018 Norwegian Sea 3.5 Individual 148 0 0 0.21 0.19 0.044-0-65 0.44
Golden redfish (Sebastes norvegicus) Fillet Baseline study 2016-2018 Barents Sea 3.5 Individual 74 0 0 0.20 0.18 0.062-0.71 0.38
Golden redfish (Sebastes norvegicus) Fillet Baseline study 2016-2018 Total, all areas 3.5 Individual 222 0 0 0.21 0.18 0.044-0.71 0.44
Greater argentine (Argentina silus) Fillet Baseline study 2018-2021 North Sea, Norwegian Sea, incl. Osterfjorden 3.5 Individual 290 0 0 0.37 0.26 0.023-2.5 1.10
Greater argentine (Argentina silus) Liver Baseline study 2018-2021 North Sea, Norwegian Sea, incl. Osterfjorden No ML Composite 12 NA NA 1.61 0.37 0.52-3.43 3.43
Greater forkbeard (Physis blennoides) Fillet NFSA Bycatch 2013-2015 2013-2015 Total, all areas 3.5 Composite 11 0 0 0.039 0.032 0.025-0.075 0.075
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2017-2021 Norwegian Sea 3.5 Individual 199 0 0 0.78 0.57 0.094-3.4 2.0
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2017, 2019-2021 Barents Sea 3.5 Individual 299 4 1.34 0.62 0.37 0.048-5.9 1.8
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2017-2021 Total, Norwegian Sea and Barents Sea 3.5 Individual 498 4 0.80 0.69 0.43 0.048-5.9 1.9
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2011-2015 Norwegian Sea 3.5 Composite 81 5 6.17 1.3 1.1 0.26-6.7 4.0
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2011, 2013 Barents Sea 3.5 Composite 31 0 0 0.56 0.50 0.31-1.1 0.99
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2011-2015 Total, Norwegian Sea and Barents Sea 3.5 Composite 112 5 4.46 1.1 0.78 0.26-6.7 3.0
Haddock (Melanogrammus aeglefinus) Fillet NFSA Bycatch 2013-2015 2013-2014 North Sea 3.5 Composite 12 0 0 0.041 0.037 0.029-0.058 0.029
Haddock (Melanogrammus aeglefinus) Fillet NFSA Bycatch 2013-2015 2014-2015 Norwegian Sea 3.5 Composite 13 0 0 0.046 0.042 0.028-0.082 0.029
Haddock (Melanogrammus aeglefinus) Fillet NFSA Bycatch 2013-2015 2014-2015 Barents Sea 3.5 Composite 12 0 0 0.037 0.035 0.022-0.074 0.025
Haddock (Melanogrammus aeglefinus) Fillet NFSA Bycatch 2013-2015 2013-2015 Total, all areas 3.5 Composite 37 0 0 0.041 0.037 0.022-0.082 0.027
Haddock (Melanogrammus aeglefinus) Liver Baseline study + NFSA Bycatch 2013-2015 2015-2017 Skagerrak No ML Individual + 70 Composite 66 NA NA 19.30 10.80 5.2-164.3 69.5
Haddock (Melanogrammus aeglefinus) Liver Baseline study + NFSA Bycatch 2013-2015 2014-2019 North Sea No ML Individual + 10 Composite 304 NA NA 8.70 6.90 1.6-40.9 20.1
Haddock (Melanogrammus aeglefinus) Liver Baseline study + NFSA Bycatch 2013-2016 2014-2017 Norwegian Sea No ML Individual + 12 Composite 272 NA NA 7.00 5.50 2.0-25.3 15.7
Haddock (Melanogrammus aeglefinus) Liver Baseline study + NFSA Bycatch 2013-2017 2014-2018 Barents Sea No ML Individual + 13 Composite 610 NA NA 3.00 2.50 0.8-19.3 5.80
Haddock (Melanogrammus aeglefinus) Liver Baseline study + NFSA Bycatch 2013-2018 2014-2019 Total, all areas No ML Individual + 35 Composite 1257 NA NA 6.10 4.20 0.79-164 15.8
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2014-2022 North Sea and Skagerrak 3.5 Composite 16 0 0 0.20 0.20 0.079-0.34 0.34
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2012-2021 Norwegian Sea 3.5 Composite 25 0 0 0.25 0.19 0.058-1.0 0.40
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2007-2022 Barents Sea 3.5 Composite 46 0 0 0.11 0.091 0.016-0.40 0.25
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2007-2022 Total, all areas 3.5 Composite 87 0 0 0.16 0.140 0.016-1.0 0.37
Northern wolffish (Anarhichas denticulatus) Fillet NFSA Bycatch 2013-2015 2014 Barents Sea 3.5 Composite 2 0 0 0.08 0.08 0.032-0.13 0.13
Northern wolffish (Anarhichas denticulatus) Liver NFSA Bycatch 2013-2015 2014 Barents Sea 3.5 Composite 2 0 0 2.3 2.3 1.7-3.0 3.00
Norway lobster (Nephrops norvegicus) Muscle Spot-check monitoring 2014, 2020-2021 North Sea, fjords 3.5 Composite 9 0 0 0.26 0.27 0.17-0.33 0.33
Pollack (Pollachius pollachius) Fillet Baseline study 2016 Skagerrak 3.5 Composite 3 0 0 0.21 0.25 0.053-0.31 0.31
Pollack (Pollachius pollachius) Fillet Baseline study 2016-2019 North Sea 3.5 Composite 15 0 0 0.055 0.055 0.014-0.19 0.19
Pollack (Pollachius pollachius) Fillet Baseline study 2016-2019 Norwegian Sea 3.5 Composite 18 0 0 0.039 0.034 0.015-0.10 0.10
Pollack (Pollachius pollachius) Fillet Baseline study 2016-2019 Total, all areas 3.5 Composite 36 0 0 0.059 0.041 0.014-0.31 0.25
Ratfish (Chimaera monstrosa) Fillet NFSA Bycatch 2013-2015+spot-check monitoring 2015-2016 Faroe Islands+Lustrafjorden 3.5 Composite 12 0 0 0.32 0.36 0.041-0.45 0.43
Red king crab (Paralithodes camtchaticus) Claw meat Baseline study 2012 2012 Barents Sea 3.5 Individual 50 0 0 0.095 0.085 0.048-0.36 0.13
Saithe (Pollachius virens) Fillet Follow-up monitoring 2019 Skagerrak 3.5 Individual 5 0 0 0.039 0.040 0.034-0.046 0.046
Saithe (Pollachius virens) Fillet Follow-up monitoring 2019-2021 North Sea 3.5 Individual 15 0 0 0.026 0.024 0.011-0-045 0.045
Saithe (Pollachius virens) Fillet Follow-up monitoring 2019-2021 Norwegian Sea 3.5 Individual 29 0 0 0.056 0.046 0.022-0.15 0.11
Saithe (Pollachius virens) Fillet Follow-up monitoring 2019-2020 Barents Sea 3.5 Individual 20 0 0 0.050 0.045 0.031-0.083 0.078
Saithe (Pollachius virens) Fillet Follow-up monitoring 2019-2021 Total, all areas 3.5 Individual 69 0 0 0.047 0.039 0.011-0.15 0.095
Saithe (Pollachius virens) Liver Follow-up monitoring 2017-2019 Skagerrak No ML Individual 67 NA NA 5.4 5.3 1.7-16 9.5
Saithe (Pollachius virens) Liver Follow-up monitoring 2017-2021 North Sea No ML Individual 119 NA NA 2.5 2.2 0.62-13 4.5
Saithe (Pollachius virens) Liver Follow-up monitoring 2018-2021 Norwegian Sea No ML Individual 189 NA NA 3.1 2.8 0.70-15 5.1
Saithe (Pollachius virens) Liver Follow-up monitoring 2017-2020 Barents Sea No ML Individual 170 NA NA 2.2 2.2 1.0-4.3 3.3
Saithe (Pollachius virens) Liver Follow-up monitoring 2017-2021 Total, all areas No ML Individual 545 NA NA 3.0 2.5 0.62-16 6.1
Snow crab (Chionoecetes opilio) Leg meat Spot-check monitoring 2015,2016, 2018, 2020, 2021 Barents Sea 3.5 Composite 22 0 0 0.078 0.04 0.026-0.30 0.28
Spiny dogfish (Squalus acanthias) Fillet Spot check monitoring 2007-2008 Skagerrak, Norskehavet 3.5 Individual 17 0 0 0.24 0.16 0.097-1.5 0.57
Spotted wolffish (Anarhichas minor) Fillet Baseline study 2018-2021 Total, Norwegian Sea and Barents Sea 3.5 Individual 250 0 0 0.32 0.24 0.26-2.8 0.84
Spotted wolffish (Anarhichas minor) Liver Baseline study 2018-2021 Total, Norwegian Sea and Barents Sea No ML Composite 9 NA NA 1.92 2.04 0.74-3.43 3.43
Tusk (Brosme brosme) Fillet Baseline study 2013-2015 2013 Skagerrak 3.5 Composite 3 0 0 0.066 0.069 0.059-0.070 0.070
Tusk (Brosme brosme) Fillet Baseline study 2013-2015 2013-2015 North Sea, open sea and coast 3.5 Composite 7 0 0 0.053 0.038 0.033-0.069 0.069
Tusk (Brosme brosme) Fillet Baseline study 2013-2015 2013-2015 North Sea, fjords 3.5 Composite 7 0 0 0.043 0.043 0.036-0.052 0.052
Tusk (Brosme brosme) Fillet Baseline study 2013-2015 2013-2015 Norwegian Sea 3.5 Composite 22 0 0 0.043 0.036 0.024-0.099 0.082
Tusk (Brosme brosme) Fillet Baseline study 2013-2015 2014, 2016 Barents Sea 3.5 Composite 14 0 0 0.051 0.045 0.030-0.093 0.093
Tusk (Brosme brosme) Fillet Baseline study 2013-2015 2013-2016 Total, all areas 3.5 Composite 53 0 0 0.048 0.044 0.024-0.099 0.082
Tusk (Brosme brosme) Fillet Fjord survey 2015 Sognefjord 3.5 Individual 51 0 0 0.043 0.043 0.037-0.048 0.048
Tusk (Brosme brosme) Fillet Polluted fjords and harbours 2007, 2009 Bergen 3.5 Composite 6 0 0 0.058 0.058 0.052-0.065 0.065
Whiting (Merlangius merlangus) Fillet NFSA Bycatch 2013-2015 2013-2014 Norwegian Sea and North Sea 3.5 Composite 5 0 0 0.049 0.047 0.020-0.075 0.075
Table A5. Concentrations of sum dioxins (PCDD/F) for wild-caught fish and other seafood collected by IMR in various monitoring programs conducted in the period 2006-2022. The maximum level (ML) and the mean, median, minimum (min), maximum (max) and 95% percentile concentrations are given as ng TEQ/kg wet weight, and concentrations above the ML are indicated in red.

11 - Appendix Table A6 - PCDD/F+dl-PCB

Name of Species        English (Latin) Tissue Name of monitoring program for source data Sampling year(s) Geographical area ML Individual or composite samples No of samples analysed No of samples above ML Fraction exceeding the ML (%) Mean Median Min-max 95% Percentile Amount (g) that may be consumed before exceeding TWI
American plaice (Hippoglossus platessoides) Fillet Spot-check monitoring 2006 Barents Sea 6.5 Composite 5 0 0 0.13 0.10 0.077-0.28 0.28 1077
Anglerfish (Lophius piscatorius) Fillet Spot check monitoring 2015 Skagerrak 6.5 Individual 25 0 0 0.098 0.091 0.043-0.20 0.16 1429
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019 2016 Skagerrak 6.5 Composite 3 0 0 0.078 0.067 0.055-0.11 0.11 1795
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019 2016-2019 North Sea 6.5 Composite 22 0 0 0.10 0.10 0.035-0.24 0.19 1400
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019 2017-2019 Norwegian Sea 6.5 Composite 15 0 0 0.065 0.054 0.033-0.23 0.23 2154
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019 2016-2019 Total, all areas 6.5 Composite 40 0 0 0.088 0.070 0.032-0.24 0.21 1591
Anglerfish (Lophius piscatorius) Liver Baseline study 2016-2019, spot check monitoring 2015 2015-2016 Skagerrak 20 Composite 6 6 100 48 42 34-70 70 3
Anglerfish (Lophius piscatorius) Liver Baseline study 2016-2019 2016-2019 North Sea 20 Composite 22 16 73 34 37 3.0-64 54 4
Anglerfish (Lophius piscatorius) Liver Baseline study 2016-2019 2017-2019 Norwegian Sea 20 Composite 13 9 69 22 24 7.2-34 34 6
Anglerfish (Lophius piscatorius) Liver Baseline study 2016-2019, spot check monitoring 2015 2015-2019 Total, all areas 20 Composite 41 31 76 32 34 3.0-70 63 4
Atlantic bluefin tuna (Thunnus thynnus) Fatty muscle (o-toro) Spot-check monitoring 2018-2021 Skagerrak/North Sea/Norwegian Sea 6.5 Individual 6 6 100 13 12 8.7-22.7 22.70 11
Atlantic bluefin tuna (Thunnus thynnus) Lean muscle Spot-check monitoring 2018-2021 Skagerrak/North Sea/Norwegian Sea 6.5 Individual 15 1 6.7 4.10 4.00 2.2-6.8 6.80 34
Atlantic bluefin tuna (Thunnus thynnus) Red muscle Spot-check monitoring 2018-2021 Skagerrak/North Sea/Norwegian Sea 6.5 Individual 5 0 0 3.30 3.17 2.4-4.2 4.20 42
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 North Sea 6.5 Individual 45 0 0 0.060 0.050 0.020-0.25 0.11 2333
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 Norwegian Sea 6.5 Individual 15 0 0 0.046 0.046 0.028-0.095 0.095 3043
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 Barents Sea 6.5 Individual 45 0 0 0.040 0.035 0.013-0.083 0.068 3500
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 Total, all areas 6.5 Individual 105 0 0 0.049 0.045 0.013-0.25 0.083 2857
Atlantic cod (Gadus morhua) Fillet Polluted fjords and harbours 2009, 2015 Tønsberg, Vrengen, Narvik, Oslofjord 6.5 Individual+ 6 composite 17 0 0 1.7 1.6 0,20-3.7 3.700 82
Atlantic cod (Gadus morhua) Liver Follow-up monitoring 2017-2021 North Sea 20 Individual 261 102 39.1 20 17 4.5-93 39 7
Atlantic cod (Gadus morhua) Liver Follow-up monitoring 2017-2021 Norwegian Sea 20 Individual 61 37 60.7 27 26 5.3-88 68 5
Atlantic cod (Gadus morhua) Liver Follow-up monitoring 2017-2021 Barents Sea 20 Individual 313 2 0.6 7.1 5.9 1.8-27 16 20
Atlantic cod (Gadus morhua) Liver Follow-up monitoring 2017-2021 Total, all areas 20 Individual 635 141 22.2 14 11 1.8-93 36 10
Atlantic cod (Gadus morhua) Liver Polluted fjords and harbours 2015-2017, 2019, 2021 Oslofjorden, Frænfjorden, Årdalsfjord, Repparfjord og Revsbotn, Førdefjorden, Bergen, Grenland/Kragerø, Ålesund 20 Composite+ 2 individual 66 58 87.9 76 50 14-301 258 2
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study+follow-up monitoring 2014-2016, 2019 Skagerrak, North Sea 6.5 Individual 9 1 11.1 2.4 0.82 0.083-14 14 58
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study+follow-up monitoring 2013-2015, 2017-2019 Norwegian Sea 6.5 Individual 365 8 2.2 1.4 0.71 0.044-13 4.9 100
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study 2013-2016 Barents Sea 6.5 Individual 132 2 1.5 1.6 0.57 0.065-73 2.5 88
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study+follow-up monitoring 2013-2019 Total, all areas 6.5 Individual 506 11 2.2 1.4 0.67 0.044-73 4.7 100
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Baseline study+follow-up monitoring 2014-2016, 2019 Skagerrak, North Sea 6.5 Individual 8 2 25.0 5.5 3.5 0.29-23 23 25
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Baseline study+follow-up monitoring 2013-2015, 2017-2018 Norwegian Sea 6.5 Individual 272 54 19.9 4.4 2.7 0.084-45 14 32
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Baseline study 2013-2016 Barents Sea 6.5 Individual 125 7 5.6 3.0 1.7 0.13-64 7.5 47
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Baseline study+follow-up monitoring 2013-2019 Total, all areas 6.5 Individual 405 63 15.6 4.0 2.2 0.084-64 13 35
Atlantic herring (Clupea harengus) Fillet Follow-up monitoring 2017, 2020 North Sea 6.5 Individual 172 0 0 0.71 0.68 0.23-2.8 1.2 198
Atlantic herring (Clupea harengus) Fillet Follow-up monitoring 2017, 2020 Norwegian Sea 6.5 Individual 98 0 0 0.86 0.84 0.30-1.5 1.3 163
Atlantic horse mackerel (Trachurus trachurus) Fillet Spot-check monitoring 2017 North Sea 6.5 Individual 50 0 0 0.89 0.66 0.31-2.6 2.2 157
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2017-2020 Skagerrak 6.5 Individual 198 4 2.0 1.60 1.1 0.11-11 4.6 88
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2018, 2019 North Sea 6.5 Individual 100 0 0 0.74 0.65 0.23-3.2 1.9 189
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2017-2020 Norwegian Sea 6.5 Individual 222 0 0 0.59 0.55 0.14-1.6 0.93 237
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2019-2020 Barents Sea 6.5 Individual 60 0 0 0.58 0.54 0.29-1.5 0.88 241
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2017-2020 Total, all areas 6.5 Individual 580 4 0.69 0.97 0.64 0.11-11 2.9 144
Atlantic salmon (Salmo salar), wild Fillet Wild salmon project 2012 2012 Coast of Northern Norway 6.5 Individual 137 0 0 1.03 0.97 0.36-2.3 1.7 136
Atlantic wolffish (Anarhichas lupus) Fillet Baseline study 2018-2021 North Sea, Norwegian Sea, Barents Sea 6.5 Individual 176 0 0 0.18 0.12 0.032-0.72 0.57 778
Atlantic wolffish (Anarhichas lupus) Liver Baseline study 2018-2021 North Sea, Norwegian Sea, Barents Sea 20 Composite 9 0 0 3.48 2.81 1.1-9.8 9.8 40
Beaked redfish (Sebastes mentella) Fillet Baseline study 2016-2018 Norwegian Sea 6.5 Individual 77 0 0 0.92 0.61 0.12-6.2 3.0 153
Beaked redfish (Sebastes mentella) Fillet Baseline study 2016-2018 Barents Sea 6.5 Individual 447 0 0 0.56 0.42 0.088-3.2 1.4 249
Beaked redfish (Sebastes mentella) Fillet Baseline study 2016-2018 Total, all areas 6.5 Individual 524 0 0 0.61 0.43 0.088-6.2 1.5 228
Beaked redfish (Sebastes mentella) Liver Baseline study 2016-2018 Norwegian Sea 20 Composite 3 1 33 13 11 7.1-22 22 10
Beaked redfish (Sebastes mentella) Liver Baseline study 2016-2018 Barents Sea 20 Composite 18 0 0 6.0 5.5 2.8-16 16 23
Beaked redfish (Sebastes mentella) Liver Baseline study 2016-2018 Total, all areas 20 Composite 21 1 5 7.0 5.8 2.8-22 16 20
Blue ling (Molva dipterygia) Fillet NFSA Bycatch 2013-2015 2013-2015 Skagerrak, North Sea, Norwegian Sea 6.5 Composite 10 0 0 0.28 0.16 0.063-1.0 1 500
Blue ling (Molva dipterygia) Liver NFSA Bycatch 2013-2016 2013-2015 Skagerrak, North Sea, Norwegian Sea 20 Composite 9 9 100 75 55 32-240 240 2
Common ling (Molva molva) Fillet Baseline study 2014 Skagerrak 6.5 Composite 3 0 0 0.17 0.17 0.061-0.27 0.27 824
Common ling (Molva molva) Fillet Baseline study 2013-2014, 2016 North Sea 6.5 Composite 4 0 0 0.079 0.082 0.046-0.11 0.11 1772
Common ling (Molva molva) Fillet Baseline study 2014-2015 North Sea, fjords 6.5 Composite 8 0 0 0.18 0.17 0.10-0.35 0.35 778
Common ling (Molva molva) Fillet Baseline study 2013-2015 Norwegian Sea 6.5 Composite 22 0 0 0.085 0.072 0.047-0.16 0.13 1647
Common ling (Molva molva) Fillet Baseline study 2014 Barents Sea 6.5 Composite 4 0 0 0.064 0.063 0.055-0.077 0.077 2188
Common ling (Molva molva) Fillet Baseline study 2013-2015 Total, all areas 6.5 Composite 41 0 0 0.11 0.086 0.046-0.35 0.20 1273
Common ling (Molva molva) Fillet Spot check monitoring 2008-2009 Barents Sea, Norwegian Sea, Skagerrak, North Sea, Atlantic Ocean 6.5 Individual 167 0 0 0.11 0.082 0.026-0.65 0.23 1273
Common ling (Molva molva) Liver Baseline study 2014 Skagerrak 20 Composite 3 3 100 77 75 67-89 89 2
Common ling (Molva molva) Liver Baseline study 2013-2014, 2016 North Sea 20 Composite 4 3 75 24 23 16-33 33 6
Common ling (Molva molva) Liver Baseline study 2014-2015 North Sea, fjords 20 Composite 8 8 100 66 55 23-132 132 2
Common ling (Molva molva) Liver Baseline study 2013-2015 Norwegian Sea 20 Composite 22 16 73 28 27 14-49 43 5
Common ling (Molva molva) Liver Baseline study 2014 Barents Sea 20 Composite 4 3 75 23 22 16-31 31 6
Common ling (Molva molva) Liver Baseline study 2013-2015 Total, all areas 20 Composite 41 33 80 38 29 14-132 92 4
Edible crab (Cancer pagurus) (cooked) Brown meat Baseline study 2011-2012 2011-2012 Coast Hvaler to Vesterålen No ML Individual 435 NA NA 3.6 2.9 1.7-29 8.1 39
Edible crab (Cancer pagurus) (cooked) Brown meat Polluted fjords and harbours 2013, 2016 Different areas south of Norway No ML Composite 13 NA NA 5.2 4.5 2.4-8.1 8.1 27
Edible crab (Cancer pagurus) (cooked) Claw meat Polluted fjords and harbours 2013 Different areas in south of Norway 6.5 Composite 11 0   0.2 0.19 0.13-0.30 0.3 700
Edible crab (Cancer pagurus) (raw) Hepato-pancreas Spot check monitoring 2022 Austevoll, Hvaler, Vestfjorden No ML Composite 6 NA NA 8.1 7.4 4.1-12 13 17
Edible crab (Cancer pagurus) (raw) Hepato-pancreas Polluted fjords and harbours 2019 Bergen No ML Composite 8 NA NA 28.9 27 9.1-69 58 5
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 Skagerrak 6.5 Individual 25 0 0 0.49 0.42 0.14-0.99 0.95 288
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 North Sea 6.5 Individual 570 0 0 0.43 0.30 0.053-6.3 1.0 323
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 Norwegian Sea 6.5 Individual 183 0 0 0.81 0.59 0.13-4.1 2.1 172
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 Total, all areas 6.5 Individual 778 0 0 0.52 0.35 0.053-6.3 1.6 267
European hake (Merluccius merluccius) Liver Baseline study 2019-2021 Skagerrak 20 Composite 1 0 0 9.7 9.7 9.7-9.7 9.7 14
European hake (Merluccius merluccius) Liver Baseline study 2019-2021 North Sea 20 Composite 23 1 4.3 13 9.2 4.5-93 17 11
European hake (Merluccius merluccius) Liver Baseline study 2019-2021 Norwegian Sea 20 Composite 7 3 42.9 20 18 11-28 28 7
European hake (Merluccius merluccius) Liver Baseline study 2019-2021 Total, all areas 20 Composite 31 4 12.9 14 10 4.5-93 28 10
European lobster (Homarus gammarus) Muscle meat Spot-check monitoring 2017-2022 North Sea 6.5 Composite 20 0 0 0.12 0.086 0.08-0.44 0.31 1167
European plaice (Pleuronectes platessa) Fillet Baseline study 2016 Skagerrak 6.5 Composite 3 0 0 0.50 0.34 0.21-0.95 0.95 280
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2018 North Sea 6.5 Composite 15 0 0 0.37 0.40 0.14-0.60 0.60 378
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2017 Norwegian Sea 6.5 Composite 18 0 0 0.65 0.58 0.27-1.0 1.0 215
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2017 Barents Sea 6.5 Composite 18 0 0 0.52 0.50 0.22-1.3 1.3 269
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2018 Total, all areas 6.5 Composite 54 0 0 0.52 0.50 0.14-1.3 1.0 269
European plaice (Pleuronectes platessa) Fillet Spot-check monitoring 2007, 2014-2016 Barents Sea, Norwegian Sea, Skagerrak 6.5 Individual 102 0 0 0.39 0.27 0.048-2.1 0.96 359
European plaice (Pleuronectes platessa) Liver Baseline study 2016 Skagerrak 20 Composite 3 0 0 4.3 3.6 3.4-5.8 5.8 33
European plaice (Pleuronectes platessa) Liver Baseline study 2016-2018 North Sea 20 Composite 14 0 0 3.2 3.0 1.6-4.9 4.9 44
European plaice (Pleuronectes platessa) Liver Baseline study 2016-2017 Norwegian Sea 20 Composite 18 0 0 7.1 7.7 1.3-14 14 20
European plaice (Pleuronectes platessa) Liver Baseline study 2016-2017 Barents Sea 20 Composite 18 1 5.6 5.3 3.1 1.9-41 41 26
European plaice (Pleuronectes platessa) Liver Baseline study 2016-2018 Total, all areas 20 Composite 53 1 1.9 5.3 3.5 1.3-41 13 26
European sprat (Sprattus sprattus) Whole fish Miljøgifter i fisk og fiskevarer (NFSA 2010), Spot-check monitoring 2017 2010, 2017 Fjords + some in North Sea 6.5 Composite 47 0 0 1.60 1.70 0.39-2.7 2.5 88
Golden redfish (Sebastes norvegicus) Fillet Baseline study 2016-2018 Norwegian Sea 6.5 Individual 148 0 0 0.64 0.48 0.094-3.2 1.5 218
Golden redfish (Sebastes norvegicus) Fillet Baseline study 2016-2018 Barents Sea 6.5 Individual 74 0 0 0.50 0.37 0.14-2.6 1.7 282
Golden redfish (Sebastes norvegicus) Fillet Baseline study 2016-2018 Total, all areas 6.5 Individual 222 0 0 0.59 0.42 0.094-3.2 1.6 236
Golden redfish (Sebastes norvegicus) Liver Baseline study 2016-2018 Norwegian Sea 20 Composite 6 0 0 9.2 7.8 4.0-17 17 15
Golden redfish (Sebastes norvegicus) Liver Baseline study 2016-2018 Barents Sea 20 Composite 3 0 0 4.3 3.4 2.6-7.0 7.0 32
Golden redfish (Sebastes norvegicus) Liver Baseline study 2016-2018 Total, all areas 20 Composite 9 0 0 7.5 6.9 2.6-17 17 19
Greater argentine (Argentina silus) Fillet Baseline study 2018-2021 Osterfjorden 6.5 Individual 25 3 12 4.5 3.6 0.54-16.9 7.7 31
Greater argentine (Argentina silus) Fillet Baseline study 2018-2021 North Sea, Norwegian Sea, incl. Osterfjorden 6.5 Individual 290 3 1.0 0.97 0.58 0.036-16.9 3.5 144
Greater argentine (Argentina silus) Liver Baseline study 2018-2021 North Sea, Norwegian Sea, incl. Osterfjorden 20 Composite 12 0 0 3.7 2.68 0.95-11.8 11.8 38
Greater forkbeard (Physis blennoides) Fillet NFSA Bycatch 2013-2015 2013-2015 Total, all areas 6.5 Composite 11 0 0 0.059 0.054 0.037-0.10 0.081 2373
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2017-2021 Norwegian Sea 6.5 Individual 199 3 1.5 2.1 1.7 0.20-8.7 4.9 67
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2017, 2019-2021 Barents Sea 6.5 Individual 299 9 3.0 1.7 1.0 0.11-16 5.2 82
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2017-2021 Total, Norwegian Sea and Barents Sea 6.5 Individual 498 12 2.4 1.9 1.2 0.11-16 5.1 74
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2011, 2013 Barents Sea 6.5 Composite 31 0 0 1.5 1.3 0.93-2.6 2.6 93
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2011-2015 Norwegian Sea 6.5 Composite 81 6 7.4 3.1 2.5 0.69-13 8.7 45
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2011-2015 Total, Norwegian Sea and Barents Sea 6.5 Composite 112 6 5.4 2.7 1.9 0.69-13 7.4 52
Haddock (Melanogrammus aeglefinus) Fillet NFSA Bycatch 2013-2015 2013-2014 North Sea 6.5 Composite 12 0 0 0.080 0.072 0.058-0.11 0.11 1750
Haddock (Melanogrammus aeglefinus) Fillet NFSA Bycatch 2013-2015 2014-2015 Norwegian Sea 6.5 Composite 13 0 0 0.07 0.073 0.039-0.12 0.12 2000
Haddock (Melanogrammus aeglefinus) Fillet NFSA Bycatch 2013-2015 2014-2015 Barents Sea 6.5 Composite 12 0 0 0.053 0.052 0.039-0.085 0.085 2642
Haddock (Melanogrammus aeglefinus) Fillet NFSA Bycatch 2013-2015 2013-2015 Total, all areas 6.5 Composite 37 0 0 0.068 0.068 0.039-0.12 0.11 2059
Haddock (Melanogrammus aeglefinus) Liver Baseline study + NFSA Bycatch 2013-2015 2015-2017 Skagerrak 20 Individual + 12 Composite 66 59 89.4 40.6 30.0 11.8-202 131 3
Haddock (Melanogrammus aeglefinus) Liver Baseline study + NFSA Bycatch 2013-2015 2015-2019 North Sea 20 Individual + 10 Composite 304 176 57.9 29.6 22.2 4.22-176 82.8 5
Haddock (Melanogrammus aeglefinus) Liver Baseline study + NFSA Bycatch 2013-2016 2015-2017 Norwegian Sea 20 Individual + 13 Composite 272 125 46.0 23.6 19.0 5.98-97.0 55.8 6
Haddock (Melanogrammus aeglefinus) Liver Baseline study + NFSA Bycatch 2013-2017 2014-2018 Barents Sea 20 Individual + 35 Composite 610 109 17.9 14.6 11.5 229-188 32.2 10
Haddock (Melanogrammus aeglefinus) Liver Baseline study + NFSA Bycatch 2013-2018 2014-2019 Total, all areas 20 Individual + 70 Composite 1257 469 37.3 21.6 16.5 2.29-202 54.6 6
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2014-2022 North Sea and Skagerrak 6.5 Composite 16 0 0 0.28 0.29 0.11-0.44 0.44 500
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2012-2021 Norwegian Sea 6.5 Composite 25 0 0 0.32 0.25 0.084-1.1 0.52 438
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2007-2022 Barents Sea 6.5 Composite 46 0 0 0.15 0.12 0.020-0.45 0.38 933
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2007-2022 Total, all areas 6.5 Composite 87 0 0 0.22 0.20 0.020-1.1 0.45 636
Northern wolffish (Anarhichas denticulatus) Fillet NFSA Bycatch 2013-2015 2013-2015 Barents Sea 6.5 Composite 2 0 0 0.14 0.14 0.098-0.19 0.19 1000
Northern wolffish (Anarhichas denticulatus) Liver NFSA Bycatch 2013-2015 2013-2015 Barents Sea 6.5 Composite 2 0 0 8.8 8.8 5.4-12 12 16
Norway lobster (Nephrops norvegicus) Muscle Spot-check monitoring 2014, 2020-2021 North Sea, fjords 6.5 Composite 9 0 0 0.37 0.38 0.21-0.47 0.47 378
Pollack (Pollachius pollachius) Fillet Baseline study 2016 Skagerrak 6.5 Composite 3 0 0 0.23 0.27 0.078-0.35 0.35 609
Pollack (Pollachius pollachius) Fillet Baseline study 2016-2019 North Sea 6.5 Composite 15 0 0 0.078 0.069 0.025-0.21 0.21 1795
Pollack (Pollachius pollachius) Fillet Baseline study 2016-2019 Norwegian Sea 6.5 Composite 18 0 0 0.049 0.049 0.019-0.12 0.12 2857
Pollack (Pollachius pollachius) Fillet Baseline study 2016-2019 Total, all areas 6.5 Composite 36 0 0 0.076 0.051 0.019-0.35 0.27 1842
Pollack (Pollachius pollachius) Liver Baseline study 2016 Skagerrak 20 Composite 3 3 100 25 24 24-25 25 6
Pollack (Pollachius pollachius) Liver Baseline study 2016-2019 North Sea 20 Composite 15 10 67 26 24 12-46 46 5
Pollack (Pollachius pollachius) Liver Baseline study 2016-2019 Norwegian Sea 20 Composite 18 3 17 16 14 2.6-46 46 9
Pollack (Pollachius pollachius) Liver Baseline study 2016-2019 Total, all areas 20 Composite 36 16 44 21 19 8.6-46 46 7
Ratfish (Chimaera monstrosa) Fillet NFSA Bycatch 2013-2015+spot check 2015-2016 Faroe Islands+Lustrafjorden 6.5 Composite 12 0 0 0.37 0.4 0.083-0.5 0.47 378
Red king crab (Paralithodes camtchaticus) Claw meat Baseline study 2012 2012 Barents Sea 6.5 Individual 50 0 0 0.13 0.13 0.055-0.38 0.18 1077
Saithe (Pollachius virens) Fillet Follow-up monitoring 2019 Skagerrak 6.5 Individual 5 0 0 0.085 0.086 0.072-0.097 0.097 1645
Saithe (Pollachius virens) Fillet Follow-up monitoring 2019-2021 North Sea 6.5 Individual 15 0 0 0.051 0.051 0.029-0.090 0.090 2739
Saithe (Pollachius virens) Fillet Follow-up monitoring 2019-2021 Norwegian Sea 6.5 Individual 29 0 0 0.12 0.12 0.040-0.31 0.23 1156
Saithe (Pollachius virens) Fillet Follow-up monitoring 2019-2020 Barents Sea 6.5 Individual 20 0 0 0.097 0.097 0.067-0.13 0.13 1438
Saithe (Pollachius virens) Fillet Follow-up monitoring 2019-2021 Total, all areas 6.5 Individual 69 0 0 0.096 0.087 0.029-0.31 0.19 1452
Saithe (Pollachius virens) Liver Follow-up monitoring 2017-2019 Skagerrak 20 Individual 67 30 45 22 20 7.4-71 38 6
Saithe (Pollachius virens) Liver Follow-up monitoring 2017-2021 North Sea 20 Individual 119 9 8 13 11 2.9-83 22 11
Saithe (Pollachius virens) Liver Follow-up monitoring 2018-2021 Norwegian Sea 20 Individual 189 58 31 17 16 2.0-61 31 8
Saithe (Pollachius virens) Liver Follow-up monitoring 2017-2020 Barents Sea 20 Individual 170 0 0 9.0 8.7 4.0-16 14 16
Saithe (Pollachius virens) Liver Follow-up monitoring 2017-2021 Total, all areas 20 Individual 545 97 18 14 12 2.0-83 30 10
Snow crab (Chionoecetes opilio) Leg meat Spot-check monitoring 2015, 2016, 2018, 2020, 2021 Barents Sea 6.5 Composite 22 0 0 0.09 0.049 0.03-0.33 0.32 1556
Spiny dogfish (Squalus acanthias) Fillet Spot check monitoring 2007-2008 Skagerrak, Norskehavet 6.5 Individual 17 0 0 0.71 0.47 0.26-4.0 1.7 197
Spotted wolffish (Anarhichas minor) Fillet Baseline study 2018-2021 Total, Norwegian Sea and Barents Sea 6.5 Individual 250 1 0.4 0.88 0.69 0.057-7.1 2.3 159
Spotted wolffish (Anarhichas minor) Liver Baseline study 2018-2021 Total, Norwegian Sea and Barents Sea 20 Composite 9 0 0 5.44 4.88 1.78-10.7 10.7 26
Tusk (Brosme brosme) Fillet Baseline study 2013-2015 2013 Skagerrak 6.5 Composite 3 0 0 0.14 0.14 0.13-0.14 0.14 1000
Tusk (Brosme brosme) Fillet Baseline study 2013-2015 2013-2015 North Sea, open sea and coast 6.5 Composite 7 0 0 0.10 0.096 0.059-0.19 0.19 1400
Tusk (Brosme brosme) Filet Baseline study 2013-2015 2013-2015 North Sea, fjords 6.5 Composite 7 0 0 0.45 0.11 0.097-2.5 2.5 311
Tusk (Brosme brosme) Fillet Baseline study 2013-2015 2013-2015 Norwegian Sea 6.5 Composite 22 0 0 0.087 0.079 0.051-0.19 0.13 1609
Tusk (Brosme brosme) Fillet Baseline study 2013-2015 2014, 2016 Barents Sea 6.5 Composite 14 0 0 0.076 0.073 0.053-0.13 0.13 1842
Tusk (Brosme brosme) Fillet Baseline study 2013-2015 2013-2016 Total, all areas 6.5 Composite 53 0 0 0.140 0.085 0.051-2.5 0.19 1000
Tusk (Brosme brosme) Fillet Fjord survey 2015 Sognefjord 6.5 Individual 51 0 0 0.13 0.12 0.053-0.22 0.21 1077
Tusk (Brosme brosme) Fillet Polluted fjords and harbours 2007, 2009 Bergen 6.5 Composite 6 0 0 0.30 0.24 0.13-0.72 0.72 467
Tusk (Brosme brosme) Liver Baseline study 2013-2015 2013 Skagerrak 20 Composite 3 3 100 57.3 62 48-62 62 2
Tusk (Brosme brosme) Liver Baseline study 2013-2015, follow-up monitoring 2019-2021 2013-2015, 2019-2021 North Sea, open sea and coast 20 Composite 22 13 59 24.3 21 9.8-69 44 6
Tusk (Brosme brosme) Liver Baseline study 2013-2015, follow-up monitoring 2019-2021, spot-check monitoring 2021, MT fjorder og havner (NFSA 2017) 2013-2015, 2017, 2019-2021 North Sea, fjords 20 Composite 28 28 100 57 54 32-108 89 2
Tusk (Brosme brosme) Liver Baseline study 2013-2015, follow-up monitoring 2019-2021 2013-2015, 2019-2021 Norwegian Sea 20 Composite 46 33 72 31.1 28 4.3-83 61 5
Tusk (Brosme brosme) Liver Baseline study 2013-2015, follow-up monitoring 2019-2021 2014-2016 Barents Sea 20 Composite 14 2 14 15.4 15 15-26 26 9
Tusk (Brosme brosme) Liver Baseline study 2013-2015, follow-up monitoring 2019-2021, spot-check monitoring 2021, MT fjorder og havner (NFSA 2017) 2013-2015, 2017, 2019-2021 Total all areas 20 Composite 113 79 70 34.9   4.3-108   4
Tusk (Brosme brosme) Liver Polluted fjords and harbours 2015, 2017 Sognefjord, Førdefjord 20 Composite 11 11 100 57 56 36-108 108 2
Whiting (Merlangius merlangus) Fillet NFSA Bycatch 2013-2015 2013-2014 Norwegian Sea and North Sea 6.5 Composite 5 0 0 0.11 0.11 0.096-0.14 0.14 1273
Table A6. Concentrations of sum dioxins and dl-PCBs (PCDD/F+dl-PCB) for wild-caught fish and other seafood collected by IMR in various monitoring programs conducted in the period 2006-2022. The maximum level (ML) and the mean, median, minimum (min), maximum (max) and 95% percentile concentrations are given as ng TEQ/kg wet weight, and concentrations above the ML are indicated in red. For each species and tissue, the maximum amount in gram (g) that may be consumed before exceeding the tolerable weekly intake (TWI; 2 pg TEQ/kg bw) for a 70 kg person is given in the last column.

12 - Appendix Table A7 - PCB6

Name of Species English (Latin) Tissue Name of monitoring program for source data Sampling year(s) Geographical area ML Individual or composite samples No of samples analysed No of samples above ML Fraction exceeding the ML (%) Mean Median Min-max 95% Percentile
American plaice (Hippoglossus platessoides) Fillet Spot-check monitoring 2006 Barents Sea 75 Composite 5 0 0 0.70 0.69 0.60-0.80 0.8
Anglerfish (Lophius piscatorius) Fillet Spot check monitoring 2015 Skagerrak 75 Individual 25 0 0 0.38 0.34 0.085-1.0 0.89
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019 2016 Skagerrak 75 Composite 3 0 0 0.23 0.24 0.15-0.31 0.31
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019 2016-2019 North Sea 75 Composite 22 0 0 0.37 0.37 0.13-0.86 0.66
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019 2017-2019 Norwegian Sea 75 Composite 15 0 0 0.25 0.14 0.085-1.5 1.5
Anglerfish (Lophius piscatorius) Fillet Baseline study 2016-2019 2016-2019 Total, all areas 75 Composite 40 0 0 0.31 0.23 0.084-1.5 0.76
Anglerfish (Lophius piscatorius) Liver Baseline study 2016-2019, spot check monitoring 2015 2015-2016 Skagerrak 200 Composite 6 4 66.7 288 280 156-490 490
Anglerfish (Lophius piscatorius) Liver Baseline study 2016-2019 2016-2019 North Sea 200 Composite 22 13 59.1 212 238 20-449 354
Anglerfish (Lophius piscatorius) Liver Baseline study 2016-2019 2017-2019 Norwegian Sea 200 Composite 13 0 0 106 114 35-172 172
Anglerfish (Lophius piscatorius) Liver Baseline study 2016-2019, spot check monitoring 2015 2015-2019 Total, all areas 200 Composite 41 17 41.5 190 159 20-490 353
Atlantic bluefin tuna (Thunnus thynnus) Fatty muscle (o-toro) Spot-check monitoring 2018-2021 Skagerrak/North Sea/Norwegian Sea 75 Individual 6 6 100 180 163 95-327 327
Atlantic bluefin tuna (Thunnus thynnus) Lean muscle Spot-check monitoring 2018-2021 Skagerrak/North Sea/Norwegian Sea 75 Individual 15 0 0 48 48 21-73 73
Atlantic bluefin tuna (Thunnus thynnus) Red muscle Spot-check monitoring 2018-2021 Skagerrak/North Sea/Norwegian Sea 75 Individual 5 0 0 36 31 26-51 51
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 North Sea 75 Individual 45 0 0 0.24 0.20 0.10-0.62 0.53
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 Norwegian Sea 75 Individual 15 0 0 0.22 0.21 0.040-0.48 0.48
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 Barents Sea 75 Individual 45 0 0 0.11 0.11 0.046-0.28 0.21
Atlantic cod (Gadus morhua) Fillet Follow-up monitoring 2017-2021 Total, all areas 75 Individual 105 0 0 0.19 0.15 0.040-0.62 0.40
Atlantic cod (Gadus morhua) Fillet Polluted fjords and harbours 2015 Oslofjord 75 Composite 6 0 0 7.6 7.6 1.5-14 14
Atlantic cod (Gadus morhua) Liver Follow-up monitoring 2017-2021 North Sea 200 Individual 260 34 13.1 137 116 26-1826 284
Atlantic cod (Gadus morhua) Liver Follow-up monitoring 2017-2021 Norwegian Sea 200 Individual 61 9 14.8 123 117 16-419 254
Atlantic cod (Gadus morhua) Liver Follow-up monitoring 2017-2021 Barents Sea 200 Individual 308 0 0 41 33 9.9-187 92
Atlantic cod (Gadus morhua) Liver Follow-up monitoring 2017-2021 Total, all areas 200 Individual 629 43 6.8 89 63 9.9-1826 224
Atlantic cod (Gadus morhua) Liver Polluted fjords and harbours 2015-2017, 2019, 2021 Oslofjorden, Frænfjorden, Årdalsfjord, Repparfjord og Revsbotn, Førdefjorden, Bergen, Grenland/Kragerø, Ålesund 200 Composite+ 2 individual 66 49 74.2 857 453 93-5390 3300
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study+follow-up monitoring 2014-2016, 2019 Skagerrak, North Sea 75 Individual 9 1 11.1 21 6.2 0.52-110 110
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study+follow-up monitoring 2013-2015, 2017-2019 Norwegian Sea 75 Individual 365 2 0.5 9.5 5.2 0.10-77 35
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study 2013-2016 Barents Sea 75 Individual 132 2 1.5 10 4.7 0.25-400 18
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Baseline study+follow-up monitoring 2013-2019 Total, all areas 75 Individual 506 4 0.80 9.9 5 0.10-400 32
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Baseline study+follow-up monitoring 2014-2016, 2019 Skagerrak, North Sea 75 Individual 8 2 25.0 53 26 0.90-230 230
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Baseline study+follow-up monitoring 2013-2015, 2017-2018 Norwegian Sea 75 Individual 272 28 10.3 34 20 0.29-310 100
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Baseline study 2013-2016 Barents Sea 75 Individual 125 3 2.4 21 13 0.34-390 48
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Baseline study+follow-up monitoring 2013-2019 Total, all areas 75 Individual 405 33 8.1 30 17 0.29-390 93
Atlantic herring (Clupea harengus) Fillet Follow-up monitoring 2017, 2020 North Sea 75 Individual 172 0 0 3.5 3.3 0.58-9.7 6.1
Atlantic herring (Clupea harengus) Fillet Follow-up monitoring 2017, 2020 Norwegian Sea 75 Individual 98 0 0 5.7 5.5 1.6-12 9.7
Atlantic horse mackerel (Trachurus trachurus) Fillet Spot-check monitoring 2017 North Sea 75 Individual 50 0 0 8.8 7.7 2.4-20 17
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2017-2020 Skagerrak 75 Individual 198 1 0.50 11 6.5 0.36-162 32
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2018, 2019 North Sea 75 Individual 100 0 0 3.9 2.1 0.34-40 8
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2017-2020 Norwegian Sea 75 Individual 220 0 0 3.0 1.9 0.52-13 6.2
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2019-2020 Barents Sea 75 Individual 60 0 0 3.1 2.3 1.4-8.2 5.1
Atlantic mackerel (Scomber scombrus) Fillet Follow-up monitoring 2017-2020 Total, all areas 75 Individual 578 1 0.20 6.0 3.1 0.34-162 21
Atlantic salmon (Salmo salar), wild Fillet Wild salmon project 2012 2012 Coast of Northern Norway 75 Individual 137 0 0 6.6 6.5 2-14 10
Atlantic wolffish (Anarhichas lupus) Fillet Baseline study 2018-2021 North Sea, Norwegian Sea, Barents Sea 75 Individual 176 0 0 0.81 0.58 0.13-4.4 2.2
Atlantic wolffish (Anarhichas lupus) Liver Baseline study 2018-2021 North Sea, Norwegian Sea, Barents Sea 200 Composite 9 0 0 19.7 14 4.6-73.8 73.8
Beaked redfish (Sebastes mentella) Fillet Baseline study 2016-2018 Norwegian Sea 75 Individual 77 0 0 5.5 3.8 0.63-32 16
Beaked redfish (Sebastes mentella) Fillet Baseline study 2016-2018 Barents Sea 75 Individual 447 0 0 2.8 2.0 0.35-19 7.2
Beaked redfish (Sebastes mentella) Fillet Baseline study 2016-2018 Total, all areas 75 Individual 524 0 0 3.2 2.2 0.35-32 8.3
Beaked redfish (Sebastes mentella) Liver Baseline study 2016-2018 Norwegian Sea 200 Composite 3 0 0 82 81 34-131 131
Beaked redfish (Sebastes mentella) Liver Baseline study 2016-2018 Barents Sea 200 Composite 18 0 0 29 24 13-87 87
Beaked redfish (Sebastes mentella) Liver Baseline study 2016-2018 Total, all areas 200 Composite 21 0 0 37 29 13-131 87
Blue ling (Molva dipterygia) Fillet NFSA Bycatch 2013-2015 2013-2015 Skagerrak, North Sea, Norwegian Sea 75 Composite 10 0 0 2.5 0.73 0.42-12 12
Blue ling (Molva dipterygia) Liver NFSA Bycatch 2013-2015 2013-2015 Skagerrak, North Sea, Norwegian Sea 200 Composite 9 8 88.9 543 377 178-1975 1975
Common ling (Molva molva) Fillet Baseline study 2014 Skagerrak 75 Composite 3 0 0 1.3 1.5 0.27-2.2 2.2
Common ling (Molva molva) Fillet Baseline study 2013-2014, 2016 North Sea 75 Composite 4 0 0 1.0 0.43 0.31-3.0 3.0
Common ling (Molva molva) Fillet Baseline study 2014-2015 North Sea, fjords 75 Composite 8 0 0 2.1 1.5 1.1-4.5 4.5
Common ling (Molva molva) Fillet Baseline study 2013-2015 Norwegian Sea 75 Composite 22 0 0 0.69 0.49 0.18-2.3 1.6
Common ling (Molva molva) Fillet Baseline study 2014 Barents Sea 75 Composite 4 0 0 0.38 0.39 0.33-0.42 0.42
Common ling (Molva molva) Fillet Baseline study 2013-2015 Total, all areas 75 Composite 41 0 0 1.0 0.53 0.18-4.5 3.0
Common ling (Molva molva) Fillet Spot check monitoring 2008-2009 Barents Sea, Norwegian Sea, Skagerrak, North Sea, Atlantic Ocean 75 Individual 76 0 0 1.1 0.92 0.58-5.1 2.3
Common ling (Molva molva) Liver Baseline study 2014 Skagerrak 200 Composite 3 3 100 603 691 303-814 814
Common ling (Molva molva) Liver Baseline study 2013-2014, 2016 North Sea 200 Composite 4 3 75.0 245 220 135-405 405
Common ling (Molva molva) Liver Baseline study 2014-2015 North Sea, fjords 200 Composite 8 7 87.5 866 533 166-2206 2205
Common ling (Molva molva) Liver Baseline study 2013-2015 Norwegian Sea 200 Composite 22 13 59.1 232 226 107-398 356
Common ling (Molva molva) Liver Baseline study 2014 Barents Sea 200 Composite 4 2 50.0 183 184 116-249 249
Common ling (Molva molva) Liver Baseline study 2013-2015 Total, all areas 200 Composite 41 28 68.3 379 245 107-2206 814
Edible crab (Cancer pagurus) (cooked) Brown meat Baseline study 2011-2012 2011-2012 Coast Hvaler to Vesterålen No ML Individual 435 NA NA 13.4 9.1 3.7-129 38
Edible crab (Cancer pagurus) (cooked) Brown meat Polluted fjords and harbours 2013, 2016 Different areas in south of Norway No ML Composite 13 NA NA 48.5 22 7.3-142 138
Edible crab (Cancer pagurus) (cooked) Claw meat Polluted fjords and harbours 2013 Different areas in south of Norway 75.0 Composite 11 0 0 1.1 0.88 0.36-2.6 2.4
Edible crab (Cancer pagurus) (raw) Hepato-pancreas Spot check monitoring 2022 Austevoll, Hvaler, Vestfjorden No ML Composite 6 NA NA 32.9 27 16-71 64
Edible crab (Cancer pagurus) (raw) Hepato-pancreas Polluted fjords and harbours 2019 Bergen No ML Composite 8 NA NA 370 334 157-711 157
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 Skagerrak 75 Individual 25 0 0 3.5 2.6 0.91-8.5 7.9
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 North Sea 75 Individual 570 2 0.40 4.0 1.7 0.17-130 13
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 Norwegian Sea 75 Individual 183 0 0 7.4 4.6 0.23-57 23
European hake (Merluccius merluccius) Fillet Baseline study 2019-2021 Total, all areas 75 Individual 778 2 0.30 4.8 2.1 0.17-130 18
European hake (Merluccius merluccius) Liver Baseline study 2019-2021 Skagerrak 200 Composite 1 0 0 114 114 114 114
European hake (Merluccius merluccius) Liver Baseline study 2019-2021 North Sea 200 Composite 23 2 8.7 137 78 12-1428 212
European hake (Merluccius merluccius) Liver Baseline study 2019-2021 Norwegian Sea 200 Composite 7 4 57.1 225 200 105-356 356
European hake (Merluccius merluccius) Liver Baseline study 2019-2021 Total, all areas 200 Composite 31 6 19.4 156 89 12-1428 356
European lobster (Homarus gammarus) Muscle meat Spot-check monitoring 2017-2022 North Sea 75 Individual 20 0 0 0.48 0.27 0.08-2.38 1.65
European plaice (Pleuronectes platessa) Fillet Baseline study 2016 Skagerrak 75 Composite 3 0 0 1.5 1.1 0.83-2.4 2.4
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2018 North Sea 75 Composite 15 0 0 1.2 1.3 0.31-3.0 3.0
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2017 Norwegian Sea 75 Composite 18 0 0 3.7 3.3 1.4-6.1 6.1
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2017 Barents Sea 75 Composite 18 0 0 2.4 1.9 0.85-7.0 7.0
European plaice (Pleuronectes platessa) Fillet Baseline study 2016-2018 Total, all areas 75 Composite 54 0 0 2.5 1.9 0.31-7.0 6.0
European plaice (Pleuronectes platessa) Fillet Spot-check monitoring + Repparfjord 2007, 2014-2017 Barents Sea, Norwegian Sea, Skagerrak 75 Individual 102 0 0 1.6 1.3 0.12-11 4.2
European plaice (Pleuronectes platessa) Liver Baseline study 2016 Skagerrak 200 Composite 3 0 0 12 14 7.2-15 15
European plaice (Pleuronectes platessa) Liver Baseline study 2016-2018 North Sea 200 Composite 14 0 0 7.9 7.6 2.0-14 14
European plaice (Pleuronectes platessa) Liver Baseline study 2016-2017 Norwegian Sea 200 Composite 18 0 0 43 49 2.2-92 92
European plaice (Pleuronectes platessa) Liver Baseline study 2016-2017 Barents Sea 200 Composite 18 0 0 12 7.8 3.1-28 28
European plaice (Pleuronectes platessa) Liver Baseline study 2016-2018 Total, all areas 200 Composite 53 0 0 21 12 2.0-92 76
European sprat (Sprattus sprattus) Whole fish Miljøgifter i fisk og fiskevarer (NFSA 2010), Spot-check monitoring 2017 2010, 2017 Fjords + some in North Sea 75 Composite 46 0 0 9.6 10.4 1.6-17 16
Golden redfish (Sebastes norvegicus) Fillet Baseline study 2016-2018 Norwegian Sea 75 Individual 148 0 0 3.6 2.7 0.49-26 8.4
Golden redfish (Sebastes norvegicus) Fillet Baseline study 2016-2018 Barents Sea 75 Individual 74 0 0 2.4 1.3 0.45-15 11
Golden redfish (Sebastes norvegicus) Fillet Baseline study 2016-2018 Total, all areas 75 Individual 222 0 0 3.2 2.1 0.45-26 9.0
Golden redfish (Sebastes norvegicus) Liver Baseline study 2016-2018 Norwegian Sea 200 Composite 6 0 0 63 53 22-124 124
Golden redfish (Sebastes norvegicus) Liver Baseline study 2016-2018 Barents Sea 200 Composite 3 0 0 24 16 14-41 41
Golden redfish (Sebastes norvegicus) Liver Baseline study 2016-2018 Total, all areas 200 Composite 9 0 0 50 41 14-124 124
Greater argentine (Argentina silus) Fillet Baseline study 2018-2021 Osterfjorden 75 Individual 25 2 8.0 48 39 5.2-200 86.9
Greater argentine (Argentina silus) Fillet Baseline study 2018-2021 North Sea, Norwegian Sea, incl. Osterfjorden 75 Individual 290 2 0.70 6.2 2.0 0.19-200 34.9
Greater argentine (Argentina silus) Liver Baseline study 2018-2021 North Sea, Norwegian Sea, incl. Osterfjorden 200 Composite 12 0 0 20.6 8.1 3.3-138 138
Greater forkbeard (Physis blennoides) Fillet NFSA Bycatch 2013-2015 2013-2015 Total, all areas 75 Composite 11 0 0 0.26 0.22 0.079-0.49 0.49
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2017-2021 Norwegian Sea 75 Individual 199 2 1.0 14 10 1.0-82 41
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2017, 2019-2021 Barents Sea 75 Individual 299 3 1.0 11 5.9 0.36-167 35
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2017-2021 Total, Norwegian Sea and Barents Sea 75 Individual 498 5 1.0 12 7.2 0.36-167 39
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2011-2015 Norwegian Sea 75 Composite 81 3 3.7 24 20 6 - 91 65
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2011, 2013 Barents Sea 75 Composite 31 0 0 12 10 6 - 25 22
Greenland halibut (Reinhardtius hippoglossoides) Fillet Follow-up monitoring 2011-2015 Total, Norwegian Sea and Barents Sea 75 Composite 112 3 2.7 21 17 6 - 91 52
Haddock (Melanogrammus aeglefinus) Fillet NFSA Bycatch 2013-2015 2013-2014 North Sea 75 Composite 12 0 0 0.53 0.39 0.21-2.0 2.0
Haddock (Melanogrammus aeglefinus) Fillet NFSA Bycatch 2013-2015 2014-2015 Norwegian Sea 75 Composite 13 0 0 0.24 0.24 0.11-0.40 0.40
Haddock (Melanogrammus aeglefinus) Fillet NFSA Bycatch 2013-2015 2014-2015 Barents Sea 75 Composite 12 0 0 0.20 0.19 0.10-0.37 0.37
Haddock (Melanogrammus aeglefinus) Fillet NFSA Bycatch 2013-2015 2013-2015 Total, Norwegian Sea and Barents Sea 75 Composite 37 0 0 0.32 0.24 0.10-2.0 0.61
Haddock (Melanogrammus aeglefinus) Liver Baseline study + NFSA Bycatch 2013-2015 2015-2017 Skagerrak 200 Individual+ 70 Composite 66 21 31.8 187 145 62-750 440
Haddock (Melanogrammus aeglefinus) Liver Baseline study + NFSA Bycatch 2013-2015 2014-2019 North Sea 200 Individual+ 10 Composite 304 57 18.8 179 90.5 18-4700 639.5
Haddock (Melanogrammus aeglefinus) Liver Baseline study + NFSA Bycatch 2013-2016 2014-2017 Norwegian Sea 200 Individual+ 12 Composite 272 38 14.0 127 97.5 22-570 320
Haddock (Melanogrammus aeglefinus) Liver Baseline study + NFSA Bycatch 2013-2017 2014-2018 Barents Sea 200 Individual+ 13 Composite 610 22 3.6 72.2 57 6-770 180
Haddock (Melanogrammus aeglefinus) Liver Baseline study + NFSA Bycatch 2013-2018 2014-2019 Total, all areas 200 Individual+ 35 Composite 1257 140 11.1 116 75 6.0-4700 320
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2014-2022 North Sea with Skagerrak 75 Composite 20 0 0 0.81 0.72 0.26-1.5 1.5
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2012-2021 Norwegian Sea 75 Composite 25 0 0 0.80 0.74 0.28-2.6 1.4
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2007-2022 Barents Sea 75 Composite 46 0 0 0.45 0.33 0.058-1.4 1.1
Northern shrimp (Pandalus borealis) Muscle (cooked) Monitoring for management plans 2007-2022 Total, all areas 76 Composite 91 0 0 0.63 0.60 0.058-2.6 1.4
Northern wolffish (Anarhichas denticulatus) Fillet NFSA Bycatch 2013-2015 2013-2015 Barents Sea 75 Composite 2 0 0 0.96 0.96 0.74-1.2 1.2
Northern wolffish (Anarhichas denticulatus) Liver NFSA Bycatch 2013-2015 2013-2015 Barents Sea 200 Composite 2 0 0 69 69 49-89 89
Norway lobster (Nephrops norvegicus) Muscle Spot-check monitoring 2014, 2020-2021 North Sea, fjords 75 Composite 9 0 0 1.1 1.2 0.34-1.7 1.7
Pollack (Pollachius pollachius) Fillet Baseline study 2016 Skagerrak 75 Composite 3 0 0 0.21 0.20 0.18-0.24 0.24
Pollack (Pollachius pollachius) Fillet Baseline study 2016-2019 North Sea 75 Composite 15 0 0 0.23 0.18 0.060-0.60 0.60
Pollack (Pollachius pollachius) Fillet Baseline study 2016-2019 Norwegian Sea 75 Composite 18 0 0 0.13 0.10 0.035-0.60 0.60
Pollack (Pollachius pollachius) Fillet Baseline study 2016-2019 Total, all areas 75 Composite 36 0 0 0.18 0.15 0.035-0.60 0.60
Pollack (Pollachius pollachius) Liver Baseline study 2016 Skagerrak 200 Composite 3 1 33.3 202 195 186-223 223
Pollack (Pollachius pollachius) Liver Baseline study 2016-2019 North Sea 200 Composite 15 6 40.0 215 194 89-395 395
Pollack (Pollachius pollachius) Liver Baseline study 2016-2019 Norwegian Sea 200 Composite 18 1 5.6 89 74 41-281 281
Pollack (Pollachius pollachius) Liver Baseline study 2016-2019 Total, all areas 200 Composite 36 8 22.2 151 122 41-395 385
Ratfish (Chimaera monstrosa) Fillet NFSA Bycatch 2013-2015+spot check 2015-2016 Faroe Islands+Lustrafjorden 75 Composite 12 0   1.2 1.2 0.99-1.7 1.7
Red king crab (Paralithodes camtchaticus) Claw meat Baseline study 2012 2012 Barents Sea 75 Individual 50 0 0 0.23 0.2 0.08-0.59 0.54
Saithe (Pollachius virens) Fillet Follow-up monitoring 2019 Skagerrak 75 Individual 5 0 0 0.52 0.53 0.45-0.60 0.60
Saithe (Pollachius virens) Fillet Follow-up monitoring 2019-2021 North Sea 75 Individual 15 0 0 0.25 0.22 0.14-0.45 0.45
Saithe (Pollachius virens) Fillet Follow-up monitoring 2019-2021 Norwegian Sea 75 Individual 29 0 0 0.59 0.54 0.12-1.5 1.1
Saithe (Pollachius virens) Fillet Follow-up monitoring 2019-2020 Barents Sea 75 Individual 20 0 0 0.44 0.42 0.27-0.75 0.67
Saithe (Pollachius virens) Fillet Follow-up monitoring 2019-2021 Total, all areas 75 Individual 69 0 0 0.47 0.42 0.12-1.5 0.89
Saithe (Pollachius virens) Liver Follow-up monitoring 2017-2019 Skagerrak 200 Individual 67 14 20.9 157 141 51-624 260
Saithe (Pollachius virens) Liver Follow-up monitoring 2017-2021 North Sea 200 Individual 119 5 4.2 89 72 22-747 172
Saithe (Pollachius virens) Liver Follow-up monitoring 2018-2021 Norwegian Sea 200 Individual 187 18 9.6 117 108 18-476 224
Saithe (Pollachius virens) Liver Follow-up monitoring 2017-2020 Barents Sea 200 Individual 170 0 0 52 50 19-136 94
Saithe (Pollachius virens) Liver Follow-up monitoring 2017-2021 Total, all areas 200 Individual 543 37 6.8 96 78 18-747 224
Saithe (Pollachius virens) Liver Polluted fjords and harbours 2009 Bergen 200 Individual + 3 Composite 6 4 67 286 276 95-501 500
Snow crab (Chionoecetes opilio) Leg meat Spot-check monitoring 2015, 2016, 2018, 2020, 2021 Barents Sea 75 Composite 22 0 0 0.14 0.06 0.05-0.52 0.44
Spiny dogfish (Squalus acanthias) Fillet Spot check monitoring 2007-2008 Skagerrak, Norskehavet 75 Individual 17 1 5.9 23 14 5.3-87 57
Spotted wolffish (Anarhichas minor) Fillet Baseline study 2018-2021 Total, Norwegian Sea and Barents Sea 75 Individual 250 0 0 2.4 1.9 0.17-14.8 5.9
Spotted wolffish (Anarhichas minor) Liver Baseline study 2018-2021 Total, Norwegian Sea and Barents Sea 200 Composite 9 0 0 20.3 17.7 6.9-48.3 48.3
Tusk (Brosme brosme) Fillet Baseline study 2013 Skagerrak 75 Composite 3 0 0 2.7 2.5 1.8-3.9 3.9
Tusk (Brosme brosme) Fillet Baseline study 2013-2015 North Sea, open sea and coast 75 Composite 7 0 0 0.84 0.87 0.32-1.5 1.5
Tusk (Brosme brosme) Fillet Baseline study 2013-2015 North Sea, fjords 75 Composite 7 1 14.3 81 1.3 0.97-558 558
Tusk (Brosme brosme) Fillet Baseline study 2013-2015 Norwegian Sea 75 Composite 22 0 0 0.67 0.47 0.21-2.4 1.8
Tusk (Brosme brosme) Fillet Baseline study 2014, 2016 Barents Sea 75 Composite 14 0 0 0.29 0.29 0.16-0.40 0.40
Tusk (Brosme brosme) Fillet Baseline study 2013-206 Total, all areas 75 Composite 53 1 2 11.30 0.46 0..16-558 2.46
Tusk (Brosme brosme) Fillet Fjord survey 2015 Sognefjorden 75 Individual 51 0 0 0.84 0.72 0.12-3.8 2.1
Tusk (Brosme brosme) Fillet Polluted fjords and harbours 2007, 2009 Bergen 75 Composite 12 0 0 2.1 1.6 0.71-6.4 6.4
Tusk (Brosme brosme) Liver Baseline study 2013-2015 2013 Skagerrak 200 Composite 3 3 100 1181 1235 1063-1244 1244
Tusk (Brosme brosme) Liver Baseline study 2013-2015, follow-up monitoring 2019-2021 2013-2015, 2019-2021 North Sea, open sea and coast 200 Composite 22 15 68.2 305 307 67-565 537
Tusk (Brosme brosme) Liver Baseline study 2013-2015, follow-up monitoring 2019-2021, spot-check monitoring 2021, MT fjorder og havner (NFSA 2017) 2013-2015, 2017, 2019-2021 North Sea, fjords 200 Composite 28 28 100 775 593 250-1871 1414
Tusk (Brosme brosme) Liver Baseline study 2013-2015, follow-up monitoring 2019-2021 2013-2015, 2019-2021 Norwegian Sea 200 Composite 46 28 60.9 326 238 31-1214 935
Tusk (Brosme brosme) Liver Baseline study 2013-2015, follow-up monitoring 2019-2021 2014-2016 Barents Sea 200 Composite 14 4 28.6 132 100 52-281 281
Tusk (Brosme brosme) Liver Baseline study 2013-2015, follow-up monitoring 2019-2021, spot-check monitoring 2021, MT fjorder og havner (NFSA 2017) 2013-2015, 2017, 2019-2021 Total all areas 200 Composite 113 78 69.0 432   31-1871  
Tusk (Brosme brosme) Liver Polluted fjords and harbours 2015, 2017 Sognefjord, Førdefjord 200 Composite 11 11 100 647 560 250-1240 1240
Whiting (Merlangius merlangus) Fillet NFSA Bycatch 2013-2015 2013-2014 North Sea and Norwegian Sea 75 Composite 5 0 0 0.66 0.78 0.22-1.1 1.1
Table A7. Concentrations of sum non-dl PCBs (PCB6) for wild-caught fish and other seafood collected by IMR in various monitoring programs conducted in the period 2006-2022. The maximum level (ML) and the mean, median, minimum (min), maximum (max) and 95% percentile concentrations are given as µg/kg wet weight, and concentrations above the ML are indicated in red.

13 - Appendix Table A8 - PFAS

Name of Species English (Latin) Tissue Individual or composite sample Sampling year(s) Year of analysis Compound No of samples analysed LOQ % <LOQ Min Max Mean Amount (g) that may be consumed before exceeding TWI for sum 4 PFAS ML (from 2023) %>ML
Anglerfish (Lophius piscatorius) Fillet Individual (25) and Composite (19) 2015-2017 2016-2018 PFOS 44 1.8 100            
Anglerfish (Lophius piscatorius) Fillet Individual (25) and Composite (19) 2015-2017 2016-2018 PFOA 44 2.4 100            
Anglerfish (Lophius piscatorius) Fillet Individual (25) and Composite (19) 2015-2017 2016-2018 PFNA 44 1.8 100            
Anglerfish (Lophius piscatorius) Fillet Individual (25) and Composite (19) 2015-2017 2016-2018 PFHxS 44 1.8 100            
Anglerfish (Lophius piscatorius) Fillet Individual (25) and Composite (19) 2015-2017 2016-2018 Sum 4 PFAS (LB) 44 7.8 100       NA    
Anglerfish (Lophius piscatorius) Fillet Composite 2018 2018 PFOS 6 0.2 67 <0.2 0.4        
Anglerfish (Lophius piscatorius) Fillet Composite 2018 2018 PFOA 6 4.0 100            
Anglerfish (Lophius piscatorius) Fillet Composite 2018 2018 PFNA 6 0.2 100            
Anglerfish (Lophius piscatorius) Fillet Composite 2018 2018 PFHxS 6 1.0 100            
Anglerfish (Lophius piscatorius) Fillet Composite 2018 2018 Sum 4 PFAS (LB) 6 5.4 67 0 0.4   NA    
Anglerfish (Lophius piscatorius) Fillet Composite 2018-2019 2019 PFOS 9 0.2 100            
Anglerfish (Lophius piscatorius) Fillet Composite 2018-2019 2019 PFOA 9 0.6 100            
Anglerfish (Lophius piscatorius) Fillet Composite 2018-2019 2019 PFNA 9 0.2 100            
Anglerfish (Lophius piscatorius) Fillet Composite 2018-2019 2019 PFHxS 9 1.0 100            
Anglerfish (Lophius piscatorius) Fillet Composite 2018-2019 2019 Sum 4 PFAS (LB) 9 2.0 100        NA    
Atlantic bluefin tuna (Thunnus thynnus) Fillet Individual 2015 2016 PFOS 2 0.8 100            
Atlantic bluefin tuna (Thunnus thynnus) Fillet Individual 2015 2016 PFOA 2 1.3 100            
Atlantic bluefin tuna (Thunnus thynnus) Fillet Individual 2015 2016 PFNA 2 0.9 100            
Atlantic bluefin tuna (Thunnus thynnus) Fillet Individual 2015 2016 PFHxS 2 0.8 100            
Atlantic bluefin tuna (Thunnus thynnus) Fillet Individual 2015 2016 Sum 4 PFAS (LB) 2 3.8 100       NA    
Atlantic bluefin tuna (Thunnus thynnus) Fillet Different tissues from the same individual 2018 2018-2019 PFOS 10 0.2 60 <0.2 0.5        
Atlantic bluefin tuna (Thunnus thynnus) Fillet Different tissues from the same individual 2018 2018-2020 PFOA 10 0.6 100            
Atlantic bluefin tuna (Thunnus thynnus) Fillet Different tissues from the same individual 2018 2018-2021 PFNA 10 0.2 100            
Atlantic bluefin tuna (Thunnus thynnus) Fillet Different tissues from the same individual 2018 2018-2022 PFHxS 10 1 100            
Atlantic bluefin tuna (Thunnus thynnus) Fillet Different tissues from the same individual 2018 2018-2023 Sum 4 PFAS (LB) 10 2 60 0 0.5   NA    
Atlantic cod (Gadus morhua) Fillet Individual 2007-2009 2008-2009 PFOS 50 1 100            
Atlantic cod (Gadus morhua) Fillet Individual 2007-2009 2008-2009 PFOA 50 1 100            
Atlantic cod (Gadus morhua) Fillet Individual 2007-2009 2008-2009 PFNA 50 1 100            
Atlantic cod (Gadus morhua) Fillet Individual 2007-2009 2008-2009 PFHxS 0                
Atlantic cod (Gadus morhua) Fillet Individual 2007-2009 2008-2009 Sum 4 PFAS (LB) 0           NA    
Atlantic cod (Gadus morhua) Fillet Individual 2017 2018 PFOS 25 0.2 84 <0.2 0.3        
Atlantic cod (Gadus morhua) Fillet Individual 2017 2018 PFOA 25 4 100            
Atlantic cod (Gadus morhua) Fillet Individual 2017 2018 PFNA 25 0.2 100            
Atlantic cod (Gadus morhua) Fillet Individual 2017 2018 PFHxS 25 1 100            
Atlantic cod (Gadus morhua) Fillet Individual 2017 2018 Sum 4 PFAS (LB) 25 5.4 84 0 0.3   NA    
Atlantic cod (Gadus morhua) Fillet Individual 2017, 2021 2019, 2021 PFOS 10 0.2 70 <0.2 0.3        
Atlantic cod (Gadus morhua) Fillet Individual 2017, 2021 2019, 2021 PFOA 10 0.6 100            
Atlantic cod (Gadus morhua) Fillet Individual 2017, 2021 2019, 2021 PFNA 10 0.2 100            
Atlantic cod (Gadus morhua) Fillet Individual 2017, 2021 2019, 2021 PFHxS 10 1 100            
Atlantic cod (Gadus morhua) Fillet Individual 2017, 2021 2019, 2021 Sum 4 PFAS (LB) 10 2 70 0 0.3   NA    
Atlantic cod (Gadus morhua) Fillet Individual 2014-2016 2015-2017 PFOS 24 1.8 100            
Atlantic cod (Gadus morhua) Fillet Individual 2014-2016 2015-2017 PFOA 24 2.4 100            
Atlantic cod (Gadus morhua) Fillet Individual 2014-2016 2015-2017 PFNA 24 1.8 100            
Atlantic cod (Gadus morhua) Fillet Individual 2014-2016 2015-2017 PFHxS 24 1.8 100            
Atlantic cod (Gadus morhua) Fillet Individual 2014-2016 2015-2017 Sum 4 PFAS (LB) 24 7.8 100       NA    
Atlantic cod (Gadus morhua) Fillet Individual 2007 2007-2008 PFOS 59 1 44 <1 3.3 1.4      
Atlantic cod (Gadus morhua) Fillet Individual 2007 2007-2008 PFOA 59 1.5 100            
Atlantic cod (Gadus morhua) Fillet Individual 2007 2007-2008 PFNA 59 1.5 100            
Atlantic cod (Gadus morhua) Fillet Individual 2007 2007-2008 PFHxS 0                
Atlantic cod (Gadus morhua) Fillet Individual 2007 2007-2008 Sum 4 PFAS (LB) 0           NA    
Atlantic cod (Gadus morhua) Fillet Individual 2007 2007 PFOS 7 1 0 1 2 1.6      
Atlantic cod (Gadus morhua) Fillet Individual 2007 2007 PFOA 7 1 100            
Atlantic cod (Gadus morhua) Fillet Individual 2007 2007 PFNA 7 1.5 100            
Atlantic cod (Gadus morhua) Fillet Individual 2007 2007 PFHxS 0                
Atlantic cod (Gadus morhua) Fillet Individual 2007 2007 Sum 4 PFAS (LB) 7   0 1.0 2.0 1.6 193    
Atlantic cod (Gadus morhua) Fillet Individual 2022-2023 2023 PFOS 40   0 0.023 0.43 0.17   2.0 0
Atlantic cod (Gadus morhua) Fillet Individual 2022-2023 2023 PFOA 40   30 <0.0018 0.053 0.007   0.2 0
Atlantic cod (Gadus morhua) Fillet Individual 2022-2023 2023 PFNA 40   2.5 <0.0068 0.18 0.045   0.5 0
Atlantic cod (Gadus morhua) Fillet Individual 2022-2023 2023 PFHxS 40   82.5 <0.0018 0.02 0.0033   0.2 0
Atlantic cod (Gadus morhua) Fillet Individual 2022-2023 2023 Sum 4 PFAS (LB) 40     0.039 0.53 0.22 1400 2.0 0
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Individual 2013-2016 2013-2016 PFOS 380 0.8 87 <0.8 2        
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Individual 2013-2016 2013-2016 PFOA 380 1.3 100            
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Individual 2013-2016 2013-2016 PFNA 380 0.9 100            
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Individual 2013-2016 2013-2016 PFHxS 380 0.8 100            
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Individual 2013-2016 2013-2016 Sum 4 PFAS (LB) 380   87 0 2   NA    
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Individual 2008-2010, 2013 2010, 2013 PFOS 21 0.3 0 0.4 1.5 0.78      
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Individual 2008-2010, 2013 2010, 2013 PFOA 21 0.3 100            
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Individual 2008-2010, 2013 2010, 2013 PFNA 21 0.3 100            
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Individual 2008-2010, 2013 2010, 2013 PFHxS 21 0.3 100            
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Individual 2008-2010, 2013 2010, 2013 Sum 4 PFAS (LB) 21   0 0.4 1.5 0.78 395    
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Individual 2008 2010 PFOS 5 0.3 0 0.6 1.3 0.98      
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Individual 2008 2010 PFOA 5 0.3 100            
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Individual 2008 2010 PFNA 5 0.3 100            
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Individual 2008 2010 PFHxS 0                
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Individual 2008 2010 Sum 4 PFAS (LB) 5   0 0.6 1.3 0.98 314    
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Individual 2008 2010 PFOS 5 0.3 0 0.6 1.3 1.4      
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Individual 2008 2010 PFOA 5 0.3 100            
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Individual 2008 2010 PFNA 5 0.3 100            
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Individual 2008 2010 PFHxS 0                
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Individual 2008 2010 Sum 4 PFAS (LB) 5   0 0.6 1.3 1.4 220    
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Individual 2013-2016 2013-2016 PFOS 378 0.8 71 <0.8 5.2        
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Individual 2013-2016 2013-2016 PFOA 378 1.3 100            
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Individual 2013-2016 2013-2016 PFNA 378 0.9 99.7 <0.9 1.8        
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Individual 2013-2016 2013-2016 PFHxS 378 0.8 100            
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Individual 2013-2016 2013-2016 Sum 4 PFAS (LB) 378   71 0 7.0   NA    
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Individual 2008-2010, 2013 2010, 2013 PFOS 20 0.3 0 0.5 2 1.1      
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Individual 2008-2010, 2013 2010, 2013 PFOA 20 0.3 100            
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Individual 2008-2010, 2013 2010, 2013 PFNA 20 0.3 100            
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Individual 2008-2010, 2013 2010, 2013 PFHxS 20 0.3 100            
Atlantic halibut (Hippoglossus hippoglossus) Fillet, I-cut Individual 2008-2010, 2013 2010, 2013 Sum 4 PFAS (LB) 20   0 0.5 2 1.1 280    
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Individual 2019 2023 PFOS 18 0.5 0 0.09 1.30 0.46   2.0  
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Individual 2019 2023 PFOA 18 0.1 61 <0.0019 0.063 0.019   0.2  
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Individual 2019 2023 PFNA 18 0.1 0 0.019 0.65 0.2   0.5 11.1
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Individual 2019 2023 PFHxS 18 0.1 56 <0.004 0.22 0.07   0.2 5.6
Atlantic halibut (Hippoglossus hippoglossus) Fillet, B-cut Individual 2019 2023 Sum 4 PFAS (LB) 18 0.8   0.12 2.2 0.74 416 2.0 5.6
Atlantic herring (Clupea harengus) Fillet Individual 2017 2018 PFOS 72 0.2 100            
Atlantic herring (Clupea harengus) Fillet Individual 2017 2018 PFOA 72 4 100            
Atlantic herring (Clupea harengus) Fillet Individual 2017 2018 PFNA 72 0.2 100            
Atlantic herring (Clupea harengus) Fillet Individual 2017 2018 PFHxS 72 1 100            
Atlantic herring (Clupea harengus) Fillet Individual 2017 2018 Sum 4 PFAS (LB) 72 5.4 100       NA    
Atlantic herring (Clupea harengus) Fillet Individual 2017, 2020 2019, 2021 PFOS 75 0.2 100            
Atlantic herring (Clupea harengus) Fillet Individual 2017, 2020 2019, 2021 PFOA 75 0.6 100            
Atlantic herring (Clupea harengus) Fillet Individual 2017, 2020 2019, 2021 PFNA 75 0.2 100            
Atlantic herring (Clupea harengus) Fillet Individual 2017, 2020 2019, 2021 PFHxS 75 1 100            
Atlantic herring (Clupea harengus) Fillet Individual 2017, 2020 2019, 2021 Sum 4 PFAS (LB) 75 2 100       NA    
Atlantic herring (Clupea harengus) Fillet Individual 2017 2017 PFOS 76 0.8 100            
Atlantic herring (Clupea harengus) Fillet Individual 2017 2017 PFOA 76 1.3 100            
Atlantic herring (Clupea harengus) Fillet Individual 2017 2017 PFNA 76 0.9 100            
Atlantic herring (Clupea harengus) Fillet Individual 2017 2017 PFHxS 76 0.8 100            
Atlantic herring (Clupea harengus) Fillet Individual 2017 2017 Sum 4 PFAS (LB) 76 3.8 100       NA    
Atlantic herring (Clupea harengus) Fillet Individual 2007, 2009-2010 2010 PFOS 200 0.3 94 <0.3 0.6        
Atlantic herring (Clupea harengus) Fillet Individual 2007, 2009-2010 2010 PFOA 200 0.3 99 <0.3 0.4        
Atlantic herring (Clupea harengus) Fillet Individual 2007, 2009-2010 2010 PFNA 200 0.3 93 <0.3 0.3        
Atlantic herring (Clupea harengus) Fillet Individual 2007, 2009-2010 2010 PFHxS 200 0.3 100            
Atlantic herring (Clupea harengus) Fillet Individual 2007, 2009-2010 2010 Sum 4 PFAS (LB) 200 1.2 87 0 0.7 0.051 6039    
Atlantic herring (Clupea harengus) Fillet Individual 2014 2016 PFOS 125 0.2 98 <0.2 0.31        
Atlantic herring (Clupea harengus) Fillet Individual 2014 2016 PFOA 125 0.2 100            
Atlantic herring (Clupea harengus) Fillet Individual 2014 2016 PFNA 125 0.2 100            
Atlantic herring (Clupea harengus) Fillet Individual 2014 2016 PFHxS 125 0.3 100            
Atlantic herring (Clupea harengus) Fillet Individual 2014 2016 Sum 4 PFAS (LB) 125 0.9 98 0 0.31   NA    
Atlantic horse mackerel (Trachurus trachurus) Fillet Individual 2017 2017-2018 PFOS 50 0.8 56 <0.8 5.0        
Atlantic horse mackerel (Trachurus trachurus) Fillet Individual 2017 2017-2018 PFOA 50 1.3 100            
Atlantic horse mackerel (Trachurus trachurus) Fillet Individual 2017 2017-2018 PFNA 50 0.9 100            
Atlantic horse mackerel (Trachurus trachurus) Fillet Individual 2017 2017-2018 PFHxS 50 0.8 100            
Atlantic horse mackerel (Trachurus trachurus) Fillet Individual 2017 2017-2018 Sum 4 PFAS (LB) 50 3.8 56 0 5.0 0.98 NA    
Atlantic mackerel (Scomber scombrus) Fillet Individual 2008-2009, 2012 2010, 2012-2013 PFOS 149 0.3 85 <0.3 0.7        
Atlantic mackerel (Scomber scombrus) Fillet Individual 2008-2009, 2012 2010, 2012-2014 PFOA 149 0.3 99 <0.3 0.3        
Atlantic mackerel (Scomber scombrus) Fillet Individual 2008-2009, 2012 2010, 2012-2015 PFNA 149 0.3 100            
Atlantic mackerel (Scomber scombrus) Fillet Individual 2008-2009, 2012 2010, 2012-2016 PFHxS 149 0.3 100            
Atlantic mackerel (Scomber scombrus) Fillet Individual 2008-2009, 2012 2010, 2012-2017 Sum 4 PFAS (LB) 149 1.2 83 0 0.7   NA    
Atlantic mackerel (Scomber scombrus) Fillet Individual 2014-2015 2016 PFOS 75 0.2 44 <0.2 1.2 0.35      
Atlantic mackerel (Scomber scombrus) Fillet Individual 2014-2015 2016 PFOA 75 0.2 97 <0.2 0.27        
Atlantic mackerel (Scomber scombrus) Fillet Individual 2014-2015 2016 PFNA 75 0.2 100            
Atlantic mackerel (Scomber scombrus) Fillet Individual 2014-2015 2016 PFHxS 75 0.3 99 <0.3 0.4        
Atlantic mackerel (Scomber scombrus) Fillet Individual 2014-2015 2016 Sum 4 PFAS (LB) 75 0.9 44 0 1.4 0.26 1185    
Atlantic mackerel (Scomber scombrus) Fillet Individual 2016 2017 PFOS 150 0.8 99 <0.8 1.2        
Atlantic mackerel (Scomber scombrus) Fillet Individual 2016 2017 PFOA 150 1.3 100            
Atlantic mackerel (Scomber scombrus) Fillet Individual 2016 2017 PFNA 150 0.9 100            
Atlantic mackerel (Scomber scombrus) Fillet Individual 2016 2017 PFHxS 150 0.8 100            
Atlantic mackerel (Scomber scombrus) Fillet Individual 2016 2017 Sum 4 PFAS (LB) 150 3.8 99 0 1.2   NA    
Atlantic wolffish (Anarhichas lupus) Fillet Composite (6) and Individual (12) 2014, 2017 2015, 2017-2018 PFOS 18 1.8 100            
Atlantic wolffish (Anarhichas lupus) Fillet Composite (6) and Individual (12) 2014, 2018 2015, 2017-2019 PFOA 18 2.4 100            
Atlantic wolffish (Anarhichas lupus) Fillet Composite (6) and Individual (12) 2014, 2019 2015, 2017-2020 PFNA 18 1.8 100            
Atlantic wolffish (Anarhichas lupus) Fillet Composite (6) and Individual (12) 2014, 2020 2015, 2017-2021 PFHxS 18 1.8 100            
Atlantic wolffish (Anarhichas lupus) Fillet Composite (6) and Individual (12) 2014, 2021 2015, 2017-2022 Sum 4 PFAS (LB) 18 7.8 100       NA    
Atlantic wolffish (Anarhichas lupus) Fillet Individual 2017 2018 PFOS 12 0.2 100            
Atlantic wolffish (Anarhichas lupus) Fillet Individual 2017 2018 PFOA 12 4 100            
Atlantic wolffish (Anarhichas lupus) Fillet Individual 2017 2018 PFNA 12 0.2 83 <0.2 0.3        
Atlantic wolffish (Anarhichas lupus) Fillet Individual 2017 2018 PFHxS 12 1 100            
Atlantic wolffish (Anarhichas lupus) Fillet Individual 2017 2018 Sum 4 PFAS (LB) 12 5.4 83 0 0.3   NA    
Atlantic wolffish (Anarhichas lupus) Fillet Individual 2019-2020 2019-2020 PFOS 9 0.2 78 <0.2 0.4        
Atlantic wolffish (Anarhichas lupus) Fillet Individual 2019-2020 2019-2020 PFOA 9 0.6 100            
Atlantic wolffish (Anarhichas lupus) Fillet Individual 2019-2020 2019-2020 PFNA 9 0.2 100            
Atlantic wolffish (Anarhichas lupus) Fillet Individual 2019-2020 2019-2020 PFHxS 9 1 100            
Atlantic wolffish (Anarhichas lupus) Fillet Individual 2019-2020 2019-2020 Sum 4 PFAS (LB) 9 2 78 0 0.4   NA    
Beaked redfish (Sebastes mentella) Fillet Individual 2017-2018 2018 PFOS 9 0.2 100            
Beaked redfish (Sebastes mentella) Fillet Individual 2017-2018 2018 PFOA 9 4 100            
Beaked redfish (Sebastes mentella) Fillet Individual 2017-2018 2018 PFNA 9 0.2 100            
Beaked redfish (Sebastes mentella) Fillet Individual 2017-2018 2018 PFHxS 9 1 100            
Beaked redfish (Sebastes mentella) Fillet Individual 2017-2018 2018 Sum 4 PFAS (LB) 9 5.4 100       NA    
Beaked redfish (Sebastes mentella) Fillet Individual 2018 2018-2019 PFOS 8 0.2 63 <0.2 0.3        
Beaked redfish (Sebastes mentella) Fillet Individual 2018 2018-2019 PFOA 8 0.6 100            
Beaked redfish (Sebastes mentella) Fillet Individual 2018 2018-2019 PFNA 8 0.2 88 <0.2 2        
Beaked redfish (Sebastes mentella) Fillet Individual 2018 2018-2019 PFHxS 8 1 100            
Beaked redfish (Sebastes mentella) Fillet Individual 2018 2018-2019 Sum 4 PFAS (LB) 8 2 63 0 0.5   NA    
Beaked redfish (Sebastes mentella) Fillet Individual 2014, 2016-2018 2015-2019 PFOS 5 1.8 100            
Beaked redfish (Sebastes mentella) Fillet Individual 2014, 2016-2018 2015-2019 PFOA 5 2.4 100            
Beaked redfish (Sebastes mentella) Fillet Individual 2014, 2016-2018 2015-2019 PFNA 5 1.8 100            
Beaked redfish (Sebastes mentella) Fillet Individual 2014, 2016-2018 2015-2019 PFHxS 5 1.8 100            
Beaked redfish (Sebastes mentella) Fillet Individual 2014, 2016-2018 2015-2019 Sum 4 PFAS (LB) 5 7.8 100       NA    
Beaked redfish (Sebastes mentella) Fillet Individual 2018 2023 PFOS 20   50 0.063 0.2 0.12   2.0 0
Beaked redfish (Sebastes mentella) Fillet Individual 2018 2023 PFOA 20   75 <0.022 0.055     0.2 0
Beaked redfish (Sebastes mentella) Fillet Individual 2018 2023 PFNA 20   5 <0.022 0.16 0.095   0.5 0
Beaked redfish (Sebastes mentella) Fillet Individual 2018 2023 PFHxS 20   100 <0.021 <0.028     0.2 0
Beaked redfish (Sebastes mentella) Fillet Individual 2018 2023 Sum 4 PFAS (LB) 20     0 0.38 0.165 1867 2.0 0
Blue ling (Molva dipterygia) Fillet Individual (4) and Composite (5) 2013-2015 2015 PFOS 9 1.8 100            
Blue ling (Molva dipterygia) Fillet Individual (4) and Composite (5) 2013-2015 2015 PFOA 9 2.4 100            
Blue ling (Molva dipterygia) Fillet Individual (4) and Composite (5) 2013-2015 2015 PFNA 9 1.8 100            
Blue ling (Molva dipterygia) Fillet Individual (4) and Composite (5) 2013-2015 2015 PFHxS 9 1.8 100            
Blue ling (Molva dipterygia) Fillet Individual (4) and Composite (5) 2013-2015 2015 Sum 4 PFAS (LB) 9 7.8 100       NA    
Common ling (Molva molva) Fillet Individual 2008 2009 PFOS 25 1 100            
Common ling (Molva molva) Fillet Individual 2008 2009 PFOA 25 1 100            
Common ling (Molva molva) Fillet Individual 2008 2009 PFNA 25 1 100            
Common ling (Molva molva) Fillet Individual 2008 2009 PFHxS 0   100            
Common ling (Molva molva) Fillet Individual 2008 2009 Sum 4 PFAS (LB) 0   100       NA    
Common ling (Molva molva) Fillet Individual 2008 2010 PFOS 6 0.6 100            
Common ling (Molva molva) Fillet Individual 2008 2010 PFOA 6 0.6 100            
Common ling (Molva molva) Fillet Individual 2008 2010 PFNA 6 0.6 100            
Common ling (Molva molva) Fillet Individual 2008 2010 PFHxS 0                
Common ling (Molva molva) Fillet Individual 2008 2010 Sum 4 PFAS (LB) 0           NA    
Common ling (Molva molva) Fillet Individual 2013 2013 PFOS 3 0.6 100            
Common ling (Molva molva) Fillet Individual 2013 2013 PFOA 3 0.6 100            
Common ling (Molva molva) Fillet Individual 2013 2013 PFNA 3 0.6 100            
Common ling (Molva molva) Fillet Individual 2013 2013 PFHxS 3 0.6 100            
Common ling (Molva molva) Fillet Individual 2013 2013 Sum 4 PFAS (LB) 3 2.4 100       NA    
Common ling (Molva molva) Fillet Individual 2013-2016 2013-2016 PFOS 40 1.8 100            
Common ling (Molva molva) Fillet Individual 2013-2016 2013-2016 PFOA 40 2.4 100            
Common ling (Molva molva) Fillet Individual 2013-2016 2013-2016 PFNA 40 1.8 100            
Common ling (Molva molva) Fillet Individual 2013-2016 2013-2016 PFHxS 40 1.8 100            
Common ling (Molva molva) Fillet Individual 2013-2016 2013-2016 Sum 4 PFAS (LB) 40 7.8 100        NA    
Edible crab (Cancer pagurus) Claw meat (boiled) Individual 2011 2011-2012 PFOS 5 0.3 40 <0.3 1.1 0.54      
Edible crab (Cancer pagurus) Claw meat (boiled) Individual 2011 2011-2012 PFOA 5 0.3 60 <0.3 0.7        
Edible crab (Cancer pagurus) Claw meat (boiled) Individual 2011 2011-2012 PFNA 5 0.3 60 <0.3 0.4        
Edible crab (Cancer pagurus) Claw meat (boiled) Individual 2011 2011-2012 PFHxS 5 0.3 80 <0.3 0.8        
Edible crab (Cancer pagurus) Claw meat (boiled) Individual 2011 2011-2012 Sum 4 PFAS (LB) 5 1.2 40 0 1.7 1 308    
Edible crab (Cancer pagurus) Claw meat (boiled) Individual 2014 2015 PFOS 20 1.8 100            
Edible crab (Cancer pagurus) Claw meat (boiled) Individual 2014 2015 PFOA 20 2.4 100            
Edible crab (Cancer pagurus) Claw meat (boiled) Individual 2014 2015 PFNA 20 1.8 100            
Edible crab (Cancer pagurus) Claw meat (boiled) Individual 2014 2015 PFHxS 20 1.8 100            
Edible crab (Cancer pagurus) Claw meat (boiled) Individual 2014 2015 Sum 4 PFAS (LB) 20 7.8 100        NA    
Edible crab (Cancer pagurus) Brown meat (boiled) Individual 2011 2011-2012 PFOS 5 0.3 0 0.6 5.3 2.1      
Edible crab (Cancer pagurus) Brown meat (boiled) Individual 2011 2011-2012 PFOA 5 0.3 40 <0.3 2 1      
Edible crab (Cancer pagurus) Brown meat (boiled) Individual 2011 2011-2012 PFNA 5 0.3 40 <0.3 1.4 0.64      
Edible crab (Cancer pagurus) Brown meat (boiled) Individual 2011 2011-2012 PFHxS 5 0.3 60 <0.3 4.9        
Edible crab (Cancer pagurus) Brown meat (boiled) Individual 2011 2011-2012 Sum 4 PFAS (LB) 5 1.2 0 0.8 13.6 4.5 68    
Edible crab (Cancer pagurus) Brown meat (boiled) Individual 2014 2015 PFOS 12 1.8 83 <1.8 2        
Edible crab (Cancer pagurus) Brown meat (boiled) Individual 2014 2015 PFOA 12 2.4 100            
Edible crab (Cancer pagurus) Brown meat (boiled) Individual 2014 2015 PFNA 12 1.8 100            
Edible crab (Cancer pagurus) Brown meat (boiled) Individual 2014 2015 PFHxS 12 1.8 100            
Edible crab (Cancer pagurus) Brown meat (boiled) Individual 2014 2015 Sum 4 PFAS (LB) 12 7.8 83 0 2   NA    
Edible crab (Cancer pagurus) Brown meat (boiled) Individual 2014 2015 PFOS 8 1.8 88 <1.8 3        
Edible crab (Cancer pagurus) Brown meat (boiled) Individual 2014 2015 PFOA 8 1.8 100            
Edible crab (Cancer pagurus) Brown meat (boiled) Individual 2014 2015 PFNA 8 1.2 100            
Edible crab (Cancer pagurus) Brown meat (boiled) Individual 2014 2015 PFHxS 8 1.8 100            
Edible crab (Cancer pagurus) Brown meat (boiled) Individual 2014 2015 Sum 4 PFAS (LB) 8 6.6 88 0 3   NA    
European hake (Merluccius merluccius) Fillet Individual 2014 2015 PFOS 3 1.8 100            
European hake (Merluccius merluccius) Fillet Individual 2014 2015 PFOA 3 2.4 100            
European hake (Merluccius merluccius) Fillet Individual 2014 2015 PFNA 3 1.8 100            
European hake (Merluccius merluccius) Fillet Individual 2014 2015 PFHxS 3 1.8 100            
European hake (Merluccius merluccius) Fillet Individual 2014 2015 Sum 4 PFAS (LB) 3 7.8 100       NA    
European hake (Merluccius merluccius) Fillet Individual 2018 2018 PFOS 38 0.2 100            
European hake (Merluccius merluccius) Fillet Individual 2018 2018 PFOA 38 4 100            
European hake (Merluccius merluccius) Fillet Individual 2018 2018 PFNA 38 0.2 100            
European hake (Merluccius merluccius) Fillet Individual 2018 2018 PFHxS 38 1 100            
European hake (Merluccius merluccius) Fillet Individual 2018 2018 Sum 4 PFAS (LB) 38 5.4 100       NA    
European hake (Merluccius merluccius) Fillet Individual 2018-2020 2018-2021 PFOS 52 0.2 100            
European hake (Merluccius merluccius) Fillet Individual 2018-2020 2018-2021 PFOA 52 0.6 100            
European hake (Merluccius merluccius) Fillet Individual 2018-2020 2018-2021 PFNA 52 0.2 100            
European hake (Merluccius merluccius) Fillet Individual 2018-2020 2018-2021 PFHxS 52 1 100            
European hake (Merluccius merluccius) Fillet Individual 2018-2020 2018-2021 Sum 4 PFAS (LB) 52 2 100        NA    
European lobster (Homarus gammarus) Hepato-pancreas Composite 2017 2018 PFOS 5 3.0 100            
European lobster (Homarus gammarus) Hepato-pancreas Composite 2017 2018 PFOA 5 7.0 100            
European lobster (Homarus gammarus) Hepato-pancreas Composite 2017 2018 PFNA 5 0.5 60 <0.5 0.6 0.52      
European lobster (Homarus gammarus) Hepato-pancreas Composite 2017 2018 PFHxS 5 3.0 100            
European lobster (Homarus gammarus) Hepato-pancreas Composite 2017 2018 Sum 4 PFAS (LB) 5 13.5 60 0 0.6 0.2 NA    
European plaice (Pleuronectes platessa) Fillet Individual 2007 2008 PFOS 10 1 70 <1.0 2.2        
European plaice (Pleuronectes platessa) Fillet Individual 2007 2008 PFOA 10 1 100            
European plaice (Pleuronectes platessa) Fillet Individual 2007 2008 PFNA 10 1 100            
European plaice (Pleuronectes platessa) Fillet Individual 2007 2008 PFHxS 0                
European plaice (Pleuronectes platessa) Fillet Individual 2007 2008 Sum 4 PFAS (LB) 0   70 0 2.2   NA    
European plaice (Pleuronectes platessa) Fillet Composite (41) and Individual (98) 2014-2017 2016-2018 PFOS 139 1.8 88 <1.8 3        
European plaice (Pleuronectes platessa) Fillet Composite (41) and Individual (98) 2014-2017 2016-2018 PFOA 139 2.4 100            
European plaice (Pleuronectes platessa) Fillet Composite (41) and Individual (98) 2014-2017 2016-2018 PFNA 139 1.8 100            
European plaice (Pleuronectes platessa) Fillet Composite (41) and Individual (98) 2014-2017 2016-2018 PFHxS 139 1.8 100            
European plaice (Pleuronectes platessa) Fillet Composite (41) and Individual (98) 2014-2017 2016-2018 Sum 4 PFAS (LB) 139 7.8 88 0 3   NA    
European plaice (Pleuronectes platessa) Fillet Composite (4) and Individual (13) 2016-2018 2018-2019 PFOS 17 0.2 11 <0.2 1 0.49      
European plaice (Pleuronectes platessa) Fillet Composite (4) and Individual (13) 2016-2018 2018-2019 PFOA 17 0.6 100            
European plaice (Pleuronectes platessa) Fillet Composite (4) and Individual (13) 2016-2018 2018-2019 PFNA 17 0.2 71 <0.2 0.3        
European plaice (Pleuronectes platessa) Fillet Composite (4) and Individual (13) 2016-2018 2018-2019 PFHxS 17 1 100            
European plaice (Pleuronectes platessa) Fillet Composite (4) and Individual (13) 2016-2018 2018-2019 Sum 4 PFAS (LB) 17 2 11 0 1.3 0.54 570    
European plaice (Pleuronectes platessa) Fillet Individual 2017 2018 PFOS 11 0.2 18 <0.2 0.9 0.41      
European plaice (Pleuronectes platessa) Fillet Individual 2017 2018 PFOA 11 4 100            
European plaice (Pleuronectes platessa) Fillet Individual 2017 2018 PFNA 11 0.2 81 <0.2 0.2        
European plaice (Pleuronectes platessa) Fillet Individual 2017 2018 PFHxS 11 1 100            
European plaice (Pleuronectes platessa) Fillet Individual 2017 2018 Sum 4 PFAS (LB) 11 5.4 18 0 0.9 0.41 751    
European plaice (Pleuronectes platessa) Fillet Individual 2017 2023 PFOS 30   0 0.023 5.6 1.4   7.0 0
European plaice (Pleuronectes platessa) Fillet Individual 2017 2023 PFOA 30   6.7 <0.0019 0.069 0.012   1.0 0
European plaice (Pleuronectes platessa) Fillet Individual 2017 2023 PFNA 30   0 0.027 3.5 0.26   2.5 3.3
European plaice (Pleuronectes platessa) Fillet Individual 2017 2023 PFHxS 30   33 <0.0017 0.19 0.026   0.2 0
European plaice (Pleuronectes platessa) Fillet Individual 2017 2023 Sum 4 PFAS (LB) 30     0.11 9.1 1.7 181 8.0 3.3
European sprat (Sprattus sprattus) Whole fish Individual (29) and Composite (3) 2010 2010-2011 PFOS 32 0.3 9.4 <0.3 2.2 0.76      
European sprat (Sprattus sprattus) Whole fish Individual (29) and Composite (3) 2010 2010-2011 PFOA 32 0.3 94 <0.3 0.3        
European sprat (Sprattus sprattus) Whole fish Individual (29) and Composite (3) 2010 2010-2011 PFNA 32 0.3 100            
European sprat (Sprattus sprattus) Whole fish Individual (29) and Composite (3) 2010 2010-2011 PFHxS 32 0.3 100            
European sprat (Sprattus sprattus) Whole fish Individual (29) and Composite (3) 2010 2010-2011 Sum 4 PFAS (LB) 32 1.2 9.4 0 2.2 0.82 376    
European sprat (Sprattus sprattus) Whole fish Composite 2017 2018 PFOS 9 3.0 100            
European sprat (Sprattus sprattus) Whole fish Composite 2017 2018 PFOA 9 7.0 100            
European sprat (Sprattus sprattus) Whole fish Composite 2017 2018 PFNA 9 0.5 100            
European sprat (Sprattus sprattus) Whole fish Composite 2017 2018 PFHxS 9 3.0 100            
European sprat (Sprattus sprattus) Whole fish Composite 2017 2018 Sum 4 PFAS (LB) 9 13.5 100       NA    
European sprat (Sprattus sprattus) Whole fish Composite 2017 2018 PFOS 6 0.8 83 <0.8 1.2        
European sprat (Sprattus sprattus) Whole fish Composite 2017 2018 PFOA 6 1.3 100            
European sprat (Sprattus sprattus) Whole fish Composite 2017 2018 PFNA 6 0.9 100            
European sprat (Sprattus sprattus) Whole fish Composite 2017 2018 PFHxS 6 0.8 100            
European sprat (Sprattus sprattus) Whole fish Composite 2017 2018 Sum 4 PFAS (LB) 6 3.8 83 0 1.2   NA    
Golden redfish (Sebastes norvegicus) Fillet Individual 2014, 2016-2017 2015, 2017 PFOS 9 1.8 100            
Golden redfish (Sebastes norvegicus) Fillet Individual 2014, 2016-2017 2015, 2017 PFOA 9 2.4 100            
Golden redfish (Sebastes norvegicus) Fillet Individual 2014, 2016-2017 2015, 2017 PFNA 9 1.8 100            
Golden redfish (Sebastes norvegicus) Fillet Individual 2014, 2016-2017 2015, 2017 PFHxS 9 1.8 100            
Golden redfish (Sebastes norvegicus) Fillet Individual 2014, 2016-2017 2015, 2017 Sum 4 PFAS (LB) 9 7.8 100       NA    
Golden redfish (Sebastes norvegicus) Fillet Individual 2017-2018 2018 PFOS 3 0.2 100            
Golden redfish (Sebastes norvegicus) Fillet Individual 2017-2018 2018 PFOA 3 4 100            
Golden redfish (Sebastes norvegicus) Fillet Individual 2017-2018 2018 PFNA 3 0.2 100            
Golden redfish (Sebastes norvegicus) Fillet Individual 2017-2018 2018 PFHxS 3 1 100            
Golden redfish (Sebastes norvegicus) Fillet Individual 2017-2018 2018 Sum 4 PFAS (LB) 3 5.4 100       NA    
Golden redfish (Sebastes norvegicus) Fillet Individual 2018 2018-2019 PFOS 2 0.2 100            
Golden redfish (Sebastes norvegicus) Fillet Individual 2018 2018-2019 PFOA 2 0.6 100            
Golden redfish (Sebastes norvegicus) Fillet Individual 2018 2018-2019 PFNA 2 0.2 100            
Golden redfish (Sebastes norvegicus) Fillet Individual 2018 2018-2019 PFHxS 2 1 100            
Golden redfish (Sebastes norvegicus) Fillet Individual 2018 2018-2019 Sum 4 PFAS (LB) 2 2 100       NA    
Greater argentine (Argentina silus) Fillet Individual 2019-2020 2019-2021 PFOS 8 0.2 100            
Greater argentine (Argentina silus) Fillet Individual 2019-2020 2019-2021 PFOA 8 0.6 100            
Greater argentine (Argentina silus) Fillet Individual 2019-2020 2019-2021 PFNA 8 0.2 100            
Greater argentine (Argentina silus) Fillet Individual 2019-2020 2019-2021 PFHxS 8 1 100            
Greater argentine (Argentina silus) Fillet Individual 2019-2020 2019-2021 Sum 4 PFAS (LB) 8 2 100       NA    
Greater argentine (Argentina silus) Whole fish Individual 2015 2016 PFOS 9 0.8 100            
Greater argentine (Argentina silus) Whole fish Individual 2015 2016 PFOA 9 1.3 100            
Greater argentine (Argentina silus) Whole fish Individual 2015 2016 PFNA 9 0.9 100            
Greater argentine (Argentina silus) Whole fish Individual 2015 2016 PFHxS 9 0.8 100            
Greater argentine (Argentina silus) Whole fish Individual 2015 2016 Sum 4 PFAS (LB) 9 3.8 100       NA    
Greater forkbeard (Physis blennoides) Fillet Individual 2013 2013 PFOS 2 0.3 100            
Greater forkbeard (Physis blennoides) Fillet Individual 2013 2013 PFOA 2 0.3 100            
Greater forkbeard (Physis blennoides) Fillet Individual 2013 2013 PFNA 2 0.3 100            
Greater forkbeard (Physis blennoides) Fillet Individual 2013 2013 PFHxS 2 0.3 100            
Greater forkbeard (Physis blennoides) Fillet Individual 2013 2013 Sum 4 PFAS (LB) 2 1.2 100       NA    
Greater forkbeard (Physis blennoides) Fillet Individual 2014-2015 2015-2016 PFOS 9 1.8 100            
Greater forkbeard (Physis blennoides) Fillet Individual 2014-2015 2015-2016 PFOA 9 2.4 100            
Greater forkbeard (Physis blennoides) Fillet Individual 2014-2015 2015-2016 PFNA 9 1.8 100            
Greater forkbeard (Physis blennoides) Fillet Individual 2014-2015 2015-2016 PFHxS 9 1.8 100            
Greater forkbeard (Physis blennoides) Fillet Individual 2014-2015 2015-2016 Sum 4 PFAS (LB) 9 7.8 100        NA    
Greenland halibut (Reinhardtius hippoglossoides) Fillet Individual 2006-2008 2010 PFOS 100 0.3 20 <0.3 1.1 0.46      
Greenland halibut (Reinhardtius hippoglossoides) Fillet Individual 2006-2008 2010 PFOA 100 0.3 94 <0.3 0.8        
Greenland halibut (Reinhardtius hippoglossoides) Fillet Individual 2006-2008 2010 PFNA 100 0.3 100            
Greenland halibut (Reinhardtius hippoglossoides) Fillet Individual 2006-2008 2010 PFHxS 100 0.3 100            
Greenland halibut (Reinhardtius hippoglossoides) Fillet Individual 2006-2008 2010 Sum 4 PFAS (LB) 100 1.2 19 0 1.2 0.42 733    
Greenland halibut (Reinhardtius hippoglossoides) Fillet Individual (19) and Composite (2) 2016-2017 2017-2018 PFOS 21 0.8 100            
Greenland halibut (Reinhardtius hippoglossoides) Fillet Individual (19) and Composite (2) 2016-2017 2017-2018 PFOA 21 1.3 100            
Greenland halibut (Reinhardtius hippoglossoides) Fillet Individual (19) and Composite (2) 2016-2017 2017-2018 PFNA 21 0.9 100            
Greenland halibut (Reinhardtius hippoglossoides) Fillet Individual (19) and Composite (2) 2016-2017 2017-2018 PFHxS 21 0.8 100            
Greenland halibut (Reinhardtius hippoglossoides) Fillet Individual (19) and Composite (2) 2016-2017 2017-2018 Sum 4 PFAS (LB) 21   100       NA    
Greenland halibut (Reinhardtius hippoglossoides) Fillet Individual 2017 2018 PFOS 11 0.2 36 <0.2 0.5 0.28      
Greenland halibut (Reinhardtius hippoglossoides) Fillet Individual 2017 2018 PFOA 11 4.0 100            
Greenland halibut (Reinhardtius hippoglossoides) Fillet Individual 2017 2018 PFNA 11 0.2 100            
Greenland halibut (Reinhardtius hippoglossoides) Fillet Individual 2017 2018 PFHxS 11 1.0 100            
Greenland halibut (Reinhardtius hippoglossoides) Fillet Individual 2017 2018 Sum 4 PFAS (LB) 11   36 0 0.5 0.28 1100    
Greenland halibut (Reinhardtius hippoglossoides) Fillet Individual 2022-2023 2023 PFOS 20   0 0.08 0.35 0.21   2.0 0
Greenland halibut (Reinhardtius hippoglossoides) Fillet Individual 2022-2023 2023 PFOA 20   100 <0.0019 <0.0029     0.2 0
Greenland halibut (Reinhardtius hippoglossoides) Fillet Individual 2022-2023 2023 PFNA 20   0 0.011 0.18 0.055   0.5 0
Greenland halibut (Reinhardtius hippoglossoides) Fillet Individual 2022-2023 2023 PFHxS 20   20 <0.0023 0.013 0.0049   0.2 0
Greenland halibut (Reinhardtius hippoglossoides) Fillet Individual 2022-2023 2023 Sum 4 PFAS (LB) 20   0 0.091 0.42 0.27 1141 2.0 0
Haddock (Melanogrammus aeglefinus) Fillet Composite 2013 2013 PFOS 2 0.6 100            
Haddock (Melanogrammus aeglefinus) Fillet Composite 2013 2013 PFOA 2 0.6 100            
Haddock (Melanogrammus aeglefinus) Fillet Composite 2013 2013 PFNA 2 0.6 100            
Haddock (Melanogrammus aeglefinus) Fillet Composite 2013 2013 PFHxS 2 0.6 100            
Haddock (Melanogrammus aeglefinus) Fillet Composite 2013 2013 Sum 4 PFAS (LB) 2 2.4 100       NA    
Haddock (Melanogrammus aeglefinus) Fillet Composite (89) and Individual (1) 2014-2017 2015-2018 PFOS 90 1.8 99 <1.8 3.0        
Haddock (Melanogrammus aeglefinus) Fillet Composite (89) and Individual (1) 2014-2017 2015-2018 PFOA 90 2.4 100            
Haddock (Melanogrammus aeglefinus) Fillet Composite (89) and Individual (1) 2014-2017 2015-2018 PFNA 90 1.8 99 <1.8 2.0        
Haddock (Melanogrammus aeglefinus) Fillet Composite (89) and Individual (1) 2014-2017 2015-2018 PFHxS 90 1.8 100            
Haddock (Melanogrammus aeglefinus) Fillet Composite (89) and Individual (1) 2014-2017 2015-2018 Sum 4 PFAS (LB) 90 7.8 99 0 5.0   NA    
Haddock (Melanogrammus aeglefinus) Fillet Composite 2018-2019 2018-2019 PFOS 2 0.2 100            
Haddock (Melanogrammus aeglefinus) Fillet Composite 2018-2019 2018-2019 PFOA 2 4.0/0.6 100            
Haddock (Melanogrammus aeglefinus) Fillet Composite 2018-2019 2018-2019 PFNA 2 0.2 50 <0.2 0.3        
Haddock (Melanogrammus aeglefinus) Fillet Composite 2018-2019 2018-2019 PFHxS 2 1.0 100            
Haddock (Melanogrammus aeglefinus) Fillet Composite 2018-2019 2018-2019 Sum 4 PFAS (LB) 2 5.4/2.0 50 0.0 0.3 0.15 NA (only 2 fish and only 1 above LOQ)    
Haddock (Melanogrammus aeglefinus) Fillet Individual 2016, 2018-2019 2023 PFOS 30   0 0.060 0.30 0.176   2.0 0
Haddock (Melanogrammus aeglefinus) Fillet Individual 2016, 2018-2020 2023 PFOA 30   0 0.003 0.096 0.025   0.2 0
Haddock (Melanogrammus aeglefinus) Fillet Individual 2016, 2018-2021 2023 PFNA 30   0 0.0099 0.48 0.155   0.5 0
Haddock (Melanogrammus aeglefinus) Fillet Individual 2016, 2018-2022 2023 PFHxS 30   67 <0.0021 0.054 0.0088   0.2 0
Haddock (Melanogrammus aeglefinus) Fillet Individual 2016, 2018-2023 2023 Sum 4 PFAS (LB) 30     0.078 0.88 0.361 853 2.0 0
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2008-2009 2009 PFOS 4 1 0 1.3 4.1 2.2      
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2008-2009 2009 PFOA 4 1 100            
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2008-2009 2009 PFNA 4 1 100            
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2008-2009 2009 PFHxS 0                
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2008-2009 2009 Sum 4 PFAS (LB) 0   0 1.3 4.1 2.2 140    
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2012-2013 2012-2013 PFOS 11 0.6 0 0.7 2.3 1.5      
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2012-2013 2012-2013 PFOA 11 0.6 100            
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2012-2013 2012-2013 PFNA 11 0.6 100            
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2012-2013 2012-2013 PFHxS 11 0.6 100            
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2012-2013 2012-2013 Sum 4 PFAS (LB) 11 2.4 0 0.7 2.3 1.5 205    
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2013-2015 2014-2018 PFOS 29 1.8 79 <1.8 4        
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2013-2015 2014-2018 PFOA 29 2.4 100            
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2013-2015 2014-2018 PFNA 29 1.8 100            
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2013-2015 2014-2018 PFHxS 29 1.8 100            
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2013-2015 2014-2018 Sum 4 PFAS (LB) 29 7.8 79 0 4   NA    
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2018 2018 PFOS 6 0.2 0 0.4 0.8 0.62      
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2018 2018 PFOA 6 4 100            
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2018 2018 PFNA 6 0.2 71 <0.2 0.3        
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2018 2018 PFHxS 6 1 100            
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2018 2018 Sum 4 PFAS (LB) 6 5.4 0 0.4 1 0.77 400    
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2016-2019 2018-2020 PFOS 19 0.2 0 0.2 5 1.2      
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2016-2019 2018-2020 PFOA 19 0.6 100            
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2016-2019 2018-2020 PFNA 19 0.2 47 <0.2 1.1 0.31      
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2016-2019 2018-2020 PFHxS 19 1 58 <1 6        
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2016-2019 2018-2020 Sum 4 PFAS (LB) 19 2 0 0.2 9.7 2.8 112    
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2020-2021 2020-2021 PFOS 13 1 54 <1.0 3.3        
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2020-2021 2020-2021 PFOA 13 0.7 100            
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2020-2021 2020-2021 PFNA 13 0.5 92 <0.5 0.6        
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2020-2021 2020-2021 PFHxS 13 1 69 <1 2.5        
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2020-2021 2020-2021 Sum 4 PFAS (LB) 13 3.2 38 0 3.7 1.2 252    
Northern shrimp (Pandalus borealis) Peeled shrimp (boiled) Individual 2007-2009 2009 PFOS 12 1 8 <1.0 10 3.2      
Northern shrimp (Pandalus borealis) Peeled shrimp (boiled) Individual 2007-2009 2009 PFOA 12 1 92 <1.0 1.3        
Northern shrimp (Pandalus borealis) Peeled shrimp (boiled) Individual 2007-2009 2009 PFNA 12 1 85 <1.0 2.6        
Northern shrimp (Pandalus borealis) Peeled shrimp (boiled) Individual 2007-2009 2009 PFHxS 0                
Northern shrimp (Pandalus borealis) Peeled shrimp (boiled) Individual 2007-2009 2009 Sum 4 PFAS (LB) 12   8 0 14 3.6 86    
Northern shrimp (Pandalus borealis) Peeled shrimp (boiled) Individual 2012-2013 2012-2013 PFOS 11 0.6 9 <0.6 1.8 1.1      
Northern shrimp (Pandalus borealis) Peeled shrimp (boiled) Individual 2012-2013 2012-2013 PFOA 11 0.6 100            
Northern shrimp (Pandalus borealis) Peeled shrimp (boiled) Individual 2012-2013 2012-2013 PFNA 11 0.6 100            
Northern shrimp (Pandalus borealis) Peeled shrimp (boiled) Individual 2012-2013 2012-2013 PFHxS 11 0.6 100            
Northern shrimp (Pandalus borealis) Peeled shrimp (boiled) Individual 2012-2013 2012-2013 Sum 4 PFAS (LB) 11 2.4 9 0 1.8 1.1 280    
Northern shrimp (Pandalus borealis) Peeled shrimp (boiled) Individual 2013-2017 2014-2018 PFOS 30 1.8 80 <1.8 3.7        
Northern shrimp (Pandalus borealis) Peeled shrimp (boiled) Individual 2013-2017 2014-2018 PFOA 30 2.4 100            
Northern shrimp (Pandalus borealis) Peeled shrimp (boiled) Individual 2013-2017 2014-2018 PFNA 30 1.8 100            
Northern shrimp (Pandalus borealis) Peeled shrimp (boiled) Individual 2013-2017 2014-2018 PFHxS 30 1.8 100            
Northern shrimp (Pandalus borealis) Peeled shrimp (boiled) Individual 2013-2017 2014-2018 Sum 4 PFAS (LB) 30 7.8 80 0 3.7   NA    
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2022-2023 2023 PFOS 12   0 0.79 1.5 1.1   NA  
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2022-2023 2023 PFOA 12   17 <0.002 0.18 0.079   NA  
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2022-2023 2023 PFNA 12   0 0.17 0.48 0.28   NA  
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2022-2023 2023 PFHxS 12   17 <0.0081 0.027 0.015   NA  
Northern shrimp (Pandalus borealis) Whole shrimp (boiled) Individual 2022-2023 2023 Sum 4 PFAS (LB) 12     1 1.8 1.4 220 NA  
Northern shrimp (Pandalus borealis) Peeled shrimp (boiled) Individual 2022-2023 2023 PFOS 6   0 0.002 0.8 0.62   3.0 0
Northern shrimp (Pandalus borealis) Peeled shrimp (boiled) Individual 2022-2023 2023 PFOA 6   0 0.015 0.086 0.046   0.7 0
Northern shrimp (Pandalus borealis) Peeled shrimp (boiled) Individual 2022-2023 2023 PFNA 6   0 0.095 0.24 0.16   1.0 0
Northern shrimp (Pandalus borealis) Peeled shrimp (boiled) Individual 2022-2023 2023 PFHxS 6   17 <0.0027 0.12 0.026   1.5 0
Northern shrimp (Pandalus borealis) Peeled shrimp (boiled) Individual 2022-2023 2023 Sum 4 PFAS (LB) 6     0.15 1.1 0.83 371 5.0 0
Pollack (Pollachius pollachius) Fillet Individual 2014, 2016-2017 2015, 2017 PFOS 18 1.8 100            
Pollack (Pollachius pollachius) Fillet Individual 2014, 2016-2017 2015, 2017 PFOA 18 2.4 100            
Pollack (Pollachius pollachius) Fillet Individual 2014, 2016-2017 2015, 2017 PFNA 18 1.8 100            
Pollack (Pollachius pollachius) Fillet Individual 2014, 2016-2017 2015, 2017 PFHxS 18 1.8 100            
Pollack (Pollachius pollachius) Fillet Individual 2014, 2016-2017 2015, 2017 Sum 4 PFAS (LB) 18 7.8 100       NA    
Pollack (Pollachius pollachius) Fillet Individual 2018 2018 PFOS 15 0.2 80 <0.2 0.4        
Pollack (Pollachius pollachius) Fillet Individual 2018 2018 PFOA 15 4 100            
Pollack (Pollachius pollachius) Fillet Individual 2018 2018 PFNA 15 0.2 100            
Pollack (Pollachius pollachius) Fillet Individual 2018 2018 PFHxS 15 1 100            
Pollack (Pollachius pollachius) Fillet Individual 2018 2018 Sum 4 PFAS (LB) 15 5.4 80 0 0.4   NA    
Pollack (Pollachius pollachius) Fillet Individual 2019 2019-2020 PFOS 9 0.2 67 <0.2 0.9        
Pollack (Pollachius pollachius) Fillet Individual 2019 2019-2020 PFOA 9 0.6 100            
Pollack (Pollachius pollachius) Fillet Individual 2019 2019-2020 PFNA 9 0.2 100            
Pollack (Pollachius pollachius) Fillet Individual 2019 2019-2020 PFHxS 9 1 100            
Pollack (Pollachius pollachius) Fillet Individual 2019 2019-2020 Sum 4 PFAS (LB) 9 2 67 0 0.9   NA    
Ratfish (Chimaera monstrosa) Fillet Composite 2015 2015 PFOS 2 1.8 100            
Ratfish (Chimaera monstrosa) Fillet Composite 2015 2015 PFOA 2 2.4 100            
Ratfish (Chimaera monstrosa) Fillet Composite 2015 2015 PFNA 2 1.8 100            
Ratfish (Chimaera monstrosa) Fillet Composite 2015 2015 PFHxS 2 1.8 100            
Ratfish (Chimaera monstrosa) Fillet Composite 2015 2015 Sum 4 PFAS (LB) 2 7.8 100        NA    
Red king crab (Paralithodes camtchaticus) Claw meat Individual 2012 2013 PFOS 45 0.6 100            
Red king crab (Paralithodes camtchaticus) Claw meat Individual 2012 2013 PFOA 45 0.6 100            
Red king crab (Paralithodes camtchaticus) Claw meat Individual 2012 2013 PFNA 45 0.6 100            
Red king crab (Paralithodes camtchaticus) Claw meat Individual 2012 2013 PFHxS 45 0.6 100            
Red king crab (Paralithodes camtchaticus) Claw meat Individual 2012 2013 Sum 4 PFAS (LB) 45 2.4 100        NA    
Saithe (Pollachius virens) Fillet Individual 2017 2017-2018 PFOS 45 1.8 100            
Saithe (Pollachius virens) Fillet Individual 2017 2017-2018 PFOA 45 2.4 100            
Saithe (Pollachius virens) Fillet Individual 2017 2017-2018 PFNA 45 1.8 100            
Saithe (Pollachius virens) Fillet Individual 2017 2017-2018 PFHxS 45 1.8 100            
Saithe (Pollachius virens) Fillet Individual 2017 2017-2018 Sum 4 PFAS (LB) 45 7.8 100       NA    
Saithe (Pollachius virens) Fillet Individual 2021 2021 PFOS 5 0.2 0 0.2 0.6 0.34      
Saithe (Pollachius virens) Fillet Individual 2021 2021 PFOA 5 0.6 100            
Saithe (Pollachius virens) Fillet Individual 2021 2021 PFNA 5 0.2 100            
Saithe (Pollachius virens) Fillet Individual 2021 2021 PFHxS 5 1 100            
Saithe (Pollachius virens) Fillet Individual 2021 2021 Sum 4 PFAS (LB) 5 2 0 0.2 0.6 0.34 906    
Saithe (Pollachius virens) Fillet Individual 2022-2023 2023 PFOS 30   0 0.021 0.35 0.13   2.0 0
Saithe (Pollachius virens) Fillet Individual 2022-2023 2023 PFOA 30   53 <0.0017 0.01 0.003   0.2 0
Saithe (Pollachius virens) Fillet Individual 2022-2023 2023 PFNA 30   0 <0.003 0.051 0.018   0.5 0
Saithe (Pollachius virens) Fillet Individual 2022-2023 2023 PFHxS 30   87 <0.0017 0.01 0.0039   0.2 0
Saithe (Pollachius virens) Fillet Individual 2022-2023 2023 Sum 4 PFAS (LB) 30     0.026 0.38 0.15 2053 2.0 0
Snow crab (Chionoecetes opilio) Leg meat Composite (4) and Individual (25) 2014, 2016 2016-2017 PFOS 29 1.8 100            
Snow crab (Chionoecetes opilio) Leg meat Composite (4) and Individual (25) 2014, 2016 2016-2017 PFOA 29 2.4 97 <2.4 2.9        
Snow crab (Chionoecetes opilio) Leg meat Composite (4) and Individual (25) 2014, 2016 2016-2017 PFNA 29 1.8 100            
Snow crab (Chionoecetes opilio) Leg meat Composite (4) and Individual (25) 2014, 2016 2016-2017 PFHxS 29 1.8 100            
Snow crab (Chionoecetes opilio) Leg meat Composite (4) and Individual (25) 2014, 2016 2016-2017 Sum 4 PFAS (LB) 29 7.8 97 0 2.9   NA    
Spiny dogfish (Squalus acanthias) Fillet Individual 2007 2008 PFOS 5 1 100            
Spiny dogfish (Squalus acanthias) Fillet Individual 2007 2008 PFOA 5 1 100            
Spiny dogfish (Squalus acanthias) Fillet Individual 2007 2008 PFNA 5 1 100            
Spiny dogfish (Squalus acanthias) Fillet Individual 2007 2008 PFHxS 0                
Spiny dogfish (Squalus acanthias) Fillet Individual 2007 2008 Sum 4 PFAS (LB) 0            NA    
Spotted wolffish (Anarhichas minor) Fillet Individual 2014 2015 PFOS 3 1.8 100            
Spotted wolffish (Anarhichas minor) Fillet Individual 2014 2015 PFOA 3 2.4 100            
Spotted wolffish (Anarhichas minor) Fillet Individual 2014 2015 PFNA 3 1.8 100            
Spotted wolffish (Anarhichas minor) Fillet Individual 2014 2015 PFHxS 3 1.8 100            
Spotted wolffish (Anarhichas minor) Fillet Individual 2014 2015 Sum 4 PFAS (LB) 3 7.8 100       NA    
Spotted wolffish (Anarhichas minor) Fillet Individual 2019 2019 PFOS 8 0.2 63 <0.2 4        
Spotted wolffish (Anarhichas minor) Fillet Individual 2019 2019 PFOA 8 0.6 100            
Spotted wolffish (Anarhichas minor) Fillet Individual 2019 2019 PFNA 8 0.2 100            
Spotted wolffish (Anarhichas minor) Fillet Individual 2019 2019 PFHxS 8 1 100            
Spotted wolffish (Anarhichas minor) Fillet Individual 2019 2019 Sum 4 PFAS (LB) 8 2 63 0 4   NA    
Tusk (Brosme brosme) Fillet Individual 2008 2008-2009 PFOS 28 1.0 100            
Tusk (Brosme brosme) Fillet Individual 2008 2008-2009 PFOA 28 1.0 100            
Tusk (Brosme brosme) Fillet Individual 2008 2008-2009 PFNA 28 1.0 100            
Tusk (Brosme brosme) Fillet Individual 2008 2008-2009 PFHxS 0                
Tusk (Brosme brosme) Fillet Individual 2008 2009 Sum 4 PFAS (LB) 28           NA    
Tusk (Brosme brosme) Fillet Individual (5) and Composite (3) 2009, 2013 2010, 2013 PFOS 9 0.6 78 <0.6 0.7        
Tusk (Brosme brosme) Fillet Individual (5) and Composite (3) 2009, 2013 2010, 2013 PFOA 9 0.6 89 <0.6 0.8        
Tusk (Brosme brosme) Fillet Individual (5) and Composite (3) 2009, 2013 2010, 2013 PFNA 9 0.6 100            
Tusk (Brosme brosme) Fillet Individual (5) and Composite (3) 2009, 2013 2010, 2013 PFHxS 9 0.6 100            
Tusk (Brosme brosme) Fillet Individual (5) and Composite (3) 2009, 2013 2010, 2013 Sum 4 PFAS (LB) 9 2.4 67 0 0.8   NA    
Tusk (Brosme brosme) Fillet Individual (69) and Composite (50) 2013-2016 2013-2017 PFOS 119 1.8 98 <1.8 2.6        
Tusk (Brosme brosme) Fillet Individual (69) and Composite (50) 2013-2016 2013-2017 PFOA 119 2.4 100            
Tusk (Brosme brosme) Fillet Individual (69) and Composite (50) 2013-2016 2013-2017 PFNA 119 1.8 100            
Tusk (Brosme brosme) Fillet Individual (69) and Composite (50) 2013-2016 2013-2017 PFHxS 119 1.8 100            
Tusk (Brosme brosme) Fillet Individual (69) and Composite (50) 2013-2016 2013-2017 Sum 4 PFAS (LB) 119 7.8 98 0 2.6   NA    
Whiting (Merlangius merlangus) Fillet Composite 2013 2013 PFOS 2 0.6 100            
Whiting (Merlangius merlangus) Fillet Composite 2013 2013 PFOA 2 0.6 100            
Whiting (Merlangius merlangus) Fillet Composite 2013 2013 PFNA 2 0.6 100            
Whiting (Merlangius merlangus) Fillet Composite 2013 2013 PFHxS 2 0.6 100            
Whiting (Merlangius merlangus) Fillet Composite 2013 2013 Sum 4 PFAS (LB) 2 2.4 100       NA    
Whiting (Merlangius merlangus) Fillet Composite 2014 2015 PFOS 3 1.8 100            
Whiting (Merlangius merlangus) Fillet Composite 2014 2015 PFOA 3 2.4 100            
Whiting (Merlangius merlangus) Fillet Composite 2014 2015 PFNA 3 1.8 100            
Whiting (Merlangius merlangus) Fillet Composite 2014 2015 PFHxS 3 1.8 100            
Whiting (Merlangius merlangus) Fillet Composite 2014 2015 Sum 4 PFAS (LB) 3 7.8 100        NA    
Table A8. Concentrations of PFOS, PFOA, PFNA, PFHxS and sum 4 PFAS for wild-caught fish and other seafood collected by IMR in various monitoring programs conducted in the period 2006-2023. Due to changes in the analytical method over time, the limit of quantification (LOQ) for the compounds varied across different years of analysis; therefore, the results are organized based on the LOQ of the method in each case. LOQ and the mean, minimum (min), and maximum (max) concentrations are given as µg/kg wet weight. Mean values were calculated when less than 50% of the samples had concentrations below LOQ (%<LOQ) for one or more of the 4 PFAS. Based on the mean values for each species and tissue, the maximum amount in gram (g) that may be consumed before exceeding the tolerable weekly intake (TWI; 4.4 ng/kg bw) for a 70 kg person is given. NA=not applicable. The maximum levels (ML) applicable from 2023 for PFOS, PFOA, PFNA, PFHxS and sum 4 PFAS, and the percentage of samples above ML (%>ML), are shown for samples analysed in 2023.

14 - Appendix Table A9 - Catch volume per species

Name of species, Norwegian Name of species, English (Latin) Catch volume (ton)
Atlantisk kveite Atlantic halibut (Hippoglossus hippoglossus) 2 845
Blåkveite Greenland halibut (Reinhardtius hippoglossoides) 17 099
Blålange Blue ling (Molva dipterygia) 537
Blåsteinbit Northern wolffish (Anarhichas denticulatus) 3 464
Breiflabb Anglerfish (Lophius piscatorius) 3 677
Brisling European sprat (Sprattus sprattus) 11 701
Brosme Tusk (Brosme brosme) 13 143
Dypvannsreke Northern shrimp (Pandalus borealis) 40 535
Flekksteinbit Spotted wolffish (Anarhichas minor) 4 108
Gapeflyndre American plaice (Hippoglossus platessoides) 320
Gråskate Spinytail skate (Bathyraja spinicauda) 230
Gråsteinbit Atlantic wolffish (Anarhichas lupus) 2 275
Havmus Rat fish (Chimaera monstrosa) 243
Hestmakrell Atlantic horse mackerel (Trachurus trachurus) 10 924
Hummer European lobster (Homarus gammarus) 47
Hvitting Whiting (Merlangius merlangus) 1 273
Hyse Haddock (Melanogrammus aeglefinus) 111 225
Isgalt Roughhead grenadier (Macrourus berglax) 210
Kloskate Starry ray (Amblyraja radiata) 199
Knurr Gurnard (Eutrigla gurnardus) 240
Kongekrabbe Red king crab (Paralithodes camtchaticus) 2 060
Lange Common ling (Molva molva) 18 701
Lyr Pollack (Pollachius pollachius) 2 600
Lysing European hake (Merluccius merluccius) 3 977
Makrell Atlantic mackerel (Scomber scombrus) 207 146
Makrellstørje Atlantic bluefin tuna (Thunnus thynnus) 101
Nordsjøsild Atlantic herring (Clupea harengus) 130 000
NVG-sild Atlantic herring (Clupea harengus) 415 346
Pigghå Spiny dogfish (Squalus acanthias) 356
Rødspette European plaice (Pleuronectes platessa) 772
Sei Saithe (Pollachius virens) 203 947
Sjøkreps Norway lobster (Nephrops norvegicus) 434
Skjellbrosme Greater forkbeard (Physis blennoides) 350
Smørflyndre Witch flounder (Glyptocephalus cynoglossus) 196
Snabeluer Beaked redfish (Sebastes mentella) 32 678
Snøkrabbe Snow crab (Chionoecetes opilio) 4 530
Taskekrabbe rå Edible crab (Cancer pagurus) (fresh) 5 266
Torsk Atlantic cod (Gadus morhua) 451 015
Vanlig uer Golden redfish (Sebastes norvegicus) 8 371
Vassild Greater argentine (Argentina silus) 10 000
Villaks Atlantic salmon (Salmo salar), wild 16
Table A9. Catch volume per year (mean value in the period 2018-2021) for wild caught fish and other seafood from Norwegian fisheries. Data from the landing statistics of the Norwegian Directorate of Fisheries (https://www.fiskeridir.no/statistikk-tall-og-analyse/data-og-statistikk-om-yrkesfiske/fangst/fangst-fordelt-pa-art-offisiell-statistikk).

15 - Appendix Table A10 - Extended overview of all risk factors combined

Species (Norwegian/ English) Potential for high exposure Potential for exceeding ML for Hg Potential for exceeding ML for Cd Potential for exceeding ML for dioxin+dl-PCB Potential for exceeding ML for PCB6 Potential for exceeding ML for PFAS Potential for exceeding MLs - Total score Potential for exceeding TWI for Hg Potential for exceeding TWI for Cd Potential for exceeding TWI for dioxins+dl-PCB Potential for exceeding TWI for PFAS Potential for exceeding TWI - Total score Priority Data deficiency
Sild/ Atlantic herring 3  0 0 0 0 0 0 0 0 1 0 1 High  
Makrell/ Atlantic mackerel 3  0 0 0 0 0 0 0 0 1 0 1 High Low N in some areas
Torsk/ Atlantic cod 3 1 0 0 0 0 1 0 0 0 0 0 High  
Sei/ Saithe 3  0 0 0 0 0 0 0 0 0 0 0 High  
Hyse/ Haddock 3 0 0 0 0 0 0 0 0 0 0 0 High  
Makrellstørje/ Atlantic bluefin tuna 0 2 0 2 2 0 3 1 0 1 0 2 High Low N
Blåkveite/ Greenland halibut 0 1 0 1 0 0 2 0 0 1 0 1 Medium  
Kveite/ Atlantic halibut 0 1 0 1 0 1 2 0 0 1 0 1 Medium Low N in some areas
Brosme/ Tusk 0 2 0 0 0 0 2 1 0 0 0 1 Medium Low N in some areas
Blålange/ Blue ling 0 2 0 0 0 0 2 1 0 0 0 1 Medium Low N
Breiflabb/ Anglerfish 0 2 0 0 0 0 2 0 0 0 0 0 Medium Low N in some areas
Taskekrabbe/ Brown crab 0 0 1 (claw meat) 0 0 0 1 (claw meat) 0 1 (brown meat) 1 (brown meat) 1 (brown meat) 2  (brown meat) Medium  
Rødspette/ European plaice 0 0 0 0 0 1 1 0 0 0 1 Lower Low N in some areas
Lange/ Common ling 0 1 0 0 0 0 1 0 0 0 0 0 Lower Low N in some areas
Lyr/ Pollack 0 1 0 0 0 0 1 0 0 0 0 0 Lower Low N in some areas
Gråsteinbit/ Atlantic wolffish 0 1 0 0 0 0 1 0 0 0 0 0 Lower Low N in some areas
Sjøkreps/ Norway lobster 0 1 0 0 0 0 1 0 0 0 0 0 Lower Low N
Hummer/ European lobster 0 1 0 0 0 0 1 0 0 0 0 Lower Low N
Brisling/ European sprat 0 0 0 0 0 0 0 0 0 1 (whole fish) 0 1 Lower Low N
Hestmakrell/ Atlantic horse mackerel 0 0 0 0 0 0 0 0 0 1 0 1  Lower Low N
Laks (vill)/ Atlantic salmon (wild) 0 0 0 0 0 0 0 0 0 1 0 1 Lower Low N
Lysing/ European hake 0 0 0 0 0 0 0 0 0 1 0 1 Lower Low N in some areas
Vassild/ Greater argentine 0 0 0 0 0 0 0 0 0 1 0 1 Lower Low N in some areas
Flekksteinbit/ Spotted wolffish 0 0 0 0 0 0 0 0 0 1 0 1 Lower  
Snabeluer/ Beaked redfish 0 0 0 0 0 0 0 0 0 1 0 1 Lower Low N in some areas
Vanlig uer/ Golden redfish 0 0 0 0 0 0 0 0 0 0 0 0 Lowest  
Dypvannsreke/ Northern shrimp 0 0 0 0 0 0 0 0 0 0 0 0 Lowest  
Pigghå/ Spiny dogfish 0 0 0 0 0 0 0 0 0 0 0 Unknown Low N
Kongekrabbe/ Red king crab 0 0 0 0 0 0 0 0 0 0 0 0 Unknown Old data
Hvitting/ Whiting 0 0 0 0 0 0 0 0 0 0 0 0 Unknown Low N
Skjellbrosme/ Greater forkbeard 0 0 0 0 0 0 0 0 0 0 0 Unknown Low N
Gapeflyndre/ American plaice 0 0 0 0 0 0 0 0 0 0 0 0 Unknown Low N
Havmus/ Ratfish 0 0 0 0 0 0 0 0 0  0 0 0 Unknown Low N
Kloskate/ Starry ray 0 0 0 0 0 0 0 0 0 0 0 0 Unknown Low N
Smørflyndre/ Witch flounder 0 0 0 0 0 0 0 0 0 0 0 0 Unknown Low N
Knurr/ Gurnard 0  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated Unknown Low N
Gråskate/ Spinytail skate 0  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated Unknown Low N
Isgalt/ Roughhead grenadier 0  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated Unknown Low N
Strandkrabbe/ Shore crab 0 0 0 0 0 0 0 0 0 0 0 0 Unknown New resource
Snøkrabbe/ Snow crab 0 0 0 0 0 0 0 0 0 0 0 0 Unknown New resource
Stillehavsøsters/ Pacific oyster 0 not evaluated not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated Unknown New resource
Echinoderms 0 not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated Unknown New resource
Mesopelagic species 0  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated  not evaluated Unknown New resource
Table A10. Extended overview of risk-based prioritization of Norwegian wild-caught seafood species to be included in control plans. Scores are shown for the following potential risk factors: Potential for high exposure due to high catch volume (Potential for high exposure), potential for exceeding maximum levels for Hg, Cd, PCDD/F +dl-PCB, PCB6 and/or PFAS in muscle (Potential for exceeding ML), potential for exceeding tolerable weekly intake for Hg, Cd, PCDD/F +dl-PCB and/or PFAS (Potential for exceeding TWI). The priority of each species for inclusion in risk-based control plans is shown according to the following categories: High priority (dark blue): Species with score 3 as the highest score for any of the risk factors, Medium priority (medium blue): Species with score 2 as the highest score for any of the risk factors, Lower priority (light blue): Species with score 1 as the highest score for any of the risk factors, Lowest priority (white): Species with score 0 across all the risk factors, and Unknown priority (white): Species for which there is insufficient data to determine a priority level. Data deficiency per species is noted in the last column.